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Abstract: Three novel algorithms are presented; the linear programming (LP) machine
for pattern classification, the LP machine for regression estimation, and the set-
reduction (SR) algorithm. The LP machine is a learning machine which achieves
solutions as good as the SV machine by only maximising a /inear cost-function (SV
machine are based on quadratic programming). The set-reduction algorithm improves
the speed and accuracy of LP machines, SV machines, and other related algorithms.

An LP machine’s decisions are optimal in the sense that it implements Vapnik’s
(Vapnik and Chervonenkis 1979, Vapnik 1995) structural risk minimisation (SRM)
principle. The LP machine has a number of attractive and interesting properties like a
high generalisation ability, fast learning based on linear optimisation, capacity control,
and a self organisation property.

The SR algorithm is an efficient method to improve speed in a LP machine, SV
machine and related algorithms. VC bounds are known to be loose bounds. The SR
algorithm allows to construct optimal support vector machines by determining the
necessary and sufficient number of support patterns. The algorithm does also give
tighter VC bounds (for bounds which are a function of the number of support
patterns).
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1. Introduction

Vapnik’s support vector (SV) machine is a highly efficient algorithm for pattern
classification, regression estimation, and other applications. Compared to conventional
methods, like. neural networks trained with backpropagation, the SV machine allows
to construct better classification (discriminant-) functions, functions of a low capacity
which lead to a high generalisation performance. SV learning is based on finding an
optima of a quadratic cost function with respect to some constraints.

2. Linear Programming Machines

In an LP machine learning is based on calculating An LP machine structured as a neural network
the maximum-margin decision boundary
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Conceptually there are some similarities between the LP machine and Vapnik’s support
vector (SV) machine (Cortes and Vapnik 1995, Vapnik 1995). Both algorithms
construct an optimal-margin decision plane in a very high dimensional feature space (a
Hilbert space) using Mercer-kernel functions (Courant and Hilbert 1953). The risk of
making a wrong decision is minimised if the margin between the two classes has a
maximum value (figure 1). The LP machine (and the SV machine) can find optimal
solutions in a convex cost space, therefore the algorithm does not, unlike neural
networks, suffer from problem like random initialisation effects, getting stuck in local
optima, oscillation, etc..

The crucial difference between the LP machine and SV machine is that the LP machine
is based on finding a maximum-margin plane in a /inear margin space, while the SV
machine is based on finding the maximum-margin in a quadratic margin space.

2.1 Terminology

For a pattern classification task the training set {(x,.y1), (xay3), ... (x,y)} is defined by
a set of / training patterns x, x; € R*V/ and of / labels y, y; € {1,—1} V7.
A linear function of the form

H(x)=<w,x>+b (1)
is used for classification of patterns (the brackets < , > represent a dot product).
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The norm of a d-dimensional vector w is indicated by: " "

W

. 1
= > w} (L2 norm).
i=]

If a patterns x; is correctly classified the following inequality is satisfied:
Vi: y(<w,x. >+b)=1 (2)

For regression estimation patterns (samples) x and labels y {(x,y;), (x22), ... (x,y)}
form a training set. The labels y; are real valued: y; € R Vi. A function as given in (1)

is learned such that it represents the functional given by the samples as good as
possible (linear regression by minimising a loss function).

2.2 The Margin

In (Cortes and Vapnik 1995) it is shown that the margin between the separating plane
(in figure 1) and the two classes is inversely related to the norm of the weight vector w:
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The idea of the SV machine (and the maximum margin algorithm (Cortes and Vapnik
1995)) is to minimise a function:
¢ = f(Iwl) (42)
subject to y, (< w,x, >+b)= 1. (4b)
If ¢ has a minimum value the largest margin has been determined.

The idea of the LP machine is to minimise the functional ¢ of the form:

o= 7wl (5a)
subject to y, (< w,x, >+b)= 1. (5b)

This is equivalent to finding a maximum margin plane in the L1 “margin space”, while
the SV machine does choose the maximum margin plane in a L2 “margin space”. To
put it into other words, the SV machine is finding a maximum margin plane with
respect to the L2 norm of w, while the LP machine is choosing a maximum margin
plane with respect to the L1 norm of w.

2.3 LP Perceptron in Input Space for Pattern Classification

The perceptron with linear error function can be implemented using constrained linear
programming as follows:




d

minimise:  f(s)= z.s; (6a)
=1

subjectto: s, >=0 ands, —A +y, wx, 20 (6b)

(as presented in Ripley 1996, Minnick, 1961; Muroga et al, 1961, F.'W. Smith 1968,
Grinold 1969). The scalar A was introduced to avoid the trivial solution w; =0 Vi.

To satisfy (2) it is necessary to define:A = 1. This assumption removes a degree of
freedom in (1) (re-scaling of w and &) such that minimising of the norm of w does
result in a large margin classifier.

If the two classes are not linearly separable in a classification task (after optimisation
f(s)>0 in (6)) a decision plane has been found which minimises the linear error

function (6b).

The constant b can be determined if augmented patterns are used, or if the following
equation is optimised:

d

minimise: f(s,b)= Esi ' (7)
=}

subjectto: 5, >=0 ands, —A +y,<w,x’ >+b2>0

This is equivalent to augment patterns by: ifi e {1,../} x/ =x, x;,, =1 and use (6).

It is known that in any pereptron (Rosenblatt 1969, Minsky and Papert 1969, Vapnik
1995) the weight vector w is a weighted sum of patterns. If we expand for augmented

!
patterns the weight vector (w = 2 <a,, X' >, b=0,,) equation (1) can be written as:
i=|

H(x)=b+t<w,x> =

i ! i
b+(2 200, W >)x =b+(20:,. <X, ,x>} =b+(20¢, K(x, ,x)J ®)
i=1 i=1

i=1
(function K, ) does represents a scalar product).

The decision plane ¢ can be represented in two equivalent ways. Expression (8) will be
called the explicit form, expression (1) the implicit form.

The algorithm for the perceptron in input space by linear programming can be
rewritten in explicit form. Now the multipliers’ o are determined, while in the implicit
form the weights w are found®. The LP perceptron in input space is given in explicit
form by:

minimise:  f(s,b) = Zs{. (9)
=1

1 R
Mutipliers are components of vector ¢ .
- Finding alphas can be considered as finding weights in a hidden unit space.




subject to: 5, —A 4+, 0, <X, X, >+Y, 0, <X, X, >+, Y0, <X, X, >+b 20
and 5 >=0, o, >=0

2.4 LP Machines for Pattern Classification in Input Space

To implement the idea of the LP machine, that is to realise structural risk minimisation
by minimising the L1 norm of w, a cost function is optimised which does additionally
punish large components of w (in explicit form):

! I
minimise: £ (5,00,0) = 2,5 +C D01 (10)
i=l =1

subjecito: s = K Ep0l, S, B, € vy DL 1l €k, DR S0
and s >=0, o, >=0

C denotes a constant for capacity control which has to be chosen. The usage of C is
demonstrated in the experimental section below.

2.5 Kernel Functions

There are binary (two valued) functions which represent dot products in Hilbert
spaces, these functions are called kernel functions. Using kernels is equivalent to
expanding two patterns (e.g x,,x,) at first into a very high dimensional feature space
(v (x,),Y (x,)), and then calculating a dot product there.

K(x,,x,) =7 (x,)y (x;) (11)
Any function can be used as a kernel function K if it is positive semidefinite,
continuous, symmetric, and there exists a series expansion of the following form
(Mercer’s series expansion theorem (Courant and Hilbert 1953)):

Vol E™gi)= EM (12)

i=1 i

where the L are eigenvalues and K are eigenfunctors of the integral operator defined
by the integral kernel function (Courant and Hilbert 1953). Further discussions of
kernel functions in SV machines and related algorithms are discussed in (Aizerman,
Braverman, Rozonoer, 1964).

Examples of kernel functions are:
K@vy=(-v+1)*, ¢ =12, ... (13)
Kav)y=(-v)*, € =12, .. (14)

(u,v)= exp| 5° (15)
k |

It is known that for some choices of the kernel function K this feature space may be of
an infinite dimensioality (e.g. for the radial basis function (RBF) kernel (15)).

08



2.6 LP Machines for Pattern Classification in Feature Space

To find the large margin plane in a very high dimensional Mercer-kernel feature space
dot products are replaced by kernel functions. This is the only modification of the
algorithm which is necessary to implement the ability to learn non-linear classification
functions. Such a non-linear function in input space is equivalent to a linear in a high
dimensional feature space.

It is necessary to optimise (explicit form):
! !
minimise: f(s,o&,b)=zsj +Czotl (16)
i=l] =]

subject to: 5, —A +y, 0, Kx, ,x, )+ y, 0, K(x;, x,)+...,y,00,K(x,,x,)+520
and s, >=0, o, >=0

to find a linear classification function in kernel space. This can be implemented by
using standard packages for constrained linear optimisation. Software is available in
public archives.

2.7 LP Machines for Regression Estimation in Feature Space

Only a few changes in expression (16) are necessary to implement a regression learning
machine. Again kernel functions are used to learn non-liner functions which are linear
in some feature space. The LP machine for regression implements Vapnik’s epsilon

insensitive loss function (Vapnik 1995).

It is necessary to optimise (explicit form):

1 I
minimise: f(s,a,b) = Zs,, +C2,ocj (17)
i=1 1=l

subject to:  — s, 4+, Kx,,x, ) +0, K(x,,x,)+...,00, K(x,,x,)+b—y. <—¢ |

S

—1(s;, +o, Kx,, x) ) +0, K(x, ,x,)+..,0,K(x,,x,)+b0+y,) SEE

E:

5,>=0, a,>=0

Two parameters must be chosen, C and € . The choice of parameter € defines the size
of the epsilon interval. More details about the epsilon insensitive loss function can be
found in (Vapnik 1995, Smola 1997).

By choosing a linear or non-linear kernel function (e.g. (13), (14), (15), or a simple
scalar product < | >) any linear or non-linear function can be approximated. The
capacity of the function is controlled by choosing parameter C. If the parameter
epsilon is properly chosen most patterns lie an epsilon interval around function (1),
these are patterns with a zero multiplier o . Only a few patterns outside (and on the
border) will have a non-zero multiplier ¢, these are the support patterns. There are




two types of support patterns, bound support patterns which have a distance of exactly
epsilon / 2 to the linear regression plane (1) in feature space, and unbound support
patterns which have a larger distance to the plane. These patterns are more likely to be
outliers.

2.8 LP Machine for Pattern Classification in Prediction Mode

After training a LP machine for pattern classification it can be observed that most
components of o are zero. Patterns with a non-zero multiplier o, are the so called
“support vectors” (hidden layer units in figure 2). A decision in a LP machine depends
only on the weights of support patterns and on o . The LP machine, can therefore be
considered as a compression scheme. In an LP machine a classification for a pattern v
is achieved by: '

i
Pattern Classification: LPMp) = .S‘fg?{b + (2 Yo, K( X, V)] ] (18)

=]

The process of classification in the LP machine can be considered as propagating a
pattern through a network where the hidden units consist of support vectors and the
hidden activation functions are the kernel functions (see figure 2).

2.9 LP Machine for Regression Estimation in Prediction Mode

The prediction function for algorithm (17) is given by the explicit form of (1):
Regression Estimation: LPM (v) = b+ z o, K(x,. g V) (19)
i=1

Again this function represents a neural-network like structure (figure 2) where hidden
nodes are support patterns (the patterns with non-zero multiplierc, ).

3. Capacity Control

The LP machine used in experiments presented below implements expression (9).
Values for the parameter C and kernel parameters are given below. The question how
to choose C is discussed in (Cortes and Vapnik 1995).

The parameter C in the LP machine is equivalent to the quantity 1/C in a SV machine.
The LP machine has the scalar C on the term which represents the norm of w, the SV
machine on the term of the error function. This difference is only of a cosmetic nature
because only the weighting between the two terms is important to perform SRM.

4. Set-Reduction: Improving the Tightness of VC Bounds and Increasing the
Speed of Support Vector Machines and Related Algorithms

In (Cortes 1995) and (Scholkopf 1997) it is explained that the number of support
patterns found by a quadratic programming algorithm in a support vector machine is
only an upper bound on the number of necessary and sufficient (optimal) support
patterns. It is explained that the reason for this effect are linear dependencies between
support patterns in feature space.




The set-reduction (SR) algorithm allows to find the optimal number of support
patterns in a SV based classifier. The algorithm is applicable for most support vector
(kernel-) based algorithms like LP machines, SV machines etc..

The idea of the SR algorithm is to identify linear dependencies in a kernel based data
dependent hierarchy (a network structure as given in figure 2). A method to find linear
dependencies between patterns (which can be organised as rows in a matrix P) is to
calculate the rank of this matrix. The matrix of patterns will be called P

P{;:!xj

f

(where 'x, is the ;'th component of the /th pattern in the training set
iel.l jel.d). .

bl

Theorem 1: The rank of matrix £ expresses the number of necessary and sufficient
number of support patterns.

Proof: The proof is trivival. By definition the rank of a matrix gives the number of
linear dependent patterns (rows of ).

In the theorem above it has been assumed that patterns are accessible, such that a
matrix P can be build up. This is not the case if non-linear kernel functions are used
(e.g. in a RBF SV machine where patterns in feature space are of infinite
dimensionality). However a dot product between patterns in feature space is available
by the kernel function.

Theorem 2: The rank of a matrix M (M = <x;x>).1s equal to the rank of matrix P.
Proof: Given are / patterns x, 7 € 1../, then

I_‘xl 1(,(2 1x1—| [ < X, > <Xx,x > 0 <X,X >‘|
5. %, “xy . g dm.an il s ., |
o N L e
Ifxl ‘%, . 'xIJ L<x1,x;> Xy ¥ S e SELE, >J

Lets assume a linear dependency between two patterns: x, = L x,
Then row i of M is defined by: < x,,x, >< x,,x, > .<x, x, >
and row j of M is defined as: <x,,x, ><x,,x, >.<x,.x, >
Now row 7 can be rewritten by using x, = [ x
S B B, 3E BBk BB
L<x,x>U<x, x> U<x,.x,> N

Theorem 3: If Mercer Kernel functions are used instead of dot products in theorem 2
then the rank of M gives the number of necessary and sufficient support vectors.
Proof: The same as in theorem 2, but with K( , ) instead of <, >. MW

The SR algorithm is an implementation of theorem 3, it computes the rank and linear
dependencies of matrix M.

This allows to optimise LP machines, SV machines, and similar algorithms, after the
training phase. The linear dependencies between the rows in M are used to update the




multipliers ¢ such that linear dependent patterns vanish (hidden units in figure 2 are
removed). Let us image two rows in a matrix A/ which are linearly dependent , row & =

n rowg.

In the SR algorithm an update is performed such that:
multiplier(k) =n + multiplier(k).
multiplier(g) = 0;

The algorithm updates multipliers until it is impossible to increase the number of
multipliers with a value equal to zero.

In the SV machine it is not necessary to find linear combinations between patterns in
feature space (that is between y(x,) and y(x,)), but to find linear dependencies

between the patterns y,v(x,) and y,y(x,). If each pattern x,,k € 1../ is replaced by

the product (yx xx ) (or any other kind of pattern required) before running the RS
algorithm this kind of linear dependencies in kernel space can be removed in a similar
way.

Bounds from VC theory, e.g. Vapnik’s leave one out bound (Vapnik 1995) is a
function of the number of support patterns which has been found by an algorithms. VC
bound are upper bounds and known to be loose bounds. The RS algorithm provides a
way to speedup and optimise SV based learning machines, compute tighter VC
bounds, and therefore to improve the method of model selection given by VC theory.

5. Experiments

3.1 Empirical and Structural Risk Minimisation with an LP machine using
Gaussian Patterns;

Description: The patterns from this benchmark were drawn from two gaussian
generators and are overlapping. Covariance, 6, and mean, L, of the two classes are
given by:
0113 0 [15]. 01866 02 [07]
‘z‘ 0 0.116"“"{1.7 ’ e,:, 02 0_43i’“2 Los]

Examples (a) to (h) show classification results for the LP-kernel perceptron, the norm
of the weight vector was not minimised (C = 0), so the margin in feature space is
small. Plots for RBF-LP machines for different values of sigma are given.

Decision space plots are given, potential plots show the relative confidence. The white
area in a potential plot shows that the LP machine predicts with high confidence one
class, the black area shows high-confidence predictions for the other class. It is known
that the distance from a plane in feature space (the potential) can be directly considered
as a measure of confidence.

In examples (i) to (1) it is demonstrated how the capacity can be controlled by choosing
constant C such that /arge margin classifiers are obtained.




(a) C =0, sigma = 0.05, RBF kernel, (ERM)
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decision space plot potential plot

(b) C =0, sigma = 0.075, RBF kernel, (ERM)
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decision space plot potential plot

(c) C=0, sigma=0.1, RBF kernel, (ERM)
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decision space plot potential plot
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(d) C =0, sigma = 1. RBF kernel, (ERM)
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decision space plot potential plot
(e) C=0, sigma =2, RBF kernel, (ERM)
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decision space plot potential plot
(f) C=0. sigma = 3. RBF kernel, (ERM)
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decision space plot potential plot




(g) C=0, sigma =4, RBF kernel, (ERM)
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decision space plot potential plot

(h) C=0, sigma =5, RBF kernel, (ERM)
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decision space plot potential plot

(7 C= 0.1, sigma =1 , RBF kernel, (SRM)
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decision space plot potential plot




(j) C=1, sigma =1 , RBF kernel, (SRM)
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decision space plot potential plot

(k) C =10, sigma =1 , RBF kernel, (SRM)
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decision space plot potential plot

Discussion: In cases (a) to (h), the constant C is set to zero. In this cases the LP
machine does achieve a high accuracy, most patterns are correctly classified. Note also
that the expected generalisation ability is low, the shape of the two gaussian pattern-
generators is not represented by the decision (potential-) function. If parameter C is set
to zero the LP machine ignores capacity control and is therefore a LP kernel-
perceptron which implements the empirical risk minimisation (ERM) principle (Vapnik
1995). To put it into other words, in examples (i) to (h) in kernel space the margin
between the two classes is small.

In cases (i) to (1) the capacity of the LP machine has been controlled by choosing
values for C unequal to zero (this implies SRM). The plots illustrate that smooth'
functions which generalise well are learned, the complexity of the constructed learning

! Recently it was proven by Beliczynski and Lukianiuk (Beliczynski and Lukianiuk. 1998) that it is
equivalent to:

- remove high-frequceny components from a (classification-, regression-) function, or to

- minimise the norm of the weight vector .




machine (the VC dimension) is influenced (regularised) by the choice of C. So in these
cases a classifier with a large margin (-distribution) has been constructed.

5.2 Sonar: “Real World” Pattern Classification in the Computer Vision Domain
by LP Machines

Description: The benchmark stems from the Carnegie Mellon University Al-
repository and consists of 208 patterns, each pattern is 60 dimensional. The patterns
are split in 104 training-set patterns and 104 test-set patterns.

In the experiments a RBF-kernel LP machine has classified the training patterns, then
the test-set has been classified to estimate the generalisation ability empirically.

sigma £ €t €rst acc
0.6 0 0/0 0/12 88.5
0.6 0.025 0/0 4/2 942
0.6 0.05 0/0 4/2 94.2
0.6 0.1 0/0 4/2 94.2
0.6 0.3 0/0 4/2 94.2
0.6 1 7/18 11/11 78.8

Table 1: Error rates on the sonar data using different values for C. The constant eu,
denotes training error, e;; denotes errors on the test-set. The error is given in a format
where the type 1 error is followed by a slash and the type 2 error. The accuracy on the
test-set is additionally given in percent by acc.

The performance of a RBF SV machine on the same data is given in the Appendix, The
best accuracy of the SV machine on this data test-set lies at 93%.

Discussion: The table shows that, if C is set to zero, pure empirical risk minimisation
(ERM) (Vapnik 1995) is performed. As expected the performance on the test-set is
low. Increasing C does increase the generalisation performance up to a point where
many training errors Occur.

Compared to results with a neural network given in (Gorman and Sejnowsky 1988) the
LP machine has found significantly better classifiers; the best neural networks was able
to achieve an accuracy of 90% on the test-set.

The experiment shows that the LP machine’s large margin (of the linear classifier in
kernel “feature” space) does increase the performance significantly. The large margin is
obtained by setting the constant C to a non-zero value.

Compared to the SV machine a slightly higher generalisation ability has been obtained.
Further experimental studies will show if the L1-large-margin does generally give a
higher generalisation performance, or if this effect occurs only under some special
circumstances. In (Schapire, Bartlett 1997) it has been shown in another context that
L1-large-margin classifiers (combined by the AdaBoost algorithm) have the ability to
make very good predictions.




5.3 Finding the Optimal Number of Support Vectors in a SV machine by the SR
algorithm:

Description: A SV machine using kernel function (13) has been trained on the two
dimensional gaussian data (as described in section 5.1). The patterns from this training
set are highly overlapping. Ten SV machines were constructed, for each model the
number of support vectors found by the SV machine (457 (SVM)) is given.

dimensionality of | kernel parameter | C | SV (SVM) | #SV(SVM) #SV RS
the feature space (€) >Je-12
3 1 10 . 150 30 3
9 2 10 150 87 4
27 3 10 150 60 10
81 4 10 150 53 15
243 S 10 150 62 21
729 6 10 150 50 28
2187 7 10 150 40 3
6561 8 10 150 38 42
196383 9 10 150 33 46
50949 10 10 150 31 40

Table 2: The number of support vectors for ten polynomial SV machines. The
dimensionality of the feature space is given by expression 3° . In each case the constant
C was set to 10. Due to the limited accuracy of the quadratic optimiser” the SV
machine did learn many multipliers with a very small value. For this reason the number
of multipliers (that is the number of support patterns) which is greater than le-12 is
given. Finally the optimal number of support patterns determined by the RS algorithm
1s given (#SV RS).

Discussion: The number of real support patterns determined by the RS algorithm is
much more realistic than the one determined by the SV machine. In all cases the
number of real support patters lies below the dimensionality of the feature space. The
subspace spanned by the real support patterns is therefore a subspace of the feature
space. With an increase in the kernel parameter { the dimensionality of this subspace
is increased.

Using the number of real support patterns, that is the rank of the hidden unit space, the
capacity (roughly speaken the VC dimension) of the learning machine can be expressed
more accurate. Vapnik’s leave one out bound for the expected generalisation ability is
a function of the number of support patterns.

It has been observed that the number support vectors found by a SV machine does not
give expressive information about the rank of the hidden unit space and thus of the
capacity of the learning machine (Friell and Harrison 1998).

= In this experiment the function qp from the MATLAB optimisation toolbox used. The effect has
been also been observed with other routines for quadratic programming,




By reducing the number of support vectors, that is the number of hidden units in figure
2, the speed of the prediction mode of a SV algorithm is improved significantly.

6. Conclusion

The LP machine is an elegant and very fast algorithm for pattern recognition and
regression estimation. In the preliminary experiments a high performance was obtained,
which is at least as good as the one of the SV machine.

A comparison study with many training-sets and other learning machines will be
undertaken in the near future to benchmark and analyse the new and promising
algorithms.

Both the LP machine and SV machine capture an intrinsic mechanism of regularisation
which does not depend on the hypothesis classes defined by the kernel operator; this is
the way to measure the norm of w or ¢.. This can be considered as a kind of prior in
using both learning machines.

The SR algorithm determines the number of necessary and sufficient support patterns
in SV machines and related algorithms. This can be considered as removing
redundancies, a compression scheme, or as a kind of non-linear component analysis’.
The speed of the SV machine can be improved by magnitudes using the SR algorithm
because the computational complexity of a prediction is directly related to the number
of support patterns (propagating a pattern through a network as given in figure 2
where the hidden nodes are support patterns.). VC bounds are tighter if used with the
optimal number of support patterns. Therefore the quality of the model selection
procedure given by VC theory is safer and more reliable. Compared to heuristics which
aim to find the optimal number of support vectors the SR algorithm is much faster in
finding the true support patterns; it allows to update multipliers directly by linear
dependencies. In existing approaches the SV machine must be trained on support
patterns found by another SV machine.
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Appendix 1:
Table 2: SV machine performance on Sonar data; RBF kernel:

The constant sigma denotes the kernel parameter, C the capacity constant; acc &rn
does give the training accuracy and acc #st the accuracy on the test-set (in percent).

sigma  C acc trn acc ist  margin

0.2 1le+010 100 50 0.1968
0.2 1le+008 100 50 0.1968
0.2 1e+006 100 50 0.1968
0.2 1e+004 100 50 0.1969
0.2 1000 100 50 0.19869
0.2 500 100 50 0.197
0.2 250 100 30 0.1972
0.2 100 100 50 0.1978
0.2 10 100 50 0.2064
0.2 1 100 47.12 0.2781
0.4 1e+010 100 77.88 0.2016
0.4 1e+008 100 77.88 0.2016
0.4 1e+006 100 77.88 0.2016
0.4 1e+004 100 77.88 0.2016
0.4 1000 100 77.88 0.2017
0.4 500 100 77.88 0.2018
0.4 250 100 77.88 0.202
0.4 100 100 77.88 0.2026
0.4 10 100 76.92 0.2111
0.4 1 100 Tl. 15 02822
0.6 1le+010 100 87.5 0.2047
0.6 1e+008 100 87.5 0.2047
0.6 1le+006 100 87.5 0.2047
0.6 1le+004 100 87.5 0.2047
0.6 ~1000 100 87.5 0.2048
0.6 500 100 87.5 0.2049
0.8 250 100 87.3 0.2051
0.6 100 100 87.5 0.2057
0.6 10 100 87.5 0.21459
0.6 1 100 82.69 0.2878
0.8 1e+010 100 82,33 B0.1965
0.8 1e+008 100 92.3L U..1965
0.8 1le+006 100 92 3l U1865
0.8 1le+004 100 92.31 0.1965
0.8 1000 100 92.31 0.1967
0.8 500 100 92.31 0.1968
0.8 250 100 92:.3L 0.1971
0.8 100 100 92.3L 08.197%9
08 10 100 82.31 0.2092
0.8 1 99.04 83.65 0.289

1 1e+010 100 93:27 D.1781

1 1e+008 100 9327 6.1781

1 1e+006 100 93.27 0.1781

1 1e+004 100 93.27 0.1782

1 1000 100 93.27 0.1783

1 500 100 93.27 0.1785%

1 250 100 93.27 0.1789

1 100 100 92.31 818

1 10 100 91.35 0.1947

1 1 99.04 86.54 0.2843
1.2 1e+010 100 93.27 0.1565
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