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Abstract 

We propose the CHEAT approach to the 

MorphoChallenge contest: Combinatory 

Hybrid Elementary Analysis of Text. The 

idea is: acquire results from a number of 

other candidate systems; CHEAT will 

read in the output files of each of the 

other systems, and then line-by-line se-

lect the "majority vote" analysis - the 

analysis which most systems have gone 

for. If there is a tie, take the result pro-

duced by the system with the highest F-

measure; if the other systems’ output 

files are ordered best-first, then this is 

achieved by simply taking the first of he 

tied results. To justify our approach, we 

need to show that this really is unsuper-

vised learning, as defined on the Mor-

phoChallenge website; arguably the 

CHEAT approach involves super-sized 

unsupervised learning, as it combines 

three different layers of unsupervised 

learning. 

1 Our guiding principle: get others to 

do the work 

The reuse of existing components is an estab-

lished principle in Software Engineering; it is 

quicker, easier, and overall better to engineer a 

system using components built by others, than to 

develop a complex system ourselves. This prin-

ciple is behind our CHEAT approach to the 

MorphoChallenge task: to avoid doing work our-

selves, we got others to do most of the work, and 

then copied their results. However, straightfor-

ward copying of another entrant’s results might 

be considered unacceptable (perhaps even cheat-

ing), so we had to do something a bit smarter. 

Students generally know that blatant copying of 

another’s work is condemned as plagiarism, and 

can be detected by text analysis software, eg 

(Atwell et al 2003); but some students may try to 

get away with less blatant “smart” copying (Me-

dori et al 2002).  We procured results from sev-

eral candidate systems, and then developed a 

program to allow “voting” on the analysis of 

each word: for each word, examine the set of 

candidate analyses; where all systems were in 

agreement, the common analysis is copied; but 

where contributing systems disagree on the 

analysis, take the “majority vote”, the analysis 

given by most systems. If there is a tie, take the 

result produced by the system with the highest F-

measure; if the other systems’ output files are 

ordered best-first, then this is achieved by simply 

taking the first of he tied results. 

Procuring results from several candidate systems 

was a challenge by itself, given that entrants 

were to submit results direct to the MorphoChal-

lenge organizers. These results would not be “on 

show” until the Workshop, well after the dead-

line for us to submit our own entry. Our ideal 

solution was to develop a set of intelligent 

agents, each of which would learn to develop and 

submit an entry for the MorphoChallenge con-

test; we could then use the results of these intel-

ligent agents. However, we did not have suffi-

cient time or AI expertise to build software 

agents capable of this advanced learning.  Fortu-

nately, Eric Atwell had to teach an MSc course 

in the School of Computing at Leeds University, 

on Computational Modeling. For assessment, 

students had to undertake a computational mod-

eling exercise; as the course and the Morpho-

Challenge contest ran concurrently, this pre-

sented the opportunity to set the MorphoChal-

lenge as a student coursework exercise, and re-

quire the students to submit their entries to their 



lecturer (for internal assessment) at the same 

time as submitting to the organizers. 

2 But is this really “unsupervised learn-

ing”? 

According to the MorphoChallenge website 

FAQ, “unsupervised learning” means that “…the 

program cannot be explicitly given a training file 

containing “example answers”, and nor can ex-

ample answers be hard-coded into the pro-

gram.” We must admit that we originally formu-

lated this definition (to suit our approach) and 

proposed this to the organizers, who accepted 

and published it. The presence or absence of 

“example answers” distinguishes supervised 

from unsupervised learning: in supervised learn-

ing, the system is shown the correct analysis or 

answer for at least some input words (but not all, 

otherwise this would not be Machine Learning 

but dictionary-lookup!) Our CHEAT program is 

not shown definitely correct answers for any 

word, as it is given not one but several files: al-

though each results file constitutes a set of can-

didate/possible answers, they may not be correct 

answers, and there is no way of knowing which 

is correct – the voting system is designed for dis-

agreements between candidates, who cannot all 

be correct. So, strictly speaking, our CHEAT 

system is an unsupervised learning system. 

In fact, there are three cascading layers of unsu-

pervised learning in the overall process, so we 

call this “Super-sized unsupervised learning”: 

2.1 Unsupervised learning by autonomous 

agents: students 

Of course, Leeds University MSc students are far 

more intelligent than any software agent; but 

they still needed to learn how to tackle the Mor-

phoChallenge task. The Computational Modeling 

class included students on Cognitive Systems, 

BioInformatics, GeoInformatics, and Health In-

formatics programmes, so the students had little 

or no previous knowledge of morphological 

analysis or machine learning systems develop-

ment. Their approach to learning was unsuper-

vised, or at least semi-supervised: Eric Atwell 

presented lectures on machine learning and lin-

guistic principles underlying morphological 

analysis, and formulated a coursework specifica-

tion www.comp.leeds.ac.uk/cmd/assessment.htm 

and marking scheme involving entry to the con-

test; but then the students were left to learn for 

themselves how to develop algorithms and sys-

tems.  They were not explicitly given “example 

answers” – in this case, example algorithm or 

code to perform unsupervised learning of mor-

phological analysis. And “example answers” 

were defnitely not hard-coded into the students – 

in this case, this would mean downloading algo-

rithm or code direct into their brains, something 

even Leeds University teaching methods can’t 

achieve. The students learning about morpho-

logical analysis and machine learning constituted 

the first phase in the CHEAT cascade: a set of 

autonomous unsupervised learning agents. 

 

2.2 Unsupervised learning by student pro-

grams 

The students worked in pairs, each pair de-

signing and implementing a program to perform 

unsupervised learning of morphological analysis. 

So, these programs constitute the second phase 

of the CHEAT cascade: a set of independent un-

supervised learning programs, each producing a 

candidate set of morphological analyses of the 

contest word-files. Detailed descriptions of the 

student programs are available in the reports 

submitted by the students alongside the results 

files. For our purposes, we treated each student 

program as a “black box” – all we needed were 

the results files. 

2.3 Unsupervised learning by cheat.py 

The third phase in the CHEAT cascade is a 

simple program to read in the candidate results 

file, choose the most popular analysis of each 

word, and output this as the CHEAT result. In 

the spirit of the CHEAT approach, to avoid do-

ing work by getting others to do it, Eric Atwell 

tried to avoid having to write this program him-

self, by asking Andy Roberts to do it – hence our 

collaboration on this entry. Eric Atwell wrote a 

basic Python version which worked in theory but 

not in practice; Andy Roberts supplied a much 

improved version which coped with the unex-

pected problems. 

3 cheat.py 

Python has straightforward yet elegant fea-

tures for reading, processing and writing text, 

and “mainstream” syntax similar to Java or C++, 

so seemed the obvious choice for implementation 

language. Eric Atwell’s first python program is 

so simple that it should be self-explanatory. The 

version below reads in 7 candidate results files 

for the English dataset, ordered by their F-

measure scores: hr.txt, cd.txt, b.txt, hz.txt, 



km.txt. aa.txt. mw.txt. Letters hr, cd etc are ini-

tials of the student surnames; b.txt shows one 

student worked alone.  

 
# CHEAT: Combinatory Hybrid  

# Elementary Analysis of Text 

# Eric Atwell's first PYTHON  

# program, 15/01/2006 

# first open each result-file,  

# open a.txt to write CHEAT result 

aa=open('aa.txt','r') 

b=open('b.txt','r') 

cd=open('cd.txt','r') 

hr=open('hr.txt','r') 

hz=open('hz.txt','r') 

km=open('km.txt','r') 

mw=open('mw.txt','r') 

a=open('a.txt','w')    

# a.txt will be the result file 

n=6                  

# n+1: the no of files to combine 

# loop: read each result-file-line 

# in array Results[0..n] 

# ordered by F-measure score: hr  

# was the best, mw was the worst 

for Results in 

zip(hr,cd,b,hz,km,aa,mw): 

# setup array Votes[0..n]  

# all values initially 1 

  Votes=[1 for x in range(n+1)] 

# Votes=[1,1,1,1,1,1] might be  

# simpler, but less showoffy... 

  for r in range(1,n): 

   for t in range(r): 

     if Results[r]==Results[t]: 

       Votes[t]= Votes[t] + 1 

# set Votes[N] to number of copies 

 

# next find the top scoring result 

  topscore=1 

  topresult=1 

  for r in range(n): 

   if Votes[r] > topscore: 

     topresult=r 

 

# Finally output Results[topresult] 

  a.write(Results[topresult]) 

 

# after end of loop, close all  

# files to terminate cleanly 

aa.close() 

b.close() 

cd.close() 

hr.close() 

hz.close() 

km.close() 

mw.close() 

a.close() 

 

This appeared to work with test samples.  

However, it assumes the input files are all valid, 

correctly formatted and containing the analyzed 

words in the same sequence as the given input. 

Unexpectedly, this turned out not to be the case 

with all the student results files.  Some of the 

student programs tried to read in the entire word-

file, process and segment words in a program 

buffer, and then print out the buffer contents in 

alphabetically sorted order. Unfortunately, the 

details of sort-ordering are different in some 

packages or programming languages; in particu-

lar, Capital and lower-case letters can be sorted 

together or separately, and non-alphabetic char-

acters (common in Turkish and Finnish datasets, 

and found in some loanwords even in the English 

dataset) may also vary in rank-order. The result 

was that several student results files did not 

match the ordering of the input dataset; so the 

simple cheat.py above was not comparing seg-

mentations of the same words. 

4 cheat2.py 

Andrew Roberts came to the rescue with a 

much improved comparison algorithm, which 

read all the input files into memory, ensured 

comparisons of “like with like”, then wrote out 

the majority-vote analysis. Unfortunately the 

program is too long to include in this paper, but 

we can assure the reader that it is much more 

robust, elegant and exception-proof than the first 

version of cheat.py. 

5 Results 

We evaluated the final cheat2.py results files 

using the evaluation.perl program provided by 

the MorphoChallenge organizers, which com-

pared the results files against small Gold Stan-

dard samples of words which we were assured 

had “correct” segmentation. We then compared 

the evaluation.perl scores for CHEAT output 

against the scores for the contributing systems’ 

outputs: 7 systems for English, but only 4 sys-

tems managed to cope with the much larger 

Turkish and Finnish datasets. 

 
Evaluation of segmentation 

in English results file  

against gold standard  

segmentation in file 

"goldstdsample.eng": 

Number of words in gold 

standard: 532 (type count) 

Number of words in data set: 

167377 (type count) 

Morpheme boundary detections 

statistics: 

  

 

 



System F-

measure 

% 

Precision 

% 

Recall 

% 

CHEAT 59.19 60.71 57.74 

hr 54.89 53.87 55.94 

cd 51.83 48.06 56.23 

B 49.10 46.90 51.52 

hz 38.62 37.55 39.75 

km 36.96 33.04 41.95 

aa 30.55 23.17 44.83 

mw 28.48 22.01 40.35 

 
Evaluation of segmentation 

in Turkish results file 

against gold standard  

segmentation in file 

"goldstdsample.tur": 

Number of words in gold 

standard: 774 (type count) 

Number of words in data set: 

582935 (type count) 

Morpheme boundary detections 

statistics: 

 

System F-

measure 

% 

Precision 

% 

Recall 

% 

CHEAT 56.63 62.05 52.08 

cd 55.94 59.39 52.87 

hr 44.38 59.46 35.39 

B 42.05 54.51 34.23 

mw 40.44 37.40 44.02 

 

 
Evaluation of segmentation 

in Finnish results file 

against gold standard  

segmentation in file 

"goldstdsample.fin": 

Number of words in gold 

standard: 660 (type count) 

Number of words in data set: 

1636336 (type count) 

Morpheme boundary detections 

statistics: 

   

System F-

measure 

% 

Precision 

% 

Recall 

% 

CHEAT 60.26 66.10 55.37 

cd 60.18 64.97 56.04 

hr 43.46 67.18 32.12 

B 38.69 56.95 32.90 

mw 28.30 24.18 34.12 

 

We also downloaded the Morfessor system 

developed by the MorphoChallenge organizers, 

as advertised on the website (!), and used it to 

analyse the English, Turkish and Finnish data-

sets. We then repeated the previous experiments, 

this time including the Morfessor output  as an 

additional candidate file.  We were very sur-

prised to find that the resulting F-measure, Preci-

sion and Recall for CHEAT remained unchanged 

from the values in the tables above – the Morfes-

sor output seemed to have no influence whatso-

ever on the votes!  We then realized that the ver-

sion of Morfessor freely available via the contest 

website had apparently been modified so that 

none of the words from the three Gold Standard 

samples are included in the evaluation. Thus 

Morfessor appeared to yield Precision and Recall 

scores of 0/0 or 100%, but this presumably did 

not mean other words in the output were all cor-

rect.   

 
Evaluation of segmentation 

in file "m.txt" against 

gold standard segmentation 

in file "goldstdsample.fin": 

Number of words in gold 

standard: 660 (type count) 

Number of words in data set: 

1636336 (type count) 

Number of words evaluated: 0 

(0.00% of all words in data 

set) 

Morpheme boundary detections 

statistics: 

F-measure:  100.00% 

Precision:  100.00% 

Recall:     100.00%  

6 Conclusions 

For all three languages (English, Turkish, Fin-

nish), our CHEAT system scored a higher F-

measure than any of the contributing systems. It 

also achieved better Precision and Recall scores, 

with a couple of exceptions: cd had a slightly 

higher Recall for Turkish and Finnish (but not 

English, and cd had a lower Precision and F-

measure for all three languages), and hr had a 

higher Precision for Finnish (but lower Precision 

and F-measure).  Combinatory Hybrid Elemen-

tary Analysis of Text is a valid approach to Un-

supervised Learning of morphological analysis. 

We thought we had dreamt up the CHEAT 

approach as a clever scam to avoid work, get stu-

dents to do the hard work while letting us come 



up with a winning system. However, an anony-

mous reviewer of our draft paper pointed out that 

the CHEAT approached seemed similar to, or 

even a copy of, an approach already known in 

the Machine Learning literature: a committee of 

unsupervised learners.  It transpires that we have 

inadvertently adopted an unsupervised learning 

approach to machine learning research: we de-

veloped the CHEAT algorithm without use of 

training material such as  the background litera-

ture, eg (Banko and Brill 2001), adding a fourth 

layer to the super-sized unsupervised learning 

model. 

Yet another thing we learnt from searching in 

http://scholar.google.com for research papers on 

“committee of unsupervised learners” is that 

“unsupervised learning” is a recognized term in 

Education research, referring to student learning 

with minimal explicit direction from teachers, eg 

(Pursula 2004). It turns out that super-sized un-

supervised learning is not only a valid (and hope-

fully interesting) approach to Machine Learning 

for the MorphoChallenge task, but also a valid 

approach to Student Learning. Student feedback 

suggests that the MSc students relished the chal-

lenge of participating in an international research 

contest, and this inspired many of them to pro-

duce outstanding coursework … which made the 

CHEAT results even better!    
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