
This is a repository copy of Combinatory hybrid elementary analysis of text (CHEAT).

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/82290/

Proceedings Paper:
Atwell, ES (2007) Combinatory hybrid elementary analysis of text (CHEAT). In:
Proceedings of CL'2007 Corpus Linguistics Conference. CL'2007 Corpus Linguistics
Conference, 27-30 Jul 2007, CL'2007 Corpus Linguistics Conference. UCREL, Lancaster
University .

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Combinatory Hybrid Elementary Analysis of Text

Eric Atwell

School of Computing

University of Leeds

Leeds LS2 9JT, England

eric@comp.leeds.ac.uk

Andrew Roberts

Pearson Longman

Edinburgh Gate

Harlow CM20 2JE, England

andrew.roberts@pearson.com

Abstract

We propose the CHEAT approach to the

MorphoChallenge contest: Combinatory

Hybrid Elementary Analysis of Text. The

idea is: acquire results from a number of

other candidate systems; CHEAT will

read in the output files of each of the

other systems, and then line-by-line se-

lect the "majority vote" analysis - the

analysis which most systems have gone

for. If there is a tie, take the result pro-

duced by the system with the highest F-

measure; if the other systems’ output

files are ordered best-first, then this is

achieved by simply taking the first of he

tied results. To justify our approach, we

need to show that this really is unsuper-

vised learning, as defined on the Mor-

phoChallenge website; arguably the

CHEAT approach involves super-sized

unsupervised learning, as it combines

three different layers of unsupervised

learning.

1 Our guiding principle: get others to

do the work

The reuse of existing components is an estab-

lished principle in Software Engineering; it is

quicker, easier, and overall better to engineer a

system using components built by others, than to

develop a complex system ourselves. This prin-

ciple is behind our CHEAT approach to the

MorphoChallenge task: to avoid doing work our-

selves, we got others to do most of the work, and

then copied their results. However, straightfor-

ward copying of another entrant’s results might

be considered unacceptable (perhaps even cheat-

ing), so we had to do something a bit smarter.

Students generally know that blatant copying of

another’s work is condemned as plagiarism, and

can be detected by text analysis software, eg

(Atwell et al 2003); but some students may try to

get away with less blatant “smart” copying (Me-

dori et al 2002). We procured results from sev-

eral candidate systems, and then developed a

program to allow “voting” on the analysis of

each word: for each word, examine the set of

candidate analyses; where all systems were in

agreement, the common analysis is copied; but

where contributing systems disagree on the

analysis, take the “majority vote”, the analysis

given by most systems. If there is a tie, take the

result produced by the system with the highest F-

measure; if the other systems’ output files are

ordered best-first, then this is achieved by simply

taking the first of he tied results.

Procuring results from several candidate systems

was a challenge by itself, given that entrants

were to submit results direct to the MorphoChal-

lenge organizers. These results would not be “on

show” until the Workshop, well after the dead-

line for us to submit our own entry. Our ideal

solution was to develop a set of intelligent

agents, each of which would learn to develop and

submit an entry for the MorphoChallenge con-

test; we could then use the results of these intel-

ligent agents. However, we did not have suffi-

cient time or AI expertise to build software

agents capable of this advanced learning. Fortu-

nately, Eric Atwell had to teach an MSc course

in the School of Computing at Leeds University,

on Computational Modeling. For assessment,

students had to undertake a computational mod-

eling exercise; as the course and the Morpho-

Challenge contest ran concurrently, this pre-

sented the opportunity to set the MorphoChal-

lenge as a student coursework exercise, and re-

quire the students to submit their entries to their

lecturer (for internal assessment) at the same

time as submitting to the organizers.

2 But is this really “unsupervised learn-

ing”?

According to the MorphoChallenge website

FAQ, “unsupervised learning” means that “…the

program cannot be explicitly given a training file

containing “example answers”, and nor can ex-

ample answers be hard-coded into the pro-

gram.” We must admit that we originally formu-

lated this definition (to suit our approach) and

proposed this to the organizers, who accepted

and published it. The presence or absence of

“example answers” distinguishes supervised

from unsupervised learning: in supervised learn-

ing, the system is shown the correct analysis or

answer for at least some input words (but not all,

otherwise this would not be Machine Learning

but dictionary-lookup!) Our CHEAT program is

not shown definitely correct answers for any

word, as it is given not one but several files: al-

though each results file constitutes a set of can-

didate/possible answers, they may not be correct

answers, and there is no way of knowing which

is correct – the voting system is designed for dis-

agreements between candidates, who cannot all

be correct. So, strictly speaking, our CHEAT

system is an unsupervised learning system.

In fact, there are three cascading layers of unsu-

pervised learning in the overall process, so we

call this “Super-sized unsupervised learning”:

2.1 Unsupervised learning by autonomous

agents: students

Of course, Leeds University MSc students are far

more intelligent than any software agent; but

they still needed to learn how to tackle the Mor-

phoChallenge task. The Computational Modeling

class included students on Cognitive Systems,

BioInformatics, GeoInformatics, and Health In-

formatics programmes, so the students had little

or no previous knowledge of morphological

analysis or machine learning systems develop-

ment. Their approach to learning was unsuper-

vised, or at least semi-supervised: Eric Atwell

presented lectures on machine learning and lin-

guistic principles underlying morphological

analysis, and formulated a coursework specifica-

tion www.comp.leeds.ac.uk/cmd/assessment.htm

and marking scheme involving entry to the con-

test; but then the students were left to learn for

themselves how to develop algorithms and sys-

tems. They were not explicitly given “example

answers” – in this case, example algorithm or

code to perform unsupervised learning of mor-

phological analysis. And “example answers”

were defnitely not hard-coded into the students –

in this case, this would mean downloading algo-

rithm or code direct into their brains, something

even Leeds University teaching methods can’t

achieve. The students learning about morpho-

logical analysis and machine learning constituted

the first phase in the CHEAT cascade: a set of

autonomous unsupervised learning agents.

2.2 Unsupervised learning by student pro-

grams

The students worked in pairs, each pair de-

signing and implementing a program to perform

unsupervised learning of morphological analysis.

So, these programs constitute the second phase

of the CHEAT cascade: a set of independent un-

supervised learning programs, each producing a

candidate set of morphological analyses of the

contest word-files. Detailed descriptions of the

student programs are available in the reports

submitted by the students alongside the results

files. For our purposes, we treated each student

program as a “black box” – all we needed were

the results files.

2.3 Unsupervised learning by cheat.py

The third phase in the CHEAT cascade is a

simple program to read in the candidate results

file, choose the most popular analysis of each

word, and output this as the CHEAT result. In

the spirit of the CHEAT approach, to avoid do-

ing work by getting others to do it, Eric Atwell

tried to avoid having to write this program him-

self, by asking Andy Roberts to do it – hence our

collaboration on this entry. Eric Atwell wrote a

basic Python version which worked in theory but

not in practice; Andy Roberts supplied a much

improved version which coped with the unex-

pected problems.

3 cheat.py

Python has straightforward yet elegant fea-

tures for reading, processing and writing text,

and “mainstream” syntax similar to Java or C++,

so seemed the obvious choice for implementation

language. Eric Atwell’s first python program is

so simple that it should be self-explanatory. The

version below reads in 7 candidate results files

for the English dataset, ordered by their F-

measure scores: hr.txt, cd.txt, b.txt, hz.txt,

km.txt. aa.txt. mw.txt. Letters hr, cd etc are ini-

tials of the student surnames; b.txt shows one

student worked alone.

CHEAT: Combinatory Hybrid

Elementary Analysis of Text

Eric Atwell's first PYTHON

program, 15/01/2006

first open each result-file,

open a.txt to write CHEAT result

aa=open('aa.txt','r')

b=open('b.txt','r')

cd=open('cd.txt','r')

hr=open('hr.txt','r')

hz=open('hz.txt','r')

km=open('km.txt','r')

mw=open('mw.txt','r')

a=open('a.txt','w')

a.txt will be the result file

n=6

n+1: the no of files to combine

loop: read each result-file-line

in array Results[0..n]

ordered by F-measure score: hr

was the best, mw was the worst

for Results in

zip(hr,cd,b,hz,km,aa,mw):

setup array Votes[0..n]

all values initially 1

 Votes=[1 for x in range(n+1)]

Votes=[1,1,1,1,1,1] might be

simpler, but less showoffy...

 for r in range(1,n):

 for t in range(r):

 if Results[r]==Results[t]:

 Votes[t]= Votes[t] + 1

set Votes[N] to number of copies

next find the top scoring result

 topscore=1

 topresult=1

 for r in range(n):

 if Votes[r] > topscore:

 topresult=r

Finally output Results[topresult]

 a.write(Results[topresult])

after end of loop, close all

files to terminate cleanly

aa.close()

b.close()

cd.close()

hr.close()

hz.close()

km.close()

mw.close()

a.close()

This appeared to work with test samples.

However, it assumes the input files are all valid,

correctly formatted and containing the analyzed

words in the same sequence as the given input.

Unexpectedly, this turned out not to be the case

with all the student results files. Some of the

student programs tried to read in the entire word-

file, process and segment words in a program

buffer, and then print out the buffer contents in

alphabetically sorted order. Unfortunately, the

details of sort-ordering are different in some

packages or programming languages; in particu-

lar, Capital and lower-case letters can be sorted

together or separately, and non-alphabetic char-

acters (common in Turkish and Finnish datasets,

and found in some loanwords even in the English

dataset) may also vary in rank-order. The result

was that several student results files did not

match the ordering of the input dataset; so the

simple cheat.py above was not comparing seg-

mentations of the same words.

4 cheat2.py

Andrew Roberts came to the rescue with a

much improved comparison algorithm, which

read all the input files into memory, ensured

comparisons of “like with like”, then wrote out

the majority-vote analysis. Unfortunately the

program is too long to include in this paper, but

we can assure the reader that it is much more

robust, elegant and exception-proof than the first

version of cheat.py.

5 Results

We evaluated the final cheat2.py results files

using the evaluation.perl program provided by

the MorphoChallenge organizers, which com-

pared the results files against small Gold Stan-

dard samples of words which we were assured

had “correct” segmentation. We then compared

the evaluation.perl scores for CHEAT output

against the scores for the contributing systems’

outputs: 7 systems for English, but only 4 sys-

tems managed to cope with the much larger

Turkish and Finnish datasets.

Evaluation of segmentation

in English results file

against gold standard

segmentation in file

"goldstdsample.eng":

Number of words in gold

standard: 532 (type count)

Number of words in data set:

167377 (type count)

Morpheme boundary detections

statistics:

System F-

measure

%

Precision

%

Recall

%

CHEAT 59.19 60.71 57.74

hr 54.89 53.87 55.94

cd 51.83 48.06 56.23

B 49.10 46.90 51.52

hz 38.62 37.55 39.75

km 36.96 33.04 41.95

aa 30.55 23.17 44.83

mw 28.48 22.01 40.35

Evaluation of segmentation

in Turkish results file

against gold standard

segmentation in file

"goldstdsample.tur":

Number of words in gold

standard: 774 (type count)

Number of words in data set:

582935 (type count)

Morpheme boundary detections

statistics:

System F-

measure

%

Precision

%

Recall

%

CHEAT 56.63 62.05 52.08

cd 55.94 59.39 52.87

hr 44.38 59.46 35.39

B 42.05 54.51 34.23

mw 40.44 37.40 44.02

Evaluation of segmentation

in Finnish results file

against gold standard

segmentation in file

"goldstdsample.fin":

Number of words in gold

standard: 660 (type count)

Number of words in data set:

1636336 (type count)

Morpheme boundary detections

statistics:

System F-

measure

%

Precision

%

Recall

%

CHEAT 60.26 66.10 55.37

cd 60.18 64.97 56.04

hr 43.46 67.18 32.12

B 38.69 56.95 32.90

mw 28.30 24.18 34.12

We also downloaded the Morfessor system

developed by the MorphoChallenge organizers,

as advertised on the website (!), and used it to

analyse the English, Turkish and Finnish data-

sets. We then repeated the previous experiments,

this time including the Morfessor output as an

additional candidate file. We were very sur-

prised to find that the resulting F-measure, Preci-

sion and Recall for CHEAT remained unchanged

from the values in the tables above – the Morfes-

sor output seemed to have no influence whatso-

ever on the votes! We then realized that the ver-

sion of Morfessor freely available via the contest

website had apparently been modified so that

none of the words from the three Gold Standard

samples are included in the evaluation. Thus

Morfessor appeared to yield Precision and Recall

scores of 0/0 or 100%, but this presumably did

not mean other words in the output were all cor-

rect.

Evaluation of segmentation

in file "m.txt" against

gold standard segmentation

in file "goldstdsample.fin":

Number of words in gold

standard: 660 (type count)

Number of words in data set:

1636336 (type count)

Number of words evaluated: 0

(0.00% of all words in data

set)

Morpheme boundary detections

statistics:

F-measure: 100.00%

Precision: 100.00%

Recall: 100.00%

6 Conclusions

For all three languages (English, Turkish, Fin-

nish), our CHEAT system scored a higher F-

measure than any of the contributing systems. It

also achieved better Precision and Recall scores,

with a couple of exceptions: cd had a slightly

higher Recall for Turkish and Finnish (but not

English, and cd had a lower Precision and F-

measure for all three languages), and hr had a

higher Precision for Finnish (but lower Precision

and F-measure). Combinatory Hybrid Elemen-

tary Analysis of Text is a valid approach to Un-

supervised Learning of morphological analysis.

We thought we had dreamt up the CHEAT

approach as a clever scam to avoid work, get stu-

dents to do the hard work while letting us come

up with a winning system. However, an anony-

mous reviewer of our draft paper pointed out that

the CHEAT approached seemed similar to, or

even a copy of, an approach already known in

the Machine Learning literature: a committee of

unsupervised learners. It transpires that we have

inadvertently adopted an unsupervised learning

approach to machine learning research: we de-

veloped the CHEAT algorithm without use of

training material such as the background litera-

ture, eg (Banko and Brill 2001), adding a fourth

layer to the super-sized unsupervised learning

model.

Yet another thing we learnt from searching in

http://scholar.google.com for research papers on

“committee of unsupervised learners” is that

“unsupervised learning” is a recognized term in

Education research, referring to student learning

with minimal explicit direction from teachers, eg

(Pursula 2004). It turns out that super-sized un-

supervised learning is not only a valid (and hope-

fully interesting) approach to Machine Learning

for the MorphoChallenge task, but also a valid

approach to Student Learning. Student feedback

suggests that the MSc students relished the chal-

lenge of participating in an international research

contest, and this inspired many of them to pro-

duce outstanding coursework … which made the

CHEAT results even better!

Reference

Eric Atwell, Paul Gent, Julia Medori, Clive Souter.

2003. Detecting student copying in a corpus of sci-

ence laboratory reports. In: Archer, D, Rayson, P,

Wilson, A & McEnery, T (editors) Proceedings

of CL2003: International Conference on Cor-

pus Linguistics, pp. 48-53 Lancaster University.

Michele Banko, Eric Brill. 2001. Scaling to very very

large corpora for natural language disambiguation.

Proceedings of the 39th Annual Meeting on

Association for Computational Linguistics

ACL '01 26-33.

Julia Medori, Eric Atwell, Paul Gent, Ckive Souter.

2002. Customising a copying-identifier for bio-

medical science student reports: comparing simple

and smart analyses. In: O'Neill, M, Sutcliffe, R,

Ryan, C, Eaton, M, & Griffith, N (editors) Artifi-

cial Intelligence and Cognitive Science, Pro-

ceedings of AICS02, pp. 228-233 Springer-

Verlag.

Matti Purusla. 2004. An integrated model for lifelong

learning. In Proceedings of the 9th World Con-

ference on Continuing Engineering Education,

Tokyo.

