
This is a repository copy of Prediction of external intermittency using RANS-based 
turbulence modelling and a transported PDF approach.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/82231/

Article:

Olivieri, DA, Fairweather, M and Falle, SAEG (2011) Prediction of external intermittency 
using RANS-based turbulence modelling and a transported PDF approach. Computers 
and Fluids, 47 (1). 75 - 84. ISSN 0045-7930 

https://doi.org/10.1016/j.compfluid.2011.02.017

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Prediction of External Intermittency Using RANS-
Based Turbulence Modelling and a Transported PDF 
Approach  

 
D.A. Olivieria,*, M. Fairweathera

, S.A.E.G. Falleb 

a
School of Process, Environmental and Materials Engineering, The University of Leeds, 

Leeds LS2 9JT,UK 
b
School of Mathematics, The University of Leeds, Leeds LS2 9JT, UK 

 

______________________________________________________________ 
 
Abstract 
This paper investigates the modelling of external intermittency in turbulent 
round jets using a RANS approach coupled to solutions of the transported 
probability density function (PDF) equation for scalar variables. Solutions to 
the descriptive equations are obtained using a finite-volume method, 
combined with an adaptive mesh refinement algorithm, applied in both 
physical and compositional space. The effects of intermittency on the flow 
field are accommodated using intermittency-modified eddy viscosity and 
second-moment turbulence closures, as well as through modifications to the 
mixing model embodied within the transported PDF equation. Predictions of 
the model are validated against data on the velocity and scalar fields in jets, 
as well as against measurements of scalar PDFs and intermittency profiles, 
with reasonable agreement obtained. From the cases examined, predictions 
of the second-moment closure are superior, although both approaches 
provide realistic predictions of the bimodal features to the measured PDFs. 
 
Keywords: Intermittency; Reynolds-averaged Navier-Stokes; transported 
PDF; finite-volume method; adaptive mesh refinement  
______________________________________________________________ 
 
1.  Introduction 
 

Turbulent shear flows with free boundaries display an intermittent 
character where the flow rapidly alternates between rotational and irrotational 
states. Such intermittency is frequently referred to as external intermittency to 
distinguish it from the internal form which concerns the variability of the 
energy or scalar dissipation rates. External intermittency can be thought of as 
an indicator function that has a value of unity when the flow is turbulent and 
zero when it is non-turbulent, i.e. it represents the fraction of time during 
which a point is inside the turbulent fluid. 

Intermittency is important in many practical flows. For example, the ignition 
of turbulent flows of flammable material, and the safe and efficient operation 
of many combustion devices, is critically dependent on ignition occurring in 
flows which contain significant intermittency, and the enhanced performance 
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of these devices and improved safety relies on a detailed understanding of the 
flow and ignition processes. More broadly, the intermittent behaviour of flows 
is also influential in other generic processes, including mixing, combustion, 
emissions and aero-acoustics. 

The majorities of turbulence models currently in use were derived for fully 
developed flows, and hence cannot be expected to predict accurately in free 
shear flows where the outer regions contain irrotational flow. The 
development of more accurate engineering models of turbulence that 
accommodate intermittency effects is therefore of fundamental importance. 
Intensive research efforts have also been devoted to developing more general 
engineering turbulence models in recent years, although their predictability 
generally remains dependent on flow configuration. Improvements in the both 
the accuracy and generality of these models can, however, be made through 
the incorporation of intermittency effects. An important example of this is seen 
in the round jet/plane jet anomaly [1], where the inclusion of intermittency 
effects within a conventional k-İ turbulence model has been demonstrated [2] 
to resolve this discrepancy. In general terms, therefore, the provision of 
reliable intermittency-based turbulence models will not only permit the more 
accurate prediction of the velocity and scalar fields of interest in the 
applications noted above, but should result in more generally applicable 
models that  are less dependent on flow configuration. 

This paper describes an investigation into the modelling of intermittency in 
turbulent flows using solutions of the transported probability density function 
(PDF) equation for scalar variables obtained using a finite-volume method 
combined with an adaptive mesh refinement (AMR) algorithm. The effects of 
intermittency on the turbulent flow field have been accommodated in a 
conventional Reynolds-averaged Navier-Stokes (RANS) modelling framework 
using intermittency-corrected eddy viscosity and second-moment turbulence 
closures, with the influence of intermittency on the PDF included via the 
mixing model embodied within its transport equation. This contrasts to the 
earlier approach of Kollmann and co-workers [3�6] which used a finite-
difference approach to solving the PDF transport equation coupled to a 
closure scheme based on conditional zone-averaged moments, rather than 
the Reynolds-averaged moments used in the present work.  Predictions of the 
complete model are validated against experimental data available in the 
literature on the velocity and scalar fields in turbulent round jets, as well as 
against measurements of scalar PDFs and intermittency profiles. 

Earlier work by the authors [7, 8] has demonstrated the application of an 
AMR finite-volume technique in both physical and compositional space, with 
the latter permitting solution of the transported PDF equation. This contrasts 
with more conventional approaches which are based on the use of finite-
volume methods in physical space, and Monte Carlo methods in 
compositional space for solution of the PDF equation. This work [7, 8] also 
demonstrated that, for small numbers of scalar variables, AMR provides 
improved accuracy, run times and ease of use over alternative Monte Carlo 
approaches. AMR is now a well-established technique, having its earliest 
applications in two-dimensional shock problems [9, 10], with subsequent 
extension to three-dimensional flows [11] and implementation on parallel 
computers [12]. The advantage of AMR over uniform mesh approaches is that 
it uses error estimates to adaptively increase grid resolution to meet accuracy 



requirements in specific parts of the computational domain, whilst de-refining 
in regions where few changes are taking place. In some classes of problems, 
CPU and memory requirements can be reduced over those for a uniform grid 
by as much as a factor of one hundred [13]. As noted, the present work 
extends these earlier applications of AMR by employing the approach in both 
physical and compositional space in order to predict the intermittent flows of 
interest. 

 
2. Mathematical modelling 
 

2.1. Fluid flow equations closed using k-İ- model   
 

The flow was computed using the mass and momentum conversation 

equations for turbulent flow in cylindrical symmetry, closed using a k-İ- 
turbulence model [2], together with the thin shear layer and parabolic 
approximations for steady flow [14]. It was assumed that the turbulence was 
statistically two-dimensional, stationary and non-swirling. The flow equations 
are then given, in density-weighted form, as: 
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        (1) 

Here u~  and v~  are the mean velocities in the z and r directions, respectively, 

and ık, ıİ and ıȖ are the Prandtl numbers for k, İ and Ȗ. Due to the thin shear 
layer approximation, only the u-component of the momentum equation is 
employed. The turbulent viscosity ȝ and Galilean invariance Ƚ are given as 
follows: 
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  (2) 
where U is the total flow velocity vector. Note that for the thin shear layer 

approximation |U| u~ . The final expression in (1) provides a transport 

equation for  itself. The first term on the right hand side of this equation 
describes the bulk convective spatial transport due to turbulent flow, whilst the 
other terms on the right hand side contribute to the source term which 



describes the mean rate of entrainment of non-turbulent fluid into the turbulent 
zone. The source term of this equation represents the main part of the Cho 
and Chung [2] model. 

The Galilean invariance used in modifying the source term of the 
turbulence energy dissipation rate equation represents the amount of 
intermittency entrained by the interaction between the mean velocity gradient 
and the intermittency, per unit volume of the flow field. When the flow 
intermittency is small, small-scale eddies are relatively inactive and the 
turbulence kinetic energy is dissipated slowly. If intermittency is large, then 
small eddies become embedded in the large straining eddies in the interactive 

shear layer between the turbulent and irrotational zones. The  parameter 
therefore indicates how much of a source or sink of dissipation is occurring 
due the entrainment of more-irrotational fluid at a particular point. 

It is assumed that the pressure is constant, which avoids the need for a 
Poisson equation solver. As will be seen below, this is a reasonable 
approximation for the jet flows examined. The continuity equation is 
unnecessary since the density can be calculated from the average mass 
fractions <ȦĮ>: 
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where ȡĮ is the density of a fluid with an average mass fraction <ȦĮ> = 1. 

Standard modelling constants [15] were used in conjunction with the k-İ- 
approach, with Cȝ = 0.09, CȝȖ = 0.1, Cİ1 = 1.44, Cİ2 = 1.92, Cİ4 = 0.1, CȖ1 = 
1.6, CȖ2 = 0.15, CȖ3 = 0.16, CD = 4, ık= 1, ıİ = 1.3, ıȖ = 1 and ıP = 1.  These 
values were applied in all the computations discussed below, although a value 
of Cİ1 = 1.52 was used in predicting the case of Becker at al. [16] in order to 
match the spreading rate of the jet. 
 

2.2. Fluid flow equations closed using Reynolds stress- model   
 

Using the same assumptions as made in the previous section, the 

Reynolds stress-  turbulence model may be written as:  
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Here 
  2 2 2  " " "u , v , w  and 

" "u v  are the four components of the Reynolds 

stress. Again, due to the thin shear layer approximation, only the u-
component of the momentum equation is used, and the only component of the 
mean strain that is considered significant is ru  /~ , with the diffusion fluxes 

significant in directions normal to the predominate flow direction. The 

assumption of circumferential symmetry also means that w~ = 0, with 
" "u w  and 

" "v w  also zero.  The source terms A1, A11, A22, A33, A12, A  and A used in 

Equation (4) are defined in Table 1. 
 
 Table 1: Source terms used in the Reynolds stress- model  

A1 


1
" "r u v

r r

   
 



 
 

A11 
    2

1 2 32 2 3 2 3 2" " " " "u v u r C u k C C u v u r               
 

   

   2
4 1 "C k u       

A22     2 2 2 2 2
12 2 3 2 3" " " "

SC k w v w / r C v k                     
      2

2 3 42 1" " "C C u v u r C v k         

A33      2 2 2 2 2
1 22 2 3 2 3" " " " " "

SC k w v w / r C w k C u v u r                         


   2
4 1"C w k       

A12     2 2 2
1

" " " " " "
SC k w u v r v u r C u v k              

   


      2 2
34 2 3 43 2 1" " " "[ C k C C u C v ] u r C u v k             

A 
 2 2

2 31
" " "C k u v u r C k v r C k              

  
A      22

1 321 1" "C u v k u r C k r C k                    

  

 
This model is as described in [15] and is based on an extension of the 

Jones and Musonge [17] second-moment closure, with the Reynolds stress 
and turbulence energy dissipation rate transport equations modified to 
incorporate intermittency effects using the approach of Savill [18].  The final 
term in the source terms of these equations therefore accounts for crossing of 
the turbulent/non-turbulent interface.  The final intermittency equation was 
derived [15] on the basis of the expression of Dopazo [19], with mass 
entrainment and bulk convective spatial transport terms based, respectively, 
on the approaches of Cho and Chung [2] and Byggstoyl and Kollmann [6].  



Standard modelling constants [15] were used in conjunction with the 
model described, with C1 = 3, C2 = -0.44, C3 = 0.46, C4 = -0.23, Cs = 0.22, Cİ 

= 0.18, Cİ1 = 1.4, Cİ2 = 1.8, Cİ3 = 0.1, C = 0.16, C1 = 1.85, C2 = 0.2, C3 = 

0.16 and C4 = 0.1. These values were applied in all the computations 
discussed below, although a modified value of Cİ1 = 1.5 was again used in 
predicting the case of Becker at al. [16]. 
 
2.3. Scalar PDF transport equation 
 

Consider a non-reacting turbulent flow with the PDF equation employed 
containing only a passive scalar Ȧ, that being the mixture ratio (or mixture 
fraction).  Applying this to Equation (3) for a single species, which means N = 
1 and ȦĮ = Ȧ with < Ȧ> = 1 for pure jet fluid and < Ȧ> = 0 for pure oxidant, 
Equation (3) becomes: 
 
  

oxyfuel










11

               (5) 

 

From [20] the evolution of the mass weighted probability  trP ;,
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Here, v~  is the mean velocity and ıp is the Prandtl number for the turbulent 

diffusion of P. The third and fourth terms in Equation (6) represent turbulent 
transport in physical space and molecular mixing in compositional space, 
respectively.  

The molecular mixing term in Equation (6) has a number of models 
available to represent its effect. The simplest is the linear mean square 
estimation (LMSE) method [20]. If this is modified to take the effect of Ȗ into 
account, the expression for LMSE mixing becomes: 
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Here, CD is the ratio of the scalar to mechanical turbulent time scales and  is 
the mixture ratio. The justification for implementing Ȗ in Equation (7) in this 
way arises from the fact that the magnitude of Ȗ has a direct bearing on the 
molecular mixing term only, and not on the other terms given in Equation (6). 
Similar reasoning was used by Kollmann and Janicka [4]. 

The turbulent transport in physical space term in Equation (6) can be 

approximated using the gradient transport hypothesis. For the k-İ- model 
discussed earlier this term is therefore given as:  
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where ıp is the Prandtl number for scalar transport. In the case of the 

Reynolds stress- model, this term is specified in line with the work of Chen 
and Kollmann [21] as: 
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A value of CD = 4 in Equation (7) was used in all the results discussed 

below since this was found to give the most accurate predictions in 
comparisons with experimental data. Pope�s [20] considerations indicate that 
it is not possible for CD to be universally constant, with the latter work 
considering variations of this constant between 0.6 and 3.1.  
 
2.4. von Mises coordinates 
 

Equation sets (1) and (4) can be written [14] for parabolic flows in terms of 
the von Mises coordinates (ȥ, z) with: 
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which automatically satisfies mass conservation. Equations (1) then become: 
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The turbulent viscosity ȝ and Galilean invariance of the scalar Ƚ must also be 
redefined as:   
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These equations are simply evolution equations, with z playing the role of the 
time-like coordinate.  

Applying the von Mises coordinates to the Reynolds stress- flow 
equations similarly gives:  
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Likewise, the PDF transport equation can be written for the k-- and 

Reynolds stress- models, respectively, as: 
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where the last term again represents molecular mixing, and the precise form 
of the turbulent transport term is dependent of the level of turbulence closure 
employed. 
 
 
3. Numerical solution method 
 
3.1. Finite-volume scheme 
 

Equations (11) and (13) contain only diffusive fluxes, while Equation (14) 
contains both advective (the LMSE molecular mixing term in the PDF 
equation) and diffusive fluxes. In order to construct a numerical scheme, 



physical space is discretised with a mesh spacing ǻȥ, and composition space 
with mesh spacing ǻȦ. For the fluid variables, mean quantities in a cell at z = 
zn are defined by: 
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where q is one of   ,,,~ ku . For the PDF a mean value at z = zn is defined by 

averaging over both physical and composition space: 
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where   is the volume of a cell in composition space and Nddd  1 . 

The index j refers to the cell in composition space over which the integration is 
performed. 

Given the flow variables at z = zn, their values at z = zn+1 can be found from 
an explicit finite-volume approximation to Equations (11) and (13) of the form: 
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where r

i

l

i ff ,  are approximations to the fluxes at the left/right edges of the ith 

cell, and si is an approximation to the source term. Obviously: 
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An approximation that is first-order in ǻz is obtained if values at zn are used to 
compute the fluxes and source terms. The source terms can be calculated 

from the mean values in the cell. In order to compute the fluxes, 
approximations to the flow variables and r at the cell edges are required. The 
flow variables can be computed from simple averages: 
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whilst the radius at the cell edges can be obtained using the trapezoidal rule 
to integrate Equation (10): 
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This gives a simple recurrence relation for the .r

ir  The flux for a quantity q is 

then given by: 
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where r

i  is calculated from the flow variables at the cell edge. Since this is a 

central difference approximation to the diffusive terms, the resulting scheme is 
second-order in ǻȥ. 

The procedure for P is similar, except that terms involving gradients in 
composition space have to be included. Since these are advective, an upwind 
difference scheme must be used. With the LMSE approximation, the effective 
advective velocity in the Į direction in composition space is: 
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The PDF is then updated via: 
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where (ǻP)p is the increment due to the diffusive term in physical space. A 
first-order upwind approximation is obtained by setting the flux at a cell face 
perpendicular to the Į direction to: 
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where n

lP  and n

rP  are the values in the cells on the left and right of the cell 

face. Here,   is evaluated at the centre of the cell face.  

The numerical scheme presented so far is second-order in ǻr, but first-
order in ǻz and ǻȦ. To achieve second-order accuracy in all variables then 
involves applying a second-order Godunov scheme [22]. This uses the first-
order scheme described to compute an intermediate solution at a half-step, 
with these values then used to compute the fluxes and source terms for the 
flow variables which are subsequently used to update them through a 
complete time-step. The same is done for the flow terms in the PDF equation, 
although better approximations to the advective fluxes in composition space 
are required. Further details may be found in [7]. 
 
3.2. Adaptive mesh refinement 
 

Unlike most AMR codes, e.g. [9-13], in the present work mesh refinement 
is on a cell-by-cell basis instead of being organized into patches. This 
provides a more efficient grid at some increased cost of integration. 
Considering a thin region in two space dimensions, such as the shear layer of 
interest in the present work, certain regions will require high resolution. The 



scheme employed uses a hierarchy of uniform grids, LGG 0 , so that if the 

mesh spacing on 0G  is ),(   , then it is )2/,2/( nn    on nG . Grids 0G  

and 1G  cover the whole computational domain, but finer grids needs only 

exist in regions that require high resolution. The grid hierarchy is used to 
generate an estimate of the relative error by comparing solutions on grids with 
different mesh spacing, and the grid then refines if this error exceeds a 

defined tolerance rE , and de-refines if it is less than a second tolerance, dE . 

Refinement also occurs in z, so that if the step on 0G  is ǻz, then it is ǻz/2n on 

nG . The integration algorithm is recursive and is described in detail in [7] for 

integration of grid nG  over time step ǻt. In the approach used the integration 

procedure is identical to that of a time-like downstream step ǻz.  
The simplest way to apply AMR to the system of interest would be to treat 

it as a problem in N+1 dimensions (r and the N dimensions in composition 
space). However, this would mean that if a cell is refined in one dimension, 
then it is also refined in all others. This would not be very efficient since there 
is no reason why physical and composition space should both be refined at 
the same place. For example, near the centreline of a jet, there might be very 
little variation with r, but P could be very close to a delta-function, which would 
require a high degree of refinement in composition space. In order to allow 
different levels of refinement in physical and compositional space, a complete 
composition space hierarchy is associated with each physical cell on every 
grid level. The number of levels of refinement of the composition space in a 
particular physical cell is then determined by the accuracy requirements for 
that particular cell. So, for example, the maximum number of grid levels will be 
used in composition space if P is close to a delta-function, whereas a smaller 
number of levels will be used if it is smooth. Further details are given in [7, 8]. 
 
4. Results and discussion 
 

In order to validate the modelling strategy described a number of 
quantitative comparisons have been made with the results of a series of 
experiments that involved the mixing of a single passive scalar, namely the 
mixture fraction, in a turbulent round jet. Figures 1 to 7 give comparisons 
between predictions and the experimental data obtained by Schefer and 
Dibble [23] in their study of a non-reacting propane jet in a co-flowing air 
stream. Figure 8 compares predictions with the results obtained by Birch et al 
[24] who considered a methane jet mixing in still air, while Figures 9 and 10 
give results for the propene jet mixing in still argon studied by Dowling and 
Dimotakis [25]. Finally, Figures 11 and 12 compare predictions with the 
measurements of Becker et al [16] and Wygnanski and Fielder [26], 
respectively, who both considered air jets exhausting into quiescent 
surroundings. 

 
 
 
 
 
 



Table 2: Parameters used in computations of the five jets considered 
 

Schefer and Dibble [23] Levels of adaptation: 

Number of coarse cells: 

4 physical space, 4 compositional space 

30 physical space, 25 compositional space 

Nozzle diameter 

Jet fluid density 

Co-flow density / velocity 

Initial jet velocity 

Width of computational domain 

0.0053 m 

1.864 kg m−3
 

1.196 kg m−3
 / u = 9.2 m s−1

   

1/7
th
 power law with u = 69.89 m s−1

 on centre-line 

10 nozzle diameters 

Birch et al [24] Levels of adaptation: 

Number of coarse cells: 

4 physical space, 4 compositional space 

72 physical space, 25 compositional space 

Nozzle diameter 

Jet fluid density 

Ambient density  

Initial jet velocity 

Width of computational domain 

0.0126 m 

0.674 kg m−3
 

1.196 kg m−3
  

1/7
th
 power law with u = 20.69 m s−1

 on centre-line 

24 nozzle diameters 

Dowling and Dimotakis [25]  Levels of adaptation: 

Number of coarse cells: 

4 physical space, 4 compositional space 

180 physical space, 25 compositional space 

Nozzle diameter 

Jet fluid density 

Ambient density  

Initial jet velocity 

Width of computational domain 

0.0076 m 

1.810 kg m−3
 

1.662 kg m−3
  

1/7
th
 power law with u = 36.24 m s−1

 on centre-line 

60 nozzle diameters 

Becker et al [16] Levels of adaptation: 

Number of coarse cells: 

4 physical space, 4 compositional space 

72 physical space, 25 compositional space 

Nozzle diameter 

Jet fluid density 

Ambient density  

Initial jet velocity 

Width of computational domain 

0.0064 m 

1.196 kg m−3
 

1.196 kg m−3
  

1/7
th
 power law with u~ = 159.18 m s−1

 on centre-line 

24 nozzle diameters 

Wygnanski and Fielder [26] Levels of adaptation: 

Number of coarse cells: 

4 physical space, 4 compositional space 

180 physical space, 25 compositional space 

Nozzle diameter 

Jet fluid density 

Ambient density  

Initial jet velocity 

Width of computational domain 

0.0264 m 

1.196 kg m−3
 

1.196 kg m−3
   

1/7
th 

power law with u~ = 62.45m s−1
 on centre-line 

30 nozzle diameters 

 
The parameters used in the computations of each of these test cases are 

given in Table 2, with the numbers of cells and levels of adaption chosen to 
provide the most computationally economic scheme for numerical 
convergence in each case, as well as to ensure grid independence of the 
results. In each case four levels of refinement were used in both physical and 
compositional spaces. Note that in the figures that follow the scalar mean <Ȧ> 

is given more conventionally as ~ , while the variance is written as 
2" .  

The work of Schefer and Dibble [23] provides the most complete data set 
for comparison purposes including, as it does, measurements of the mean 
and turbulent velocity and scalar fields, as well as intermittency profiles and 
scalar PDFs at various locations in the flow. Figures 1 and 2 demonstrate 
reasonable agreement between predictions and observations for the velocity 
field, and the approximation of constant pressure used in this work appears 
justifiable in view of these results. Predictions of the mean velocity, and 
normal and shear stresses, shown in these figures are reasonable, and in line 
with previous results [15] derived using similar turbulence models coupled to a 



prescribed PDF. Clearly, predictions of the Reynolds stress-Ȗ model are 
superior to those derived on the basis of the eddy viscosity approach, 
particularly for the normal stresses, although both models under-predict the 
shear stresses shown in Figure 2. Scalar predictions derived from the coupled 
physical and compositional space modelling approach using the k-İ-Ȗ and 

Reynolds stress-Ȗ models, given in Figures 3 and 4, show similar levels of 
accuracy when compared to experimental data, with the Reynolds stress-Ȗ 
model again giving superior performance in terms of predictions of the first 
and second moments. This is also the case for the intermittency results of 
Figure 4, with the transition from turbulent to non-turbulent flow predicted 
accurately by the modified second-moment closure both in terms of the rate of 
transition and its radial location. These results are again in line with those 
obtained previously [15]. However, the use of a transported PDF in the 
present work, rather than the solution of transport equations for the mean 
mixture fraction and its variance [15], does result in improved predictions of 
the mixture fraction fluctuations in particular.  

Figures 5 and 6 give results for scalar PDF distributions throughout the 
flow field. Figure 5 gives predictions and data along the jet centre-line where 
intermittency effects are negligible, with the two approaches employed giving 
roughly the same distribution for the PDF of the passive scalar at all distances 
downstream of the source pipe exit. Just beyond the potential core of the jet, 

at z/d = 5.2, the PDF is close to a delta function at  = 1, although some 
mixing of the source propane with ambient air has resulted in a tail that 
extends to lower concentrations.  By 10.8 jet diameters downstream the 
results indicate that the flow is fully turbulent since the PDF distribution has 
become approximately Gaussian. By 64 diameters the distribution is again 
tending towards a delta function, indicating that the flow is still turbulent but 
near to a fully mixed state. Over all the locations considered, predictions 
obtained on the basis of both turbulence models are comparable and close to 
observations.    

Scalar PDFs at various radial locations and a fixed downstream distance 
of 30 jet diameters are considered in Figure 6. Predictions derived using the 
LMSE molecular mixing model and both turbulence modelling approaches are 
in good qualitative agreement with the experimental data, and reproduce the 
evolution of the PDF with increasing radial distance from near Gaussian on 
the jet centre-line, to bi-modal, and ultimately close to a delta function 
associated with the co-flowing state. The increasing influence of intermittency 
on the PDF with radial distance is therefore replicated by the predictions, with 

results derived on the basis of the Reynolds stress- model generally in better 
agreement with the data. The direct influence of intermittency on these 
predictions is considered in Figure 7, which compares results derived on the 
basis of the standard Reynolds stress model, and the same model with 
intermittency effects included. It can be seen that the effect of the 
intermittency is not only responsible for improved predictions on the jet centre-
line, but also for the bimodal distributions associated with its increasing 
influence with radial distance. Apart from on the centre-line, the 

implementation of  in the LMSE molecular mixing model, as seen in Equation 

(8), is the primary influence in this respect, with the effect of  in the flow 
Equations (11) and (13) a secondary effect. All the present results given in 
Figure 6 are also superior to those obtained in earlier work [15] which used 



the three-part, prescribed PDF approach of Effelsberg and Peters [27] and 
which failed to predict the bimodal distributions observed experimentally.    

 
 

Figure 1: Comparison of measured and predicted axial mean velocity and r.m.s. of normal 
stresses along the centre-line of the jet (symbols � experimental data [23], solid line � Re 
stress-Ȗ predictions, dash line � k-İ-Ȗ predictions). 

 

Figure 2: Comparison of measured and predicted radial distributions of axial mean velocity, 
and r.m.s. of normal stresses and shear stress, at various axial locations (symbols � 
experimental data [23], solid line � Re stress-Ȗ predictions, dash line � k-İ-Ȗ predictions). 

 



 

 
Figure 3: Comparison of measured and predicted mean mixture fraction and r.m.s. of mixture 
fraction fluctuations along the centre-line of the jet (symbols � experimental data [23],  
solid line � Re stress-Ȗ predictions, dash line � k-İ-Ȗ predictions). 

 
 

Figure 4: Comparison of measured and predicted radial distributions of mean mixture fraction, 
r.m.s. of mixture fraction fluctuations and intermittency at various axial locations (symbols � 
experimental data [23], solid line � Re stress-Ȗ predictions, dash line � k-İ-Ȗ predictions). 

 
 
 
 
 
 
 
 
 



Figure 5: Comparison of measured and predicted distributions of scalar PDF at various 
locations along the jet centre-line: (a) z/d = 5.2, (b) z/d = 7.1, (c) z/d = 10.8, (d) z/d = 15.0, (e) 
z/d = 30.0 and (f) z/d = 64.0 (symbols � experimental data [23], solid line � Re stress-Ȗ 
predictions, dash line � k-İ-Ȗ predictions). 

 

Figure 6: Comparison of measured and predicted distributions of scalar PDF at z/d = 30 and 
various radial locations: (a) r/d = 0, (b) r/d = 2.0, (c) r/d = 2.3, (d) r/d = 2.6, (e) r/d = 2.9 and (f) 
r/d = 3.2 (symbols � experimental data [23], solid line � Re stress-Ȗ predictions, dash line � k-
İ-Ȗ predictions). 

 
 
 
 
 

 



Figure 7: Comparison of measured and predicted distributions of scalar PDF at z/d = 30 and 
various radial locations: (a) r/d = 0, (b) r/d = 2.0, (c) r/d = 2.3, (d) r/d = 2.6, (e) r/d = 2.9 and (f) 
r/d = 3.2 (symbols � experimental data [23], solid line � Re stress-Ȗ predictions, dash line �Re 
stress predictions). 

 
Figures 8 to 10 give further comparisons between predictions of scalar 

PDFs and data obtained in other studies of jets of lighter [24] and denser [25] 
than air gases, whilst Figures 11 and 12 similarly compare predictions with 
alternative [16, 26] measurements of intermittency in air jets. 

Figure 8 shows results for the methane jet studied by Birch et al [24].  In 
this case the predictive approaches described are able to capture the close to 
Gaussian behaviour on the jet centre-line, and the near delta function 
distribution at large radial distances, but are less successful in predicting the 
bimodal distributions observed both at the outer edge of the jet and at lesser 
radial distances. This contrasts to the results of [15] which show marginally 
better agreement with data at r/d = 1.5 and 1.8, albeit without prediction of the 
bimodal shape. Comparisons with the data of Dowling and Dimotakis [25], 
given in Figures 9 and 10 at two downstream locations, are more successful.  
At z/d =30 (Figure 9), the qualitative distribution of the PDFs is successfully 
predicted, although there is some over-estimation of the magnitude of the 
PDFs at the two outer radial locations. Similar agreement with data is 
obtained at z/d = 90 (Figure 10), with the over-prediction of the PDF at the 
outer radial station indicating, as for the results in the previous figure, an over-
estimation in the calculations of the rate of mixing with radial distance. As for 

the majority of previous results, predictions based on the Reynolds stress- 
model are generally in closer accord with these data.           

 
 
 
 
 
 

 



 
Figure 8: Comparison of measured and predicted distributions of scalar PDF at z/d = 10 and 
various radial locations: (a) r/d = 0, (b) r/d = 1.3, (c) r/d = 1.5 and (d) r/d = 1.8 (symbols � 
experimental data [24], solid line � Re stress-Ȗ predictions, dash line � k-İ-Ȗ predictions).  

 
 

 

 

Figure 9: Comparison of measured and predicted distributions of scalar PDF at z/d = 30 and 
various radial locations: (a) r/d = 0, (b) r/d = 1.77, (c) r/d = 3.24 and (d) r/d = 3.54 (symbols � 
experimental data [25], solid line � Re stress-Ȗ predictions, dash line � k-İ-Ȗ predictions). 

 
 
 
 



 

Figure 10: Comparison of measured and predicted distributions of scalar PDF at z/d = 90 and 
various radial locations: (a) r/d = 0, (b) r/d = 5.37 and (c) r/d = 10.74 (symbols � experimental 
data [25], solid line � Re stress-Ȗ predictions, dash line � k-İ-Ȗ predictions).  
 

This is also the case for the intermittency profiles given in Figures 11 and 

12, with predictions based on the Reynolds stress- model again showing 
better agreement with the data of Becker et al [16] in Figure 11, and that of 
Wygnanski and Fielder [26] in Figure 12. As for the comparisons with the data 
of Schefer and Dibble [23], predictions of the latter model again accurately 
predict the rate of transition from turbulent to non-turbulent flow, as well as its 
spatial location (apart from at z/d = 40 in Figure 12). In contrast, results based 
on the k-İ-Ȗ approach, although in good agreement with the data of Becker et 
al [16], again tend to under-estimate the rate of the transition in the 
Wygnanski and Fielder [26] jet, as was also the case for the Schefer and 
Dibble [23] jet, with a noticeable tail in the predictions at large r/d values. 
These findings are again in line with those of earlier work [15], where similar 
trends were noted for the Schefer and Dibble [23] and Wygnanski and Fielder 
[26] jets, although use of a transported PDF in the present work results in the 

more accurate prediction of intermittency profiles, by the Reynolds stress- 
based approach at least. 

     
 

 

 

Figure 11: Comparison of measured and predicted radial distributions of intermittency at 
various axial locations: (a) z/d = 20, (b) z/d = 24, (c) z/d = 32 and (d) z/d = 36 (symbols � 
experimental data [16], solid line � Re stress-Ȗ predictions, dash line � k-İ-Ȗ predictions). 



 
 

 

 

Figure 12: Comparison of measured and predicted radial distributions of intermittency at 
various axial locations: (a) z/d = 40, (b) z/d = 50, (c) z/d = 60 and (d) z/d = 75 (symbols � 
experimental data [26], solid line � Re stress-Ȗ predictions, dash line � k-İ-Ȗ predictions). 

 
5. Conclusions 
 

A novel approach for solution of the RANS-based fluid flow equations 
together with the transported PDF equation for scalar variables has been 
described, based on the use of a finite-volume method coupled to an adaptive 
mesh refinement algorithm applied in both physical and compositional space. 
This method contrasts with conventional approaches to solving the 
transported PDF equation which generally employ Monte Carlo techniques. 
The overall model has been applied to the prediction of external intermittency, 

and its effects, in turbulent round jets using k-İ-Ȗ and Reynolds stress-  
turbulence models, with the influence of intermittency also accommodated 
within the transported PDF equation through modifications to the molecular 
mixing model employed.    

Comparisons with data on the velocity and scalar fields in a number of 
jets, as well as with measurements of scalar PDFs and intermittency profiles, 
have demonstrated the ability of the approach described to provide good 
accuracy in the modelling of intermittent turbulent flows. In particular, and in 
contrast to earlier approaches [15] which used solutions of transport 
equations for the mean mixture fraction and its variance to provide predictions 
of the mixing field, coupled to a prescribed PDF, the present approach is able 
to provide realistic predictions of the bimodal features to the measured PDFs. 
Reasonable agreement with measured PDFs and intermittency profiles within 
the jets examined is also obtained, with results based on the Reynolds stress-

  turbulence model generally in closer accord with experimental data. 
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