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Abstract
The paper introduces a direct approach to the identification of nonlinear differential
equations from noisy input/output data. Both the parameter estimation and the structure de-
termination problems are addressed. Central to the proposed methodology are two algorithms,
a numerical differentiation algorithm involving fixed interval Kalman smoothing and an or-
thogonal regression routine used to perform model structure selection. The applicability of the
identification procedure, which unlike most previous algorithms is not restricted to a special

class of nonlinear systems, is demonstrated using simulated and experimental noise corrupted
data.

1 Introduction

Although discrete-time models are best suited for numerical implementation, knowledge of
the continuous-time differential representation of a dynamical system is essential for many
applications in engineering and the physical sciences.

Compared with the problem of inferring the discrete-time model of a linear or nonlinear
system from data, which is not a trivial problem, the identification of continuous-time models
it is still regarded as a far more challenging task. In particular when the system of interest is
nonlinear the existing approaches for identification and estimation of continuous-time systems
(Unbehauen and Rao, 1987; Sinha and Rao, 1991; Young, 1981), many of which make use of
special classes of modulating functions to eliminate the differential operators in the original
equation, cannot be employed or their use is restricted to some special classes of nonlinear
systems (Patra and Unbehauen, 1995).

Most of the existing methods also assume knowledge of the nonlinear differential rep-
resentation of the dynamical system to within a set of unknown constant parameters. This
limitation of the algorithms is very important since very often the only available information
from a dynamical system is a set of discrete input/output observations (measurements). In these
situations a possible solution is an indirect approach (Tsang and Billings, 1992) which involves
the discrete-time identification of the system using polynomial NARMAX models, the compu-
tation of the generalised frequency response functions using the discrete model and finally the
estimation of the nonlinear continuous-time representation from the frequency response data.

As an alternative solution, this paper introduces a direct identification approach in which
a regression model is built using the measured signals and their higher order derivatives com-




puted directly from the noisy measurements.

The critical task of numerically differentiating the noisy measurements is performed using
a fixed interval Kalman smoother. In order to implement the algorithm, a state-space model
which exploits the regularity of the solutions of differential equations, is formulated.

When the model representation is known, the smoothed input and output signals and
the corresponding higher-order derivatives can be used to derive a regression model and to
estimate the unknown parameters. A similar direct approach to parameter estimation for
continuous-time systems was introduced in Young (1993) using a Integrated Random Walk
model as a basis for numerical differentiation, The state-space model used here to implement
the Kalman Smoothing algorithm was initially proposed by Fioretti and Jetto (1989) and
has been successfully used (Coca and Billings, 1998) for parameter estimation of Distributed
Parameter Systems.

The main contribution of this work however is that it addresses an extremely important
problem in nonlinear system identification, that of model structure determination. When the
form of the nonlinear differential system is unknown a critical task is to determine the structure
of the differential equation before estimating the unknown parameters. One possible solution
to this important problem is to use non-parametric regression techniques. By considering a
polynomial model structure, it is shown that the polynomial terms of the continuous-time
model can be selected in a similar manner as for discrete-time NARMAX models (Chen and
Billings, 1989) using an orthogonal forward regression algorithm (Chen et al., 1989). The main
difference with respect to the traditional NARMAX identification algorithm is that in this case
the form of the regression model precludes the implementation of noise models.

Using simulated and experimental noise contaminated data the applicability of this pro-
cedure to estimate the differential representation of a nonlinear system is demonstrated. De-
spite some structural differences between the simulated system and the estimated models, the
number, and location of the equilibrium points as well as the eigenvalues associated with the
equilibrium points of the original system are closely replicated by the models. This ensures
that qualitatively the model and the original system will exhibit the same behaviour. Because
of the need to use the fixed interval smoother the approach presented in this paper is mainly
suited to off-line applications.

2 Differential Equations and Dynamical Systems

Most dynamical systems in the real world evolve continuously in time. The evolution of such
systems is normally represented mathematically as the solution ¢(t,u, zo) of a finite system of
differential equations

g =2 fla, u) (1)

where z(t) is the vector of dimension n of state variables, u(t) is a vector of dimension m of
input variables, z, the a vector of initial conditions and f : R™™ — IR™ is a smooth, nonlinear
mapping. Here smooth means C* namely ! times continuously differentiable.

If f and u are smooth functions the smoothness of the solution ((t) can also be analysed.
Using a "bootstrap” technique it is easy to prove that if f and w are C' and C* functions




respectively, then the the solution ¢(t) is in C™®(*)+1 This means that in general o(t) has
one order of differentiability more than either f or u whichever has a lower regularity order.
When f and u are analytic, the solution is a C* function with respect to time. The regularity of
the solution ¢(t) is an important aspect in the derivation and implementation of the numerical
differentiation algorithm based on a fixed interval Kalman smoother.

The continuous-time system described in (1) is normally augmented by introducing an
observation or measurement function

y = h(z,v) (2)

where y is the output, a vector of dimension p and A(-) is a continuous function. Equations (1)
and (2) represent the state-space description of a continuous-time system with outputs.

Subject to some additional assumptions the state-space description can be converted
into a set of of nonlinear higher-order differential equations in the input and outputs

R(y,y',.._,y(i),u1ﬂ,..,,u(i-l)) =0 (3)

where u(Y), y()) denote the i-th time derivative of the input and output variables and R :
R**! — IR?. The higher-order differential equation (3) represents the external differential
representation or the input/output equation of the dynamical system.

In practice the only information available from a system may be a set of input and output
data which reflects how the input u affects the output y. In system identification it is of interest
to model the input/output behaviour of the system as an input/output differential equation if
for the given combination of inputs and outputs such a representation exists. In particular, in
the present work a direct method of estimating both the structure and the unknown parameters
in the following external differential representation

v = Fy, 9, ...,y D, u, %, ..., ul1), (4)

which can often be derived from (3), is introduced. The approach involves estimation of the
higher-order derivatives of the input/output signals in in equation (4) directly from the noisy
measurements. An algorithm for generating the necessary derivatives is introduced in the
following section.

3 The Identification Procedure

In this section the whole identification procedure is introduced beginning with the smoothing
and numerical differentiation algorithm which is an essential part of the present approach.

3.1 Numerical Differentiation in the Presence of Noise

The problems of numerical differentiation of noisy signals are well known, especially that this
operation can lead to the amplification of the noise if performed directly on the measured
signals. Here an approach originally introduced in Fioretti and Jetto (1989), which is based
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on a regularity assumption regarding the measured signals, is used. This is a relatively mild
condition as far as the input and outputs of differential equations are concerned and hence is
largely applicable for estimating the higher-order derivatives required in (4) directly from the
(normally) noisy measurements.

Under the regularity assumption regarding the input/output signals consider the state
vector Y (¢) composed of the output y(t) and the derivatives y{), j = 1,..., N (Fioretti and
Jetto, 1989). Here y is assumed to be one-dimensional. When y is a vector, a similar model
can be derived for each output variable.

By differentiating Y (¢) with respect to time, the following continuous state-space equa-
tions result

) dN+1y t
Y(t) = DY(f) + G_d-_tﬁg (5)
where D is the (N + 1) x (N + 1) matrix
"0 1 0 ... 0 ...7
0 01 0
D=|: " & (6)
000 ... 1

and G =[0...01]7 is a (N + 1)-dimensional vector.
Assuming At to be the sampling time, the discrete state space equations associated with
(5) have the following form

Y(t+ At) = AY(t) + W(¢) (7)
where A is the state transition matrix
(1 At A3)2) ... AN /NI
0 1 At ... AW-U/N -1
A(AL) = | ¢ E (8)
0 0 0 1

The state-space model (7) can be augmented with the following measurement equation
z(t) = HY (t) + e(t) = y(t) + e(t) (9)

where H = [1...0] is a (N + 1)-dimensional vector and e(t) represents measurement noise.

If () is a white noise sequence, equations (7) and (9) are in a form suitable for Kalman
filter implementation. In particular, the fixed interval smoother described in Anderson and
Moore (1979) provides an optimal solution to the state estimation problem. The state vector
in this case consists of the measured output and the unobserved higher order derivatives. The
remaining (N + 1)th derivative of y(t) in equation (5) will be treated as white noise so the term




W(t) in (7) becomes a white noise sequence with the covariance matrix @. It can be shown
(Fioretti and Jetto, 1989) that the generic element of @ is given by

N+3-(i+]
) A2N+3=(i+7)

q“:“%N+1-QKN+1~jMﬂV+3—u+jD (10)
where 02 was estimated as
2
o} = é%ﬁ (11)

The quantity gx, which formally represents the remainder of the Taylor series expansion of
order IV of the signal, can be approximated as

M wN+2
gy = —At—<
T

exp (w At) (12)

In equation (12) M is the upper bound for the amplitude spectrum of the signal and w. = 27 f,
is such that f, defines a cut-off frequency above which the power spectral density of the output
signal is negligible. In practice by computing the FFT and the power spectral density P, of
the measured signals both M and f, can be determined directly from the data.

The fixed interval smoother was implemented here as a combination of two Kalman
filters one running forward in time and one moving backwards. The state transition matrices
in this case are A for the filter moving forward and A™! for the backward moving filter.

If Z = {z(t1), 2(t2), ..., 2(tn)} is the set of available observations consider

Z7(t:) = {z(t1),z(t2),..., 2(t:)} (13)
ZF(t) = {z(t), 2(ti1)s n 2(80)} (14)
as the sets of "past and present” and "present and future” observations at a given instant
ty= 1AL
The smoothed state estimate at each time instant representing the minimum variance
estimate given all the data, past and future, is given by the well known formulas

2(t;) = P(P'2y(t)+ Py tia(ti)) (15)
P = cov(2—2z)=(P[t+P;H)™? (16)

where
2(t) = E{=(t:)|1 27 (t:)} (17)

denotes the filter running forward in time and

fa(t) = E{(:)1 27 ()} (18)

denotes the estimate produced by the filter running backwards in time and P, and P, are the
covariance matrices corresponding to the forward and backward filters.

If the data sequence is short the two filters can be run forward and backwards more than
once in order to achieve convergence. In this case at the end of each run the covariance matrices
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associated with each filter are interchanged and so are the final state estimates. It follows that
the final estimates of the forward filter become initial conditions for the filter running backwards
and vice-versa.

The key assumption when smoothing is performed is that the forward-time and backward-
time system descriptions are equivalent so that the filters can cooperate by combining in an
optimal way the estimates obtained from two independent sets of measurements Z~(¢;) and
Z*(t; + 1) (Lewis, 1986).

If however the signal or the associated derivatives have isolated discontinuities, eventually
one of the models will fail to correctly describe the signal at that point. In this case it is possible
to allow only one of the filters to produce the estimate, instead of combining them, by using an
additional decision rule (NiedZwiecki and Sethares, 1995). This could provide a solution when
the signals have isolated singularities.

A factor which clearly determines the accuracy of the estimates is the order of the signal
model used. In theory the estimation error tends to zero monotonically with IV, the largest order
of the derivatives considered if the data is sampled sufficiently fast relative to the frequency
bandwidth of the signal. In practice, N = 6,...,9 can be chosen with good results. A value
for N which is too large will generally slow down the computation and also increase the risk of
numerical instability.

The fixed-interval smoother can be applied to obtain the optimal state estimate con-
sisting of the inputs u(t) and outputs y(¢) and the corresponding high-order derivatives of the
inputs and outputs which appear in equation (4).

3.2 The Parameter Estimation Problem
Assume that the input/output equation
y® = F(y, 7, oy L ulY) 6) (19)

1s known with the exception of a set of constant parameters 6.

If the high-order derivatives of the input and output variables involved in (19) are com-
puted from the sampled input/output data using the differentiation algorithm presented in
the previous section, a regression model can be formulated in order to estimate the unknown
parameters. For linear-in-the-parameters model equations the parameter vector can then be de-
ter nined using least-squares. When expression (19) is nonlinear with respect to the parameter
vec-or @, alternative gradient-descent type algorithms can be used.

3.2.1 Example 1: Parameter Estimation for a Nonlinear Differential System
Consider the following nonlinear system

§ = a19 + 629y + aay’ + aqy + byu (20)
Based on the equivalent state-space model

33'.1 iy o

i“

Iy = aiTs+ agﬁmg — a3:c§ + aszi + bhu (21)
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the system with a; = -3, a3 = —1.5, a3 = 2 ag = —2 b; = 3 was numerically integrated using
a fourth-order Runge-Kutta integration routine with the fixed integration step At = 0.01. The
input « used in the simulation, which is illustrated in Fig la was a lowpass filtered white noise
sequence. The cut-off frequency of the filter corresponded to 0.0025 of the original sampling
frequency. After removing the transients the simulation data consisted of 10000 input/output
data points sampled at At = 0.01. For parameter estimation only 1000 input/output data
points sampled at 5At were actually used. In order to test the estimation scheme in a realistic
way, the output signal was corrupted with white noise with standard deviation o = 0.0065.
The noisy output signal is illustrated in Fig.1b.

—-0.05-

-0.1

—0.15k- = s 0 sl o Z T . i = s

o2 i ; 4 i ; i i i 1 i
“o 5 10 15 20 25 30 as 40 a5 50

t [s]

(a)

y(t)

Figure 1: Identification Data: (a) Input Signal (b) Noisy Output Signal

The fixed interval Kalman smoother derived in Section (3.1) was used to smooth the
output data and generate the higher order derivatives required. The parameters M and f.
required to compute the value of o, in equations (11), (12) were estimated by computing the
power spectral density P, and the FFT of the output signal. In particular, f. was selected such




that P, < p for f > f.. Numerical experiments have shown that by choosing the threshold
p around (0.2% — 0.5%)P**® good estimates of the cut-off frequency f. and indirectly of the
parameter o2 can be obtained.

Using least-squares estimation the following parameters were obtained: a; = —2.9015,
a; — 1.3500, az = 1.8771, ag = —1.9430, b; = 2.9003.

The results obtained illustrate that the proposed approach can provide good estimates of
the parameter vector of a continuous-time system in the presence of noise. The main advantage
of this method is that it is not restricted to special classes of nonlinear systems (i.e. integrable
or convolvable) which makes it suitable in situations than cannot be handled by other existing
approaches (Patra and Unbehauen, 1995).

3.3 Model Structure Selection for Continuous-Time Models

In many practical applications no inforrhation regarding the structure of the observed dynamical
system is available a priori. Identification therefore involves model structure selection prior to
parameter estimation.

Similar to discrete-time NARMAX modelling the structure determination problem can
be solved using non-parametric regression techniques. In practice this involves selecting a
functional form of the multivariate nonlinear function F(-) and the specification of the order
parameters representing the maximum derivative orders for the inputs and outputs which ap-
pear in (4). Because of the particular-form of-equation (4), if the order of the system is not
known, a solution to determine the parameter 1 is to test a sequence of models of increasing
order until a valid model which can reproduce the observed behaviour is found. Choosing the
parameter which specifies the maximum derivative order for the input is not so critical since if
this parameter is overestimated the structure selection algorithm should be able to select the
significant terms involving the higher-order derivatives of w.

The order parameters indicate the number of variables of the function F(-) and are
essential for defining a finite model set consisting of all linear and nonlinear terms that in
theory can be used to implement the model.

Denote X = {y,7, ...,y u, 14, ...,ut*"V} the vector of regression variables consisting of
the inputs, outputs and higher-order derivatives of the inputs and outputs. If F(-) is initially
assumed to be an r-th order multivariate polynomial II,(X) the model set M = {px(X)} will
consist of all possible terms of this polynomial. Of course a model which would include all these
polynomial terms is unpractical because of the large number of parameters involved and also
because in most cases a more complex model does not necessarily equate to a better model.

A practical solution to finding the significant terms to be included in the polynomial
model structures and indeed for any linear-in-the-parameters functional F(-) is the orthogonal
forward regression algorithm (Chen et al.,, 1989). The principle is to consider the inclusion
or exclusion of each candidate term on the basis of its contribution to the reduction of the
modelling error. This systematic approach uses the ERR (error reduction ratio) test (Billings
and Chen, 1989) to evaluate the significance of each term and to determine its contribution
to the approximation. The selection procedure is carried out until the approximation error
becomes smaller than a given target value and/or the estimated model can reproduce sufficiently




well the observed dynamical behaviour.

The main difference between the discrete-time and continuous-time identification proce-
dures is the absence of any noise models in the later case. Hence the importance of estimating
accurately the derivatives of the input and output signals in order to ensure unbiased parameter
estimates.

3.3.1 Example 2: Structure Selection and Parameter Estimation for a Nonlinear
Differential System

Consider again the system (20) investigated in Section 3.2, Example 1. The same data set was
used in this example in an attempt to both determine the model structure and estimate the
parameters associated with the selected model.

The model set was implemented by selecting F(-) to be a cubic polynomial. A maximum
derivative order n, = 1 and n, = 1 was chosen initially for » and y. According to these
parameters a model set consisting of 20 terms was specified. Using the orthogonal forward
estimator routine the following first order model (Model 1) consisting of 10 terms was identified
from the data.

g = 1.08205u — 0.621515y + 1.91684 yu — 12.1683y%u
—0.770119 %2 + 0.73712x 10~2 — 0.975369y2 — 4.16171 ® (22)
+4.32898 42 + 11.327 yu?

The model was integrated using a fourth-order Runge-Kutta routine with the same input which
was used to generate the identification data, and with the input corresponding to the test data
set. In Fig. (2) the results of the simulation using the first input signal are displayed. Note
that although not perfect, there is a good match between the data simulated using the original
and the estimated models. However, when the same model was simulated with a different, test
input the solution diverged to infinity.

y(t)

6.5 ; ; . . . . s A
o 5 10 15 20 30 35 40 a5 50

2I5
t [s]

Figure 2: System Output (cont) and Model Predicted Output (dotted) for Model 1, eqn. (22)

By increasing the system order to n, = 2 a different model set consisting of 35 terms
was defined. The model selected in this case (Model 2) by the orthogonal forward regression
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procedure consisted of 8 terms

¥ = —1.9368y + 1.9533y% + 0.10913 yu — 0.416124%w
—0.92173 x 105 — 1.4661 ygju — 2.92674 + 2.914dw (23)

The model simulated output is an excellent match over the identification (Figs.3a,b) and test
data sets (Fig. 4ab).

0.5

y(t)

o t [s]
(b)

Figure 3: Simulation results using the identification input signal: (a) y and
(b) g for Model 2, eqn. (23) (dotted) and the original system (cont)
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Figure 4: Simulation results using (a) the test input signal: (b) y and (c) v
for Model 2 (dotted) and the original system (continuous)
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However, the model structure picked up by the structure selection algorithm differs from
that of the original system. An important question in this case is how to assess the validity of
this model apart from just comparing the model predicted output.

3.4 Model Validation

Ideally in nonlinear system identification the model obtained as a result of the identification
procedure should be globally valid that is the model and the system should behave similarly
when excited by identical input signals. However, the use of non-parametric regression tech-
niques to determine the form of the nonlinear function F(-) means that in many cases this
function is only a local approximation over the interval (hypercube) containing the regression
data. This is evident especially when the class of functions used to derive F(-) have local sup-
port (the functions tend to zero rapidly outside a closed interval known as the support of the
function) such as Radial Basis Functions or wavelet functions for example. In these cases the
nonlinear mapping is also locally supported that is F(-) vanishes rapidly outside the original
interval of approximation.

A class of model structures which can provide global models are polynomials. Using
this class of functions it is possible to obtain a global model for a polynomial system if the
structure selection and parameter estimation routine is able to include in the model the same
polynomial terms which describe the original system and to provide reasonably accurate pa-
rameter estimates. However when the underlying mathematical relationship which governs the
original system is not polynomial, in general, a polynomial model once again provides only a
local approximation despite the fact that the approximating polynomial F(-) is not a locally
supported function. A simple intuitive argument is that although a sine function for example
can be locally approximated by a polynomial it is obvious that such an approximation is no
longer valid outside the original domain of approximation.

In Example 2, although the original system is polynomial, the model structure selected
using the orthogonal forward regression routine, differs from that of the original system. Despite
this the model can still predict quite well on a different set of data. An obvious problem is how
to compare the two dynamical systems in order to decide model adequacy.

In the qualitative theory of dynamical systems the number, location and stability of the
equilibrium points are essential for classifying and comparing dynamical systems. In system
ideatification this is a possible approach to assess the validity of the estimated models.

In this case from the equivalent state-space form of the Model 2 (23)

Cl"...l = I
, = —1.9368z; +1.9533z2 +0.10913 z1u — 0.416122%u (24)
—0.92173x107° — 1.4661 z,zou — 2.9267 2, + 2.9144 w

it is clear that the estimated model has a single equilibrium point (z1,z,) = (—4.7591e — 06, 0)
which is very close to that of the original system (z;,z2) = (0,0). The eigenvalues associated
with the the linearisation of equation (24) around the origin are (A1, A2) = (—1.9158 — 1.0109)
are also close to those corresponding to the original system (A1, A2) = (—2—1). The invariance of
the number and location of the equilibrium points coupled with the fact that the eigenvalues of
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the linearisation around the equilibrium point are nearly identical, means that qualitatively the
behaviour of the two systems will be essentially the same. The numerical simulations computed
for Example 2 have also demonstrated that, from a quantitative point of view, the model was
able to predict well with respect to both the estimation and the test data. In particular it
is important to note that the amplitude of the input signal used to generate the test data
was significantly larger that the amplitude of the input used to generate the estimation data.
As a result the spatial domain spanned by the test data was larger than the initial domain
of approximation. In conclusion, although not perfect, the identified model is a very good
approximation of the original system.

3.4.1 A Model Sequencing Strategy for Improved Structure Selection

Ideally of course, the structure selection algorithm should have selected a correct model struc-
ture in Example 2. The errors associated with the numerical differentiation process, although
small, seem to be the main reason for the structural inaccuracy in this case.

A possible way to increase the robustness of the selection algorithm for polynomial model
structures could be the use of a slightly different model sequencing strategy. The idea is to
exclude from the initial model set all the terms representing cross products of the regression
variables. A subsequent model set can be appended with cross-product terms corresponding to
the input variables, cross-product terms corresponding to the output variables and finally with
cross-product terms including both input and output variables.

This sequence of nested model structures M; C My C M3 C ... naturally leads to a
sequence of models mj, mz, ms, ... of increasing complexity which can be selected and tested
for each model. This approach while reducing the risk of estimating a more complex model
than necessary can also lead to more accurate model structures.

As a justification of this approach note that the cross-product terms are correlated with
each regression variable involved in the cross-product and in turn with the left-hand-side of
equation (4). Hence when a full model set is unnecessarily considered, there are chances that
the selection procedure which is based on the goodness of fit criterion (ERR) can wrongly select
such cross-product terms instead of true terms containing those regression variables alone.

This approach was successfully tested on the simulated system considered in Example
9. The following model was selected from a model set which excluded any terms that were a
combination of variables from {u, %} and from {y,9}:

j = —1.96982y + 1.85868 2 +0.22054x 1072

_0.208008 yy? — 2.98658 3 + 2.94791 u (25)

Note that in this case the selected structure is more accurate than the initial selection.

3.5 Practical Identification Of an Electronic Circuit from Noisy
Measurements

This section concerns the identification of the differential representation of a dynamical system
from experimental measurements. The system considered In this case is a nonlinear electronic
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Figﬁre 5: Chua’s circuit

circuit widely known as the Double Scroll or Chua’s circuit (Chua, 1992; Matsumoto et al.,
1993). The circuit which is a source of rich and complex dynamical behaviour including chaos
is also renowned for the number of practical applications that exploit its properties.

The circuit Fig (5) which consists of one inductor (L), two capacitors (Cy, C3) one linear
resistor (G) and one nonlinear resistor (Ng) with a piecewise linear characteristic g(ve1) can
be described mathematically by a system of thiee differential equations

d
C1 Z? = G(ve, —ve,) — g9(ve,)
d .
Ca Zi’ = Glvg, —ve,) +iL (26)
dig,
L = ~ve
where ;
mivey, Ivcll L BP
g(ve,) = { move, + By(m1 — ma), ve, = By (27)
move, — Bp(my — mo), v, £ —B;

The circuit can be implemented in many ways using standard components. The implementation
described in Kennedy (1993) will be considered here. The data set used for identification was
measured by Dedieu and Ogorzalek (1994) who investigated a control method for this circuit.

The data consisted of three time series of 10000 data points each, representing the
current 71, through the inductor L, the voltage Vg1 across Cy and the voltage vee across Cha.
The measurements were simultaneously taken using a sampling frequency of 500KHz.

For identification the original data was decimated by 5 resulting in three time series of
2000 data points each. The numerical differentiation algorithm introduced in Section (3.1) was
used on the raw data to compute the higher order derivatives of the experimental signals. The
values of M and f. which are essential to determine the value of o, in (10) were determined by
computing the power spectral density and the FFT of the signals to give M** = 30, M¥°* = 28,
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Mver = 10, fir = 2.2KHz, frer = 3KHz, fre2 = 2.2KHz. The resul’unj values for o, were
1.7620 - 10%3, 5.2428 - 10**, 5.8734 - 10*? for iz, veu and vg; respectively.

Using the smoothed signals and the first order derivatives the following type of model
was sought

ve1 = fx(UCh'UczﬂlL)
Voa = fa(vor,vo2,iL) (28)
iL = f3(UC'11UC21?:L)

To determine fi, f2, f5 in equation (28) a cubic polynomial model structure was defined. The
selection of the polynomial terms that made up the final model and the parameter estimation
was carried out using the orthogonal forward regression routine.

The final model

o1 = -+0.42234283x 10743 + 0.97625632x 10*° 11vg, — 0.22819645% 10+7 v,
0.9162641 x 1072 &2 -+ 0.29095643 x 10+ voriz, — 0.48678716x 10%° 13vc
1020273807 x 10+ -+ 0.28158381 x 10%° vgs — 0.20227579 x 107° 4,

L 0.49994370 x 10+ vgy — 0.24860384 x 10¥° 03, + 0.28640418 x 10%° vesvgy
+0.1889272 x 10¥8 izv?, + 0.15655216 x 107 vz,

oy = +0.20091875x 10 v, +0.12570149 x 10%* 15vcy + 014734927 % 10+3
0 11643835 x 10+ vogves + 0.94986386 x 10¥6 ifvd; + 0.11739572x 107 vgy
1011968005 x 10+° vgp — 0.70067849 x 10¥° vg, — 0.34656118 x 107 v,
018521636 x 10+7 3, v6: — 0.40810200 X 10¥2 g, + 0.48761216 X 10%* 1206,
+0.10189376 x 10+8 ivgaves + 0.10745656 % 10*° vovgy

i = —0.30361124x 10 v3, + 0.23893292 % 1074 + 0.25051101 x 10%° veq
019136095 x 10+ i, + 0.22300821 x 1079 v, — 0.38465654 x 10*° ves
—0.612364 x 10*7 igvd, — 0.77528023 x 1017 w&,ver — 0.63514572 X 10T4 v,

(29)
was simulated using a fourth-order Runge-Kutta integration routine. The model predicted
output was used to plot the strange attractor in Fig (6b) which is an excellent match for the
original attractor plotted in Fig (6a).
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Figure 6: Double-Scroll Attractor reconstructed using (a) the experimental
measurements and (b) the model predicted output

4 Conclusions

The problem of identifying the differential representation of general nonlinear systems has been
studied. The new algorithm has the advantage that it does not assume a special form for
the dynamical system. A state-space model which exploits a regularity assumption regarding
measured input and output data forms the basis of a fixed interval Kalman smoother which is
used to generate the required time derivatives.

When the form of the nonlinear differential equation is known the derivatives of the
inputs and outputs can be used to build a regression model and the unknown parameters can
be estimated by means of a least-squares algorithm or other optimisation technique.

The paper has also addressed two fundamental problems in nonlinear system identifica-
tion that of structure selection and of model validity. Numerical and experimental results have
illustrated that using an orthogonal forward estimator the structure of the nonlinear differential
equations describing the dynamics of the observed system can be determined with sufficient
accuracy.

In the simulated example, despite the fact that the model structure did not exactly match
that of the original system, the model could reproduce the behaviour of the original system.
This emphasises the fact that the structure alone is not the best way of validating identified
systems. Dynamical invariants such as the number, location and stability of the equilibrium
points can provide in this case a far better criteria for judging the model adequacy.

The identification procedure was also tested using experimental data collected from a
nonlinear electronic circuit (Chua’s circuit) which exhibits chaotic dynamics. The model derived
from the noisy measurements using the approach advocated in this paper was able to reproduce
very well the complicated dynamics displayed by this circuit.
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