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Abstract

This surveypaperaimsat summarizingthe stateof the art of computationasemantiomethods
in speechrecognitionand understandingesearch.A taxonomy classifying the approaches
adoptedin the literature is divided into six main categories:semanticnetworks, semantic
grammars caseframesstatistical,unification-basedand neural networks.For eachapproach,
an overview of the variety of uses and relative strengths and weaknesses is given.

1 Introduction

In the literature, many methodsand techniqueshave beerdevisedto provide semanticcon-
straintsfor speeclrecognition.A thoroughclassificationis ratherdifficult sincemostsystems
were

developedand tuned under different task domainsand vocabulariesWe tried to surveythe
entriesfoundin theliteraturein orderto comeup to aconvergencdor a usefulclassification.
The different approachesre classifiedin six main categoriessemanticnetwork approaches,
caseframe approachesunificationbased approaches statisticalmodelled approachesand
connectionistapproachesUnfortunately due to spacelimitations, only a summaryof each
approachanda brief assessmertf its advantageanddisadvantagesanbe given.For a more
thoroughandextendedsurveyanda more completesetof referencesthe readeris advisedto
look at Demetriou and Atwell (1994).

2 Semantic network approaches.

The most commonaxesfor structuringknowledgein semanticnetworksas pointed out by
Sagerer and Kummert (1988) are:

* classification:a realworld objectis associatedvith its generictype sothata conceptcanbe
distinguished from its instances (i.e 'instance-of' relation).

* aggregation:conceptsor instancesarerelatedto otherconceptsr instancegespectivelyof
which they may be parts (i.e. ‘part’ relation).

* generalization:a conceptis relatedto more genericones(i.e. 'isa'relation). In this way, a
hierarchy between concepts in the network is defined.

The main advantageof using semanticnetworks is that restrictions are facilitated in the
semantichierarchyso that generalityin role fillers canbe acquiredby inheritance.They also
allow for the specificationand checksof relationsbetweenconceptsand their instancesn a
sentencénominal,adjectival,attribute-valuegtc.). For speectrecognition,semanticnetworks
have beenused for the constructionof sentencehypothesesguided by conceptrelation
judgementof contentwords (Sagererand Kummert1988),to proposeadditionalwords that



might haveoccuredin the original utterancebut be missingdueto poor matchquality (Nash-
Webber1975a)or the reductionof syntacticallywell-formed but semanticallyinadmissable
structures (Niedermair et al 1990).

For speechunderstandingthe semantimetworkof a recognizedsentenceanbe linked with a
preconstructechetwork for the input story (as in Shigenagaet al 1986) or for anaphora
resolutionby attachingsemanticcategorieso semanticallyempty pronouns(Niedermairet al
1990). Semantic networks have also beenusedin Brietzmannand Ehrlich (1986) for the
EVAR system(to representa tree-structuredinheritancebetweensemanticfeatures),and
Hataokaet al (1990) (where 'concept'networksare proposedto representthe meaningsof
single words as well as three kinds of relational links - 'isa’, generic and instance relations).

The main argumentagainstthe use of semanticnetworksis the inability to introduceworld
knowledgefor more generalapplicationsand large vocabularies Expandingthe network to
new tasks,searchspaceincreasesdrammaticallydue to the large numbersof conceptsand
relationsaffectingthe overall system'sfficiency. Evenif hardwarecomputerpowerincreases
to cope with heavy processingthe knowledge capture problem remains:how to createa
general purpose, wide-coverage network

3 Semantic grammar variants

Semanticgrammarsusesemanticconditionsclosely integratedwith the syntacticrules of the
grammar.To constructsemantiaules,syntacticentitiesare split into meaningfulcategoriesn
the task domain. For example in (Hayes-Roth1980), the non-terminal SAUTHOR can
represent a main category so that a rule like

It $AUTHORS=word(1),...word(n) then form a set of sequenceof requestedauthors
including each word as an instance of SAUTHOR'

searches a small subset of its syntactic category instead of the whol& loéssgrammarsare
usually representeds transition networks(for exampleaugmentedransition networksas in

Wolf and Woods 1980 or finite state networksas in Pieracciniand Lee 1991) where the

transitions betweenstatesin the languageenvironmentare betweenconceptualcategories
rather than words. The rules can be usedfor semanticacceptabilitytests (by associating
meaningcomponentsdirectly with the syntactic units) as well as for predicting adjacent
constituentsand confirming compatible hypothesesdy postdictiori, before, during or after
syntactic processing.

Semanticgrammarsare seenas providing strongerconstraintshan pure syntacticgrammars.
They hadbeenpopularamongthe systemsdevelopedn the 70s during the first ARPA SUR
project like the Hearsayll, HWIM, and Harpy systems(for an overview seeKlatt 1977).
Nevertheless|ater work (Mergel or Paeselerl987, Hauptmannet al 1988 among others)
recognizedheir practicalefficienciesfor certaintaskdomains.The main strengthof semantic

'Demetriou and Atwell (19944a) (this Proceedings) propose to build a general-purpose network from a lexical
database (LDOCE).

2prediction after the event



grammarslies in their ability to balancethe satisfiability and diagnosticity of grammatical
constraintsin orderto optimize the computationalcost for the particulartask. For example
(Hayes-Roth1980), the testingof the categoryhypothese$ARTICLE insteadof $NOUN is
far more diagnostic but not at the same degree computationally expensive.For other
approachesn the samespectrumin the literature, the reader can refer to Klovstad and
Levinson and Shipley (1980) and Matsunaga et al (1990).

Apart from the inherentdifficulties in hand-codingand expandingthe grammarfor a new
application,anotherlimitation of a semanticgrammaris the inability to expresslinguistic
generalisationsBy this is meantthe fact thata syntacticcategoryhasto be repeatedor every
semanticclass.This resultsin the enlargemenbdbf syntaxand also causesusability problems
since it leaves users feeling uncertain about the real linguistic coverageof the system
(Thurmair 1988).

4 Caseframe approaches

Semanticconstrainteexpressedn the form of caseframegFillmore 1968) have beeradopted
by a significantnumberof systemdn the literature. The centralideais that of a headconcept
(generally the main verb or predicate of VP or the head nbi\P) modified by a setof cases
(nounor adverbialphrasesn VP or modifiersin NP) that play somerelatedrole andmay in
turn correspondto other caseframesFrom the recognition point of view, frame-based
approachesave beemsedfor the productionof sentencénypothese$rom a word lattice and
the choice of the most likely one (as in Brietzmann and Ehrlich 1986, Poesio and Rullent 1987,
Bigorgneet al1988, Fissoreet al 1988, Young et al 1988),for filling gapsof missingwords
(Hayeset al 1986),for correctingerrorsin the recognizednessaggYoung 1991) aswell as
for making word predictionsduring recognition (Niedermair 1986). Systemsthat usedthis
techniqueto verify hypothesegproposedby N-bestinterfacesalso exist (Norton et al 1991,
Seneff et al 1991).

For understanihg, this approacthasbeenusedat a post-recognitiorstageto disambiguatehe
recognizedutteranceand find its meaningrepresentationn order to respondin a dialogue
process (Luzzatti 1987, Jackson et al 1991, Rudnicky et al 1991, Ward 1991).

Caseframearepopularbecause¢hey cancombineacousticreliability with semantiaelevance.
Unlike network-basedechniquesparsingis able to start its interpretationfrom the most
significantpartsof the utteranceandto extendtheseislandsto the lessreliable segmentsThis
is very important for processingboth well-formed and ill-formed input. Neverthelessthe
recogniion methodmay vary andbe adaptedo the particularuse.This is becauseaseframes
encode semantic information at a more abstract level than ATNsoaisttaintcanbe applied
in multiple ways (Hayeset al 1986). Anotheradvantages that oncean acceptableaseframe
combination is derived, the semantic representation of the utterance is directly derivable.

For dialogue and back-end operations, intemgsattempts are presented by Youngl€tL988)
for the VODIS Il (Voice OperatedDatebaselnquiry Systems)system(framescontainnested
rankedalternativef the input speechandknowledgeof the taskdomaini.e. requestghrough
telephoneand are usedto selecta suitableresponsepnd Seneffet al (1991) (where TINA's

3Satisfiability is described as a measure of the expected frequency for a test to yield positive results.
Diagnosticity, on the other hand, measures the amount of information a constraint adduces (Hayes-Roth 1980).



outputsare transformednto frame represent#ons and integratedwith availableframesfrom
the history for text and SQL geration).

The main shortcomings of caseframes for speech can be summarized as follows:

« Caseframesely heavily on finding headwords (usually verbs, nounsor adjectives)which

are easily distinguishableamongothersby having a high acousticscore. While for longer
wordsthis may be possible for shorteronesmay not (for example,rent’, 'hat’,'gap’,etc.).In

addition, thereis no efficient methodof exploiting word scoresin a way that can help the
analysisduring parsing.This strategyis thereforedependenbn the accuracyof the recognizer
in assigning the best scores to islands that correspond to frame headers.

« Keepingsyntax separatfrom semanticgs not alwaysfeasible.This is basicallyfor effi-
ciencyreasonssince caseframegauseseriouscomputationabind memory problemsfor even
simple task domains. This contributesto the loss of syntactic power once the syntax is
embedded in the code, and it is difficult maintain each knowledge type separately.

* Fromthe linguistic viewpoint, caseframesavelimitationsin expressingelationsotherthan
'verb' plus 'sentencdunction’ or 'noun’plus "attribute'(Niedermairet al 1990). Thus,they are
adequateonly when they are implicitly presentin the speaker'smind (for example,when
spacial-temporatelationshipsare well defined- Luzzatti 1987). It is thereforedifficult to
apply themto generalinformationdialoguesystemsCommunicatiorprocesse$uilt on these
are at present possible for well-defined (usually small vocabulary) defined tasks.

5 Statistical approaches

Statisticallanguagemodelling haslong beenadvocatedoy researcherst IBM (Baker 1975,
Jelinek1990)andelsewhergAtwell 1983). The generalideais to assigna probability to any
word string appearingn the lattice. The recognizedsentencas the one that maximizesthis
probabilty. Probabilisticsemanticconstraintsare expressedn terms of bigram or trigrant
representationsf lexical or semanticclasseof wordsratherthanindividual words (asin the
pure statisticalapproach).If U=u,, u,,...,u, correspondgo the 'observed'utterance, W=w,,
W,,...,W corresponds$o wordsandfor everyw; thereis an associatedemantictag s, thenthe
meaningcan be represente@s S=s;, S,,...,$. The systemtries to maximize the conidtional
probability P(W,S/A) given the acoustic 'observation'A and the maximum aposteriori
criterion. The probabilities for these sequencesare obtainedvia training in text corpora.
Generally,if the equivalenceclassof the paststringis S, the probability of a word w will be
estimated by the relative frequerf¢y /S)) in a corpus.

In theliterature,mostsystemshaveappliedthis strategyfor the disambiguatiorof recognition
lattices (Stern et al 1987, Fissore et al 1989, Paeseler and Ney 19@8ensjlOthersusedit
for the correctionof recognitionerrors and the filling of missingwords (Ward et al 1988),
segmetation of sentencesnto phraseswith semanticrelations (Pieracciniand Levin 1992)
and reordering sentences hypotheses in N-best lists (Kubala et al 1991).

The main advantage$or using statistical-basedpeechrecognitionmethodsare the simplicity

“That is, the probability of the next word been uttered depends on the previous word or the two previous
words respectively.



and effectivenessfor real-time tasks. Other pros are the reliability in ordering multiple
sentencenypothesesand the automatictraining of parameterdrom text, thus avoiding the
trouble of writing complexgrammarrules. The reasonfor building a languagemodelaround
semantic classes is that it requires less memory, storage and computatiotiztisn@ple N-
word models.

Rose and Evett (1992), Rose (1993) provide semantic support for a large vocabulary
handwriting systembasedon word similarities from MRDs and text corpora. Their system
operates upon well-formed syntactic alternatives. For text recognition, constraints or

preferencesas expressedy word overlap betweensensedefinitions in MRDs (the Collins

English Dictionary and The Oxford Advanced Learrer's Dictionary) are used within a

fixed-size window in orderto determinesemanticallyrelatedcontentwordsin the candidate
phraseand producea scoreaccordingto that overlap.Accordingly, word collocations(which

indicatethe co-occurenceof wordsinto meaningfulfragments) asfoundin the LOB corpus
are exploredin a similar manner.That s, to discriminate betweenalternativesequencesf

candidatewords, the programcompareghe collocationalinformation for eachcandidateand
those around it.

StatisticalN-gramlanguagemodelsfor speechpresentlearlimitationsin expressingsemantic
constraintssinceonly local contextis takeninto account(it is difficult to usealargeN dueto
computationakeasons)This may resultin ungrammaticabentencesnd unexpectedanswers
especiallywhen there are missing words in the lattice and no appropriateaction has been
taken.Training setsare, in mostcasesfound to be small and inadequateo provide statistic
coveragefor large vocabulariesTraining also hasthe problemthat statisticalmodelling may
dependon the domainof the text corpusandapplyinga modelto anew domainrequiresnew
training corporafor this domain.Furthermoreasfar as semantiaestrictionsare concernedit
is not always straightforwardto specify the optimal numberof semanticclassesin which
wordsshouldbe groupedfor the particulartask. Words canbe betterdistinguishedf grouped
in moreclassesHowever this is computationakxpensiveit needsbiggercorporafor tagging
andtraining) andnot appropriatewith noisy input andmissingsegmentgwheremoregeneral,
looserconstraintsshouldbe used).With fewer classesthe grammaris more robust (a fairly
small corpus can provide enough statistical informatibadalsolessaccurateAlthoughthere
are severaltaggedcorporato train syntax(taggedLOB corpus,Brown corpus,etc.),thereare
no available large-scale semantically-tagged corpora to act as training data

6 Unification-based approaches

In unification grammarformalisms (Shieber1986) linguistic knowledgeis structuredwith

featural constraints at the levels of morphology, syntax and semantics that all occur in the same
expressionln suchgrammars rules are madeup of categoryelementsthat are not atomic
symbols,but complexstructuresconsistingof a categorylabel andattributespecificationghat

are assignedvaluesof a more generalcategorytype. For example(from Chow and Roukos

1989), the rule

(S: mood) —> (NP: person: nunber)
(VP: person: nunber: nood)

®But see also Jost and Atwell (1993), Wilson and Rayson (1993) for research on semantic tagging of
corpora.



enforcesagreemenbetweerthe NP and VP phrasesn the valuesof ': personand’: number'
features('person‘can be first, secondor third, andnumber carbe singularor plural). It also
requiresthat S and VP have the samemood. Unification refersto the operationusedfor
building and combiningfeaturestructuresin unification basedparsing,the interpretdions of
constraintg(in a conjuctiveor disjunctivelogical connection)are usedfor variable matching
and substitution in order to satisfy agreement that yields a sentential feature structure.
The contribution of semanticsis by the semanticrole constraints.The parsing process
integratessyntactic unification with semanticrestriction checksand unification of feature
structure succeeds when meeting these restrictions.

Arguments for using unification-based parsing include its declarativerss and better

integration of richer linguistic information (syntactic and semantic)to eliminate sentence
hypotheseslt also offers global structure synthesiscapabilitiesand flexibility in handling

severalkinds of argumentvariationsfor which otherapproachesre costly. For example the

processingf 'fly from Denverto Boston'and'fly to Bostonfrom Denver'is betterhandledby

unification-based algorithms than caseframesifioich multiple framesareneededMoreover,

they canbe designedo handlecomplexlogical constraintanvolving conjunction,disjunction,

implication and negation.

Parsingrecognitionlattices using a unification grammarhas beenpractisedby a numberof
referencesn the literature(Tomabechiand Tomita 1988, Chow and Roukos1989, Bobrow et
al 1991, Chien et al 1991, Andry et al 1992). Unification based-algoritlavealsobeenused
by KasperandHovy (1990) (they combineunification basedparsingwith classification-based
knowledgerepresentationand Moore and Dowding (1991) (who divide the categoriesn the
unification grammarinto context-dependerdind context-independenbnesin order to deal
with gaps in the utterance).

Despiteits increasingpopularityin computationalinguistics, unification-basegrocessings a
matterof controversialdiscussionFor speechjts main disadvantageare the complexity in
designingand maintainingthe grammarandits poor computaional efficiency. Complexityin
the exactspecificationof featuresaffectsthe expansionof the grammarinto larger domains.
Thus, unification algorithmswork fairly well for small grammarsbut are unsatisfactoryfor
largergrammarsFor large-scaléamplementéions the designershouldfind the optimumlevel
of analysisinto featurestructuresandbalancehemagainstcomputationakfficiency. Inherent
deficienciesof unification-basegbarsingmay affecttime performance¢seeKasperandHovy
1990 and Ingria 1990 fatiscussions)Theseareassociatedvith makingnew copiesof feature
structuresin orderto guaranteeorrectunification whenevera descriptionof a sentencas to
bebuilt. Sincethereis noway for a unificationto usethe resultsof prior unifications(because
the resultsof computationsare not saved),sub-expressiowomputaions haveto be repeated
very often. Furthermorepnificationis unableto determinewhetherany dependenciebetween
structures occur withoutnifying them.This resultsin compatibility checksbetweerstructures
that have no features in common.

7 Connectionist approaches

Artificial neuralnetwork modellingis seenashaving a greatpotentialin speechrecognition
(Lippmann 1989), since it exhibits propertieslike parallelismin processingand learning
capabilitythatresemblehuman-likecharacteristicsin neuralnetworks,processinglementsor
nodesare connectedby links with variable weights. Connectionweights betweennodesare



adaptedfrom training dataand are continuaisly modified during use. Initially the system
knowsnothingaboutthe associationdetweerthe wordsandtheir syntaxandsemanticsAfter

a patternand a true label for that patternare input to the system,the classifier producesan

error signalwhich indicatesthe distortionmeasuréoetweernthe input andthe true pattern.This

error plusthe true label are fed backto modify the system'snternal parametersBy this way

the systemlearnsby receivingfeedbackas a responseo its action. As words are fed to the

network,activationpatternsacrosshe featureunits which representhe syntacticandsemantic
propertiesof the wordsare produced.The outputis typically the distributedrepresentatiomf

the sentence's composition of syntactic and semantic features.

The way semanticgs utilized is the mappingfrom wordsto their semanticinformation. This
mapping isreflectedin the connectiondetweenwordsunits andfeatureunits. Theseconstruc-
tions are governed by a semantic error signal to control the feedback learning process.

Neuralnetshave beemsedboth for languageacquisitionmodellingfor speechunderstanding
in dialoguetasks(Gorin et al 1990, 1991 Wang and Waibel 1991) and for connectionist
parsingto confirm or verify sentencehypotheseqJain and Waibel 1990). Apart from the

intrinsic parallelism capability, connectionism offers several advantagesover more

conventionalapproacheslt can combinesymbolic and non-symbolicinformation effectively

and cangeneralizefrom examples.This is more attractivethan constructingcomplexformal

grammardor spokenlanguagedomains.Moreover,neuralnetworks,by acquiringthe parsing

behaviourby themselveguring training, tendto be more tolerantto noisy speechinput and

more efficient in processing loose structures.

The objection againstthe use of neural networks for speechrecognition, is the need for

training proceduresTill now, connectionisapproachesiave beerestedon small constrained
tasks.Extendingthemfor larger domainsresultsin manythousand®f nodesand millions of

connetions making the networksimpractical to train both in terms of computability and

learnability. Futhermore standardevaluationmeasure®n the accuracyof learntinformation

(like coverage and perplexity) cannotimedto assesshe generalizatiorcapabilities Many of

the drawbacksn of statisticalapproacheslso apply on neuralnet approachesThereare no

largedomainindependentraining sets,i.e. semanticallytaggedcorpora;andif therewere,the

computatiorproblemwould getevenworse.Atwell (1993)comparesa Markov n-gramparser
trained on the. OB corpusandananalogoudackpropagatiomeuralparser;he showsthatthe

connectionist approach is much slower and/or less accurate.

8 Conclusion

We haveseenthe main approachesf applyingsemanticconstraintfor spechrecognition.To
conclude considerthe argumentthat thereis no adequateheory for semanticconstraintsfor
speeclrecognition.Currenttrendsin speectprocessingnoveto continuousrecognition large
vocabuaries and speakerindependenceYet, no systemat presenthas demonstratedarge
vocabularycontinuousspeechto text transcription. As vocabuariesincreasethe confusability
and ambiguity betweenwords also increaseand thereis a clear needfor efficient useof all
kinds of available knowledgeto control searchof the resulting huge spaces.Semantics’
contribution could improve the performanceof such systemsconsiderably.Each of the

6AIthough weights can be automatically trained the number of units and connections have to be
predetermined by experiments.



approachegpresentedabove has its own advantagesand disadvantageshut nearly all are
developed for small vocabularies (up to 1000 words) and specific task domains.

To deal with large vocabulary recognition three problems should be considered:
(i) How to acquire semantic knowledge

Obviously,hand-codingsolutionsdevelopedor small vocabulariesand exploitedin the form
of sematic grammars,unification-basedgrammars,case-framesr semanticnets are not
viable for vocabulariesof 10-20000words or more. Similarly, extractingstatisticalsemantic
measuregrom text corpora(whenthis is possible)hasprovedto havecoverageproblems.In
bestcasesthe training vocabularycannotexceed5-7000words and taking into accountthat
such a size represents approatdy 95% of the actual vocabulary used irealsituation,then
we assume5% error rate for acousticword recognition. But, from the point of view of
semanticsand speechunderstandingthe problem gets bigger. The 'missing’ words will
probablybe contentwords (and mostprobably'rare'words usedfor giving emphasisstrange
jargon words, technical words, etc.) so that the lack of their 'strong’ semantic content will cause
inconsiseéncies in the semantic language model. For practical reasons,a connectionist
approachis not efficient for large vocabularysemanticlanguageacquisition either, due to
computatiorl inefficiencies in training a neural net for large vocabularies.

(i) How to specify, represent and express the semantic constraints.

A taskdomainmay be characterizedby a variety of differenttypesof semanticrelationships.
In general,thesespecify the requirementdor membershipin conceptualcategoriesand for

participationin meaningfuldomain relationships(Hayes-Roth1980). Most systemsto date
havedevelopedheir semanticmodulesfor specifictask domains;for example,by assuming
that a semantic grammar could adequately repressenanticconstraintdetweeriexical items
of a command controllanguage (i.e. '‘Open spreadsheetexpandit to fill the screen’).
Obviously,designingsucha grammarmusttakeinto accountthe close,tight relationshipsfor

the particular task between'open, 'spreadsheet’, etc., to reduce the number of possible
alternativesand constrainsearch.The questionis, could the samegrammarbe usedin another
applicationin which conceptuatelationshipsof wordscanbe of different nature,possiblynot

realizedwithin the syntacticclassesof the words, as for examplein machinedictation (in

which the list of candidatesfollowing ‘open’would probably be longer, specifying more
abstractand general constraints)?Is such an approachadequatefor spontameous speech
applications possibly full of ungrammaticads?

(iif) How to express computationally the semantic constraints

The main requirementasfar asrecognitionis concernedjs real time processingof speech
input. Thereis no way at presentto makeefficient useof semanticconstraints for top-down
control of search.Presumablythe high numberof possiblecandidatesat eachpoint of the
utterancerules out the possibility of making predictionsand proposinghypotheseso control
searchin large vocabularyrecognition.Simply relying on bottom-uprecognitionandapplying
semanticrestrictionsto verify acoustichypothesesnay not prove optimally efficient. The
extensionof semantic constraintsbeyond sentenceboundariesand the use of discourse
information may sometimesbe necesary. In addition, no systemto date simulateshuman
integrativebehaviourof semantic4o assistrecognition.Humanrecognitionis assumedo be



highly distributedin nature.A techniquethat could constrainacoustichypothese# realtime,
by usingsemantianformationasearly aspossible would be the ultimate solutionfor optimal

efficiency.
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