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Proposal for a mutual-information basedlanguage modelUwe Jost and Eric AtwellCentre for Computer Analysis of Language And Speech (CCALAS),A.I. Division, School of Computer Studies,University of Leeds, LS2 9JT, United Kingdomemail : uwe@scs.leeds.ac.uk eric@scs.leeds.ac.ukphone : (0532) 335761 FAX: (0532) 335468AbstractWe propose a probabilistic language model that is intended to overcomesome of the limitations of the well-known n-gram models, namely the strongdependence of the parameter values of the model on the discourse domain andthe constant size of word context taken into account. The new model is basedon the mutual information (MI) measurement for the correlation of events andderives a hierarchy of categories from unlabelled training text. It has closeanalogies to the bi-gram model and is therefore explained by comparing itwith this model.1 IntroductionLanguage models (LMs) are used to capture regularities in languages and inthis way to provide information about the possibility or likelihood of certainlanguage constructs. For large-vocabulary speech and handwriting recognition,the acoustic or graphemic evidence gained by the input device may not besu�cient to decide on the word spoken or written with a reasonable amountof certainty. Such devices therefore usually output a set of candidates foreach word, possibly labelled with a certainty score or else sorted on decreasinglikelihood.This problem of uncertainty is not only a problem of the \imperfect" com-puter but humans also often rely on contextual clues to �nd a preferred in-terpretation of an utterance. The decision between di�erent alternatives is1



rarely made with a one hundred percent certainty and if the cost of a misun-derstanding is large compared with the di�erence in certainty, humans ask forclari�cation.Having a model of the target language allows the computer to make moreintelligent guesses about the likelihood that a particular sequence of wordshas been the sequence that the speaker actually intended to utter in a speci�csituation.The next chapter discusses basic types of models to specify the place of ourlanguage model in the system of models, chapter three gives a short summaryon bi-gram models and chapter four introduces the new model.2 ModellingModels are commonly regarded as consisting of a set of categories that arede�ned in terms of a set of attributes, and a set of relationships between thosecategories. We will use this termonology throughout the remaining text.2.1 Prototype versus representationThere is a very basic di�erence between modelling a natural system and de-signing a new arti�cial system. For example, designing a new car is certainlynot the same task as deriving a model of horses. It is not self evident that themeans used for the de�nition of a new system are the most appropriate onesfor the modelling of existing ones, even if both systems have certain propertiesin common.The di�erence is obvious if we look at models of formal languages (usuallygrammars) and models of natural languages (see for instance [Sam92] for adiscussion of this topic). The former actually de�ne the members of the lan-guage. The grammar of a programming language actually exists before the�rst program is written in this language. Nobody has the power to de�newhich natural language constructs actually belong to English. In this casethe task is to observe the language actually spoken (or written) and to ab-stract (generalize) from those observations to �nd an appropriate model of thelanguage.The criteria for the success of a LM are quite di�erent for formal languagesand natural ones. In the �rst case, the expressive power of the languageto be designed is a major concern, computational costs need to be taken intoconsideration and of course, nobody would really want to design an ambiguousprogramming language.Natural language modeling in contrast is judged by the degree to whichthe model re
ects the relevant properties of the existing language. One maycome up with a very e�cient, very expressive, easy to remember grammar for2



a natural language, in which rules are always valid and there can never be twointerpretations for the same construct. But this grammar will certainly not bea grammar of everyday English and it wouldn't be the �rst unsuccessful at-tempt to introduce a manually designed arti�cial language to replace a naturalone.For most real-life applications, modelling of a natural language has to dealwith such problems as ambiguity, varying degrees of grammaticality and thefact that there is no ultimate authority that could decide wheter a certainsentence or the interpretation of a certain sentence is correct at a certain pointin time. Di�erent experts (native speakers or even linguists) sometimes fail toreach an agreement about such questions and a very simplistic notion that onlyallows to distinguish between \correct" and \incorrect" seems problematic.On the other hand, in many countries e�orts have been made to some-how simplify the language and to make it more regular. The whole systemof language teaching has a systematizing e�ect on language. Hence naturallanguages are not purely a product of evolution but a considerable but varyingdegree of design is involved. However, even in the cases of generally accepted(grammar) rules for language generation, the problem still exists that comput-ers are seldom supposed to be language teachers and that the user expects anappropriate response and not a lecture in grammar.For speech and handwriting recognition, a model that could (only) adjucatebetween legal and illegal English sentences (possibly using many knowledgesources) would not even be of much use. In most real-life situations, there area number of sentences that are \legal" and can be mistaken, especially when\legal" is de�ned to cover most of the language constructs produced by nativespeakers. We do not need a long unsorted list of possible legal interpretationsof an utterance (if such a list were very long it would be of about as much useas no list at all) but a likelihood-sorted list of candidates and some kind ofcertainty score to serve as a decision criterion for further processing.2.2 Classi�cation of language modelsThere are essentially two ways in which language models di�er; they can be dis-tinguished by the way they generalize (i.e., which information they discard) andby the role humans play in the model-building process. In natural-languageprocessing (NLP), generalisation is necessary for two reasons. Limited re-sources in terms of storage, computation and training data require simpli�ca-tion. Furthermore, generalisation is necessary to capture a potentially in�nitenumber of di�erent language constructs in a �nite model. Some examples ofgeneralisations are:� recursion/iteration to express the fact that sequences of 2, 3, ... items ofthe same kind may appear 3



� classifying all sentences above a certain threshold of the degree of com-monness of the sentence as grammatical and all other sentences as un-grammatical� regarding all contexts in which a language construct may occur as equalif the previous n and/or following m items are the same� ignoring certain properties of items (e.g. syntactic classes of words)It should be noted that generalisation with respect to natural languages almostalways implies a loss of information. In a programming language, all namesof variables of the same type have exactly the same syntactic properties butit is hard to �nd any two English words that can be treated in exactly thesame way without losing some information. A sequence of 10000 modules isas grammatical as a sequence of two modules in a programming language butthis is certainly not true of sequences of noun phrases in natural languages.Regarding all programs with less than a �xed number of modules as gram-matical and all other ones as ungrammatical is perfectly acceptable for formalsystems but certainly a much too coarse distinction in NLP.Mapping certain attribute values to real numbers allows arbitrarily �nedistinctions to be made without the need to deal (directly) with an extremelyhigh number of categories, provided it is possible to reason with degrees ofsuch attributes. Fuzzy-approaches and probabilistic models make use of thisidea.The second important dimension for distinguishing language models is therole humans play in the process of model building. As explained in the pre-vious sub-chapter, the origin of a LM for natural languages is always theobservation of actually written or spoken sentences. The di�erence lies in therole of the human in the learning process. Some models are designed com-pletely by hand, i.e. human experts have learned the language and somehowmake their knowledge explicit in the language model. Corpora and computersmay be used to test hypotheses or to derive statistics. On the other end of thescale there are models that contain only a minimal amount of human linguisticexpertise and learning is almost completely performed using machine learningtechniques. There are of course pros and cons to both extremes. An approachthat could combine already existing and easy to formalise rule-based humanexpertise with e�cient learning techniques would arguably be most promising.The model we are proposing performes generalisation in a hierarchical fash-ion using a uniform statistical meassure and is rather near the\learning" endof our scale. 4



3 Bi-gram modelsThe Bi-gram model has been used widely and successfully in statistical lan-guage modelling. It allows the calculation of the (approximate) probability ofany string of words using the fact, that the probability of a string of lengthl + 1 is the probability of the string of length l times the probability of theword at position l + 1 appearing after the string of length l. (see [Jel90])P ([w1; w2; :::; wi]) = nYi=1P (wijw1; :::; wi�1)For instance, the probability of the sequence of three words [a; b; c] couldbe calculated using:P ([a; b; c]) = P (a) � P (bja) � P (cj[a; b])The histories w1; :::; wi�1 are mapped to a number of equivalence classesby assuming all histories that end in the same word to be equivalent. This canbe seen as modelling the language in terms of a high number of categories oftwo kinds: each word being a category and each history ending in a certainword also being a category. Between each pair of categories of di�erent kindsone relationship is modelled; the probability that a word occurs given that thehistory was observed.For our example string the calculation would be performed using:P ([a; b; c]) = P (a) � P (bjA) � P (cjB)where capital letters stand for equivalence classes in which the \histories" wereuni�ed that end in the words denoted with the respective lower case letters .This approach has some shortcomings. One is the high number of cate-gories. It seems reasonable not to use equivalence classes only for histories butalso for words. The n-POS model overcomes this problem by using (usuallymanually designed) part-of-speech classi�cations. [Jel90, p.490] suggests theuse of a mutual information (MI)-based criterion to derive word equivalenceclasses automatically for n-POS modelling.Another problem is the dependence of the probabilities of language con-structs on the domain. A bi-gram model may perform well on test data notused in the training process but taken from the same corpus, but quite poorlywith test data taken from a di�erent source. This is essentially because n-gram models attempt to compare the total probabilities of sentences and theseprobabilities may di�er considerably between di�erent sources. We feel thatit is worth examining whether the mutual information between words is lessprone to di�er between di�erent text sources.The uniform treatment of all words, histories and relationships betweenthemmay also not be very e�cient. It is clear that the reduction of all histories5



to one word is very coarse. N-gram models with n larger than 2 are moreprecise; but the amount of training data and memory increases dramaticallyand even a 4-gram model will miss out certain signi�cant di�erences betweenhistories while modelling many insigni�cant ones. A suggestion from R.L.Mercer to use MI for de�ning a vocabulary that consists of larger units ofwords for n-gram modelling was mentioned in [Jel90, p. 461].Other related papers include:[JLTW93] extends the concept of a bigram to the most informative(rather than the immediate) previous word[Atw83] [Atw87] describes a bi-pos model augmented with tri-grams forsome empirically speci�ed cases[BdM+92] combines a 3-gram model with a 3-POS model in whichthe word classes are derived using MI-based statisticalmethods4 The new model4.1 IntuitionsThe number of possible di�erent modelling approaches for natural language ishuge (probably in�nite) and a systematic search through the space of languagemodels is hard to imagine. In building models humans rely on their knowledgeabout the system to be modelled and on their intuition. The intuitions behindthe design of our model are the following:� When humans reason about their language they use a hierarchy of syn-tactic units and describe relationships between them.� A considerable proportion of human language competence is often ex-pressed in judgements like \It sounds correct.". We think that the mod-elling of collocational patterns (at di�erent syntactic levels) can simulatethis competence to a certain degree.� The strength of associative relationships probably di�ers less betweendiscourse domains than the frequency of certain constructs.As an example for the last point consider the collocation \strong co�ee". Itmay be found much more often in �ction than in scienti�c texts. But it is alsonot very likely that the word \co�ee" occurres in a scienti�c text very often andif it occurres, it seems more likely that the preceeding word is \strong" thanthat it is any (speci�c) other word. The strength of this attraction between\strong" and \co�ee" certainly also di�ers between types of texts, but it seems6



likely that its deviation is smaller than the deviation of the pure probabilityof the construct \strong co�ee".It should be noted that as a result of the simpli�cation used in the bi-grammodel, this model would also store the relative probability of \co�ee" giventhat \strong" was the last word. However, the reverse relation is not modelledand the score calculated for a sentence is the unconditioned probability.4.2 Association ratioIn [CH90], a mutual-information based \association ratio" (AR) meassure wasintroduced as a \objective meassure based on the information theoretic notionof mutual information, for estimating word association norms from computerreadable corpora." Our model is based on a generalised AR meassure that canbe applied to more than two words. It is the quotient of the probability ofthe sequence of words and the product of the probabilities of the words. 1AR([w1; w2; :::; ws]) = P ([w1; w2; :::; ws])P (w1)P (w2):::P (ws)In this formula, [w1; w2; :::; ws] denotes a string consisting of s words. TheAR is a meassure for the strength of the associative relationship between anumber of words. If there were no relationship between the words w1; w2; :::; ws,then we should expect the string [w1; w2; :::; ws] to occur with a probabilityequal to the product of the probabilities of the (in this case independent)words; P ([w1; w2; :::; ws]) = P (w1)P (w2):::P (ws) and the AR would be one. Ifcertain words tend to occur together, then the AR between them should belarger than one and if they rather not co-occur then the AR would be smallerthan one.Other mutual information based measures has been used in various waysin natural language modelling. One was used in [BdM+92] for automaticlyderiving meaningful hierarchical word classi�cations from unrestricted Englishtext. Those classi�cations were then used for n-POS modelling. In [MM90]a generalized mutual information meassure was used to detect boundaries ofsyntactical units recursively as the points of minimal mutual informationbetween adjacent constituents.The basic formula of our language model allows the calculation of theassociation ratio of a sentence in a hierarchical fashion. It calculates the ARbetween the leaves of a tree as the product of the association ratio of the leavesof the sub-trees and the association ration between the sub-trees. For binarytrees this means:AR([w1::ws]) = AR([w1::wa])AR([[w1::wa][wa+1::ws]])AR([wa+1::ws])1We do not use a logarithm here to make explainations simpler.7



In those formulae, [w1; w2; :::; wx] denotes the x leaves (words) of a (sub-)tree, 1 < a < s and AR([w]) = 1.The meaning of our AR formula may become clearer by looking at thefollowing derivation of the formula for three-word sequences:AR([[w1; w2]; w3])AR([w1; w2]) = P ([w1; w2; w3])P ([w1; w2])P (w3) P ([w1; w2])P (w1)P (w2)= P ([w1; w2; w3])P (w1)P (w2)P (w3)= AR([w1; w2; w3])4.3 Equivalence classes and trainingSimilar to bi-grammodels, without simpli�cation this formula would require toe�ectively store all (sub-) trees that can be built from the training corpus. Thebi-gram model unites all histories that end in the same words in equivalenceclasses. Similarly, we might de�ne equivalence classes for all trees that havethe same left (right) sub-trees and whose AR lies in a certain interval.Using our formula, two sub-tries are joined to a new tree and the AR ofall leafes of this new tree is calculated. In analogy to the bi-gram model wemight call the left sub-tree to be joined a \history" and consequently the rightsub-tree a \future". It seems sensible not to simplify at the point where thesub-trees touch each other since the leftmost leaf (word) of the right sub-tree immediately follows the rightmost leaf (word) in the left sub-tree in thesentence. Hence we need to distinguish between equivalence classes for treesthat are potential left sub-trees and ones that will become new right sub-trees.We will experiment with di�erent ways of building equivalence classes to �ndan e�cient method.The model building algorithm could proceed as follows:
8



� [ unite words in equivalence classes ]� repeat{ select all pairs of elements (words/symbols) with an ARabove a certain threshold{ unite elements in equivalence classes{ replace all occurrences of the newly derived equivalenceclasses in the training corpus by a new symbol� endrepeatIn the initial (optional) step, all words that ful�l certain criteria (e.g., have(roughly) the same AR to the same preceding and/or following words) are putin equivalence classes. Then, a certain number of word-pairs with a high ARis selected and stored, they are united in a number of equivalence classes andeach class is assigned to a new (meta-) symbol. The new symbols are nowtreated exactly as words (we call both such symbols and words elements) andthe process is repeated.4.4 RecognitionOur trained model will have certain analogies to probabilistic context freegrammars (PCFGs). The new symbols generated in the learning process canbe seen as meta-symbols in grammars and the AR information is a score for thequality of the substring \parse". Recognition can be performed using parsingtechniques as known from PCFGs (e.g. [Wri90]). The resulting score for aparse is not its probability; but the AR value is su�cient to compare di�erentalternatives. It will be interesting to observe whether the trees found in therecognition process have any meaning to humans.An apparent disadvantage of the proposed model is the inclusion of \right"context in the decision about words. On the other hand, although an n-grammodel can \guess" the next word by only taking into account previous words,to �nd the optimal path through a lattice, it also needs to compare completepaths. To deal with the problem of sequential input in speech and handwritingrecognition, n-grammodels often make intermediate guesses and allow for latercorrections. We might use similar methods, starting with small sub-trees anda dynamic AR threshold for accepting intermediate hypotheses.9



The following table summarizes some analogies and di�erences between thebi-gram model and the proposed model:bi-gram proposed modelscore cal-culated for eachsentence or partof sentence to bescored probability association ratio betweenthe wordswayin which calcula-tion proceeds left to right using the equa-tion:P ([w1; w2; :::; wi])= Qni=1 P (wijw1; :::; wi�1) hierarchical tree joining us-ing:AR([w1::ws])= AR([w1::wa])�AR([[w1::wa][wa+1::ws]])�AR([wa+1::ws])simpli�cation(generalisation) equivalence classes for allstrings that end in the sameword (\histories") equivalence classes for leftand right sub-trees
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