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Abstract  

Our novel study examines landscape biogeochemical evolution following deglaciation and 

permafrost change in Svalbard by looking at the productivity of various micro-catchments 

existing within one watershed. It also sheds light on how moraine, talus and soil 

environments contribute to solute export from the entire watershed into the downstream 

marine ecosystem.  

We find that solute dynamics in different micro-catchments are sensitive to abiotic factors 

such as runoff volume, water temperature, geology, geomorphological controls upon 

hydrological flowpaths and landscape evolution following sea level and glacial changes. 

Biotic factors influence the anionic composition of runoff due to the importance of microbial 

SO4
2- and NO3

- production. The legacy of glaciation and its impact upon sea level changes is 

shown to influence local hydrochemistry, allowing Cl-

 

 to be used as a tracer of thawing 

permafrost that has marine origins. We show that a �glacial signal� dominates solute export 

from the watershed. Therefore, although climatically driven change in the proglacial area 

has an influence on local ecosystems, the biogeochemical response of the entire watershed 

is dominated by glacially derived products of rapid chemical weathering. Consequently, only 

the study of micro-catchments existing within watersheds can uncover the landscape 

response to contemporary climate change. 

Keywords: Bayelva; Svalbard; biogeochemistry; nitrification; permafrost degradation, 

deglaciation; microbially mediated weathering 

 

1. Introduction 

It is expected that the change in permafrost thickness that is following climate warming will 

have an effect on the hydrology and biogeochemistry of Arctic tundra streams (e.g. Rouse et 

al., 1997; Hobbie et al., 1999; Smith et al., 2005; Prowse et al., 2006; Zarnetske et al., 2007; 

Schuur et al., 2009). Furthermore, an increase in export of organic matter, major ions and 

inorganic nutrients in response to permafrost thinning is also expected to affect the 



This article is protected by copyright. All rights reserved. 

productivity of the Arctic Ocean (Tye and Heaton 2007; Frey and McClelland 2009), although 

the magnitude of this influence is unclear (Le Fouest et al., 2013; Tank et al., 2012). 

Therefore, numerous studies have been devoted to the dynamics of the permafrost table 

and seasonally thawing active layer (hereafter AL), which is especially susceptible to any 

changes in air temperatures (Ta). Although annual variations in the AL thickness strongly 

depend on the regional setting and seasonal weather conditions (Rachlewicz and 

SǌĐǌƵĐŝŷƐŬŝ, 2008), interannual variations respond to long term climatic changes that have 

already been observed in many parts of the Arctic (ACIA 2005; Etzelmüller et al., 2011). For 

example, studies from the Bayelva watershed in Svalbard (the location of the present study) 

have documented up to a 50% increase in AL depth over the last decade (e.g. Roth and Boike 

2001; Boike 2009). This coincided with an increase in the AL thickness in other locations in 

Svalbard as well as in the Alaskan, Canadian and Russian Arctic (IPCC 2007), demonstrating 

the near-global trend in AL deepening and permafrost warming. Thus, one could expect an 

extensive research literature investigating the changes in physical, hydrological and 

biogeochemical processes in High Arctic environments that follow such AL/permafrost 

transformation. However, although research on soil-water interactions in Svalbard�s tundra 

and AL have received some attention (Pecher 1994; Stutter and Billet 2003; Tye and Heaton 

2007), little or no attention has been given to other important permafrost sediments, 

namely talus slopes and moraines (e.g. Cooper et al., 2002). This is surprising considering 

that most of these reactive stores of physically comminuted rock debris are commonplace in 

Svalbard�s mountainous land surface. Therefore understanding landscape biogeochemical 

change here requires the integration of process studies from a range of smaller micro-

catchments in glacial and proglacial environments where these sedimentary habitats are 

present. Such micro-catchments are most likely very chemically productive and can 

therefore influence the downstream evolution of glacial runoff. For example, work from 

Alpine or temperate glacier forefields has already shown us that the high rock-water contact 

and longer water residence times they afford, provide an ideal environment for microbially 

mediated chemical weathering reactions (e.g. Williams et al., 2006; von Rohr 2007). 

Additionally, young and unstable sediments in the High Arctic often lack the plants that 

might otherwise assimilate nutrients produced by chemical weathering. Hence, it can be 

expected that the sediments nearer changing glaciers might be far more capable of driving 

changes in solute acquisition and export from the landscape than the stable, vegetated and 
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up to 104

Hence, the two objectives of this study were firstly to examine landscape biogeochemical 

evolution following deglaciation and permafrost change in Svalbard, and secondly to assess 

how various micro-catchments contribute to solute export from the entire watershed into 

the downstream marine ecosystem. 

 year old tundra surfaces that lie beyond Little Ice Age moraines. However, the 

prediction of changes in solute export to downstream aquatic and marine ecosystems can 

be challenging when we consider that studies characterizing spatial and temporal patterns 

in hydro-biogeochemical coupling across the High Arctic landscape are also lacking. For 

example, no studies in Svalbard have yet been devoted to the comparison of ion yields 

exported separately from tundra, talus and moraine environments. Nor have their ion yields 

been compared to those exported from whole catchments. This lack of important 

information prevents the early detection of change, because landscape signals might be 

masked in the first instance by dilution from the large volumes of glacial meltwater 

produced in the early stages of deglaciation (e.g. Nowak-Zwierz 2013; Nowak and Hodson In 

Press). 

Therefore, to address the first objective we focus on the spatial and temporal signal of ion 

production from various micro-catchments that represent young moraines, talus and soils 

within a High Arctic, partially glacierized watershed. Most emphasis is given to the 

biogeochemical processes at end of the ablation season which, we think, are especially 

interesting in the light of the recent findings by Nowak and Hodson (2013) in the same study 

site.  There, it was shown that delayed water flowpaths through the AL at the end of 

summer are an increasingly conspicuous feature of the entire watershed�s hydrograph over 

the last decade. To address the second objective we compare the productivity of the micro-

catchments, defined as solute yields, to solute delivery by Bayelva (hereafter BAY), which 

drains the entire watershed into an Arctic fjord (Kongsfjorden).  
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2. Location 

2.1 The watershed (BAY) 

The study was conducted in the pro-glacial area of Bayelva watershed in Svalbard (Fig. 1). 

Detailed description of the whole watershed is given in Nowak and Hodson (2013; in Press), 

whilst the pro-glacial area is described in Westermann et al., (2010). In brief, the 32km2

2.2 The Microcatchments 

 

catchment is circa 50% covered by two cold-based valley glaciers: Austre and Vestre 

Brøggerbreen. Their meltwaters are routed through quaternary moraines onto a sandur (the 

floodplain formed by glaciofluvial sedimentation), where they are joined by various 

tributaries from neighbouring talus and soil micro-catchments to eventually be evacuated as 

Bayelva into Kongsfjorden. The geology of the watershed consists of red sandstones, 

conglomerates, quartzite, phyllites and carbonates in the southern and eastern part and 

further tertiary sandstone, shale, limestone and coal seams in the northern and western 

part (Fig. 1). Additionally, the northern part of the watershed shows evidence of being 

deposited in shallow marine areas (Orvin 1934; Hjelle 1993; Bruland and Hagen 2002). The 

catchment is located in the continuous permafrost zone with thicknesses ranging from 100 

m (coastal region) to 500 m (mountainous region). During summer, its uppermost part 

thaws creating an AL that has been increasing significantly in recent years, and ranges from 

0.5 up to 1.5m (see Roth and Boike 2001; Boike 2009; Westermann et al., 2010; 

Westermann et al. 2011). The annual mean (catch corrected) precipitation in the catchment 

during the last 35 years was just under 540 mm with the mean June-October rainfall of 

about 157 mm (Nowak and Hodson 2013).  

Four study sites selected to represent young moraine (MM), talus (TM) and two soil micro-

catchments (SM1 and SM2) were monitored during 2009 and 2010 ablation seasons (Fig. 1; 

Table 1).  

2.1.1 Moraine micro-catchment (MM) 

The MM site was created in August 2009 when the main meltwater flowpath from Austre 

Brøggerbreen was changed due to glacier retreat (Nowak and Hodson, In Press). In 

consequence, a circa 1 km river channel draining about 74% of glacial meltwaters was 
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abandoned (Fig. 2) and a small micro-catchment was created. It consists of Austre 

Brøggerbreen�s ice-cored lateral moraine and the western slopes of Zeppelin mountain that 

includes a small sea bird breeding colony on the cliffs. The geology of MM comprised of 

clastic sedimentary rocks, evaporites and carbonates as well as poorly sorted rock debris 

such as red sandstone, quartzite, phyllite, mica and quartz-carbonate schists delivered by 

glacial meltwaters. No vegetation cover was recorded.   

2.1.2 Talus micro-catchment (TM) 

Similar to MM, TM consisted of poorly sorted rock debris that included carbonate rocks, 

evaporates and clastic sedimentary rocks. However, small patches of vegetation including 

mosses, Dryas, Salix and Carex communities were recorded in the vicinity of the stream (Fig. 

3). Additionally, the southern part of the micro-catchment was occupied by a rock glacier 

and northern part was covered by patterned ground that indicated frost heaving in the area. 

2.1.3 Soil micro-catchments (SM1, SM2)  

The two soil micro-catchments SM1 and SM2 were selected on the basis of differences in 

geology, vegetation cover and the type of the river bed. The geology of the former consisted 

of chert, siliceous shale, sandstone, limestone, sedimentary rocks and coal seams. The 

micro-catchment was fully covered by a mixture of vegetation that included Dryas, Salix and 

Carex communities as well as variety of mosses also growing on the partially sandy bed of 

the stream. The geology of the SM2 additionally consisted of carbonate rocks and 

evaporates located at Schetelig mountain slopes. In contrast to SM1, SM2 was only partially 

covered by vegetation and had a rocky stream bed that was dominated by algae (Fig. 4).  

 

3. Methods 

3.1 Meteorological conditions 

Meteorological data for Ny-Ålesund area has been downloaded from eklima.met.no (2013) 

for weather station (no. 99910) located at 78.923N, 11.933E at 8 m a.s.l. Precipitation types 

were deduced from Ta and classified as snow (when Ta<0oC) or rain (when Ta>0oC). 

Measured precipitation data were then corrected for catch by the value of 1.15 (rain) and 



This article is protected by copyright. All rights reserved. 

1.65 (snow) after Killingtveit (2004). Elevation gradient correction of 19% per 100m was 

used to further correct the data for elevation change. Detailed description of the Bayelva 

catchment hydrology and meteorological conditions between 1974-2010 is presented in 

Nowak and Hodson (2013). 

3.2 Hydrological monitoring  

Campbell Scientific CR800 and CR1000 data loggers were used to monitor water stage, 

electrical conductivity and water temperature at sampling sites during both ablation 

seasons (see Table 2 and Figure 1 for details). Data were collected every 30 sec, averaged 

and then recorded every 15 min. The salt dilution method (Moore 2005) was performed 

after sampling at all four sites to estimate discharge rating curves. They were then used 

along with water stage to calculate hourly discharge at every micro-catchment with errors 

of ca. 10% (Hodson 1994). In order to collect representative water samples from the 

moraine, talus and tundra environments, each hydrological monitoring station and water 

sampling point was located at the micro-catchment boundary, where water was draining 

the entire area of interest (see Figure 1 and Table 1). 

3.3 Water sampling 

In 2009 sampling was undertaken from the beginning of the ablation season when the 

streams were opening in the melting snowpack, until the cessation of flow. In 2010 the 

sampling commenced one week after the beginning of snowpack runoff and when most of 

the snowpack had melted at both SM sites. Water samples were collected with a pre-rinsed 

250 mL polyethylene bottle and filtered within 12 hrs through a 0.45 ʅŵ Whatman cellulose 

nitrate filter papers using a Nalgene filtration unit. After filtration, samples were stored 

without air at +4o

3.4 Laboratory analyses 

C in 60 mL sterile, polypropylene bottles for no longer than 3 months.  No 

contamination was detected in deionized water blanks collected and examined along with 

other streamwater samples.  A comparison of hydrological monitoring and water sampling 

at every site during the 2009 and 2010 field campaigns is presented in Table 2. 

Sample pH was measured directly after collection with a daily calibrated handheld pH 

meter. The precision of the meter was ± 0.01 pH unit and the electrode efficiency was 
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always above 95%. Concentrations of major ions such as Ca2+, Mg2+, Na+, K+, Cl-, SO4
2- and 

nutrients such as NH4
+, NO3

-, PO4
3- were determined by ion chromatography with the use of 

a Dionex IC90. The detection limit of all analyses was 0.001 mg L-1 and the precision errors 

were below 5%. Dissolved Si was determined by wet chemistry using a Skalar automatic 

nutrient analyser employing the molybdenum blue method. The precision errors of all Si 

analyses were also below 5%. Total alkalinity (HCO3
-

 

) was calculated from ion charge 

balance after Wolf-Gladrow et al., (2007) when all the ions were analysed. 

3.5 Solute provenance and yields 

Ion concentrations were separated into marine and crustally derived components (hereafter 

ssX and *X, where X is the solute of interest) after assuming that Cl- was of marine (sea salt) 

origin. Therefore, ssX were calculated after Holland (1978) from standard marine ratios of 

ions to Cl- in seawater. Then, *X were calculated by the subtraction of ssX from their total 

concentration. Lastly, the sum of rock and microbially produced SO4
2- (hereafter *SO4

2-) was 

calculated after subtraction of the sum of ssSO4
2- and atmospheric SO4

2- from the total SO4
2- 

concentrations. The sum of ssSO4
2- and atmospheric SO4

2- was calculated using the average 

snowpack SO4
2-/Cl-

Ion yields were calculated according to Hodson et al., (2005) by summing the product of 

daily total stream discharge and ion concentration pairs, before dividing by the individual 

micro-catchment area. Since in some cases sampling was not undertaken every day, missing 

daily concentrations were estimated by either linear interpolation (when samples were 

collected every second day) or by best fit regression models of ion concentration and the 

stream discharge (when samples were collected every third and fourth day).  

 ratio from snow samples collected at each micro-catchment (data not 

shown). 

 

3.6 Stable isotope analyses 

To compare microbially-mediated dynamics of nitrate among the micro-catchments, 

samples from 2010 ǁĞƌĞ ĂůƐŽ ĂŶĂůǇƐĞĚ ĨŽƌ ɷ15N ĂŶĚ ɷ18O in NO3
- at the School of 

Environmental Sciences, University of East Anglia using the bacterial denitrifier method 

following Kaiser et al., (2007). This allows determination of ɷ15N ĂŶĚ ɷ18O with a precision of 
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0.2� for ɷ15N and 0.5� ĨŽƌ ɷ18O in samples containing more than 10 nmol L-1 of NO3
-

 

. Full 

details are reported by Ansari et al., (2013), who discuss a set of samples from local 

snowpack and glaciers that were collected and analysed at the same time as the present 

study.  

4. Results 

4.1 Meteorological conditions 

The ablation season in 2009 was colder and wetter than 2010. Therefore, mean Ta during 

summer of 2009 were lower by between 1 and 1.5o

4.2 Solute concentrations 

C in May, June and October (when runoff 

was still occurring). Rainfall was the most dominant form of summer precipitation during 

both years however, nearly three times more rainfall was recorded during 2009.  

Additionally, in 2010, rainfall was mostly confined to October, which received nearly 50% of 

the total wet precipitation recorded during summer. Snowfall was recorded only in May and 

October during both ablation seasons. In May it accounted for 17% (2009) and 0.2% (2010) 

of the total precipitation, while in October for 66% (2009) and 16% (2010).  

The time series of key solutes recorded during the two observation periods at each micro-

catchment are presented in Fig. 5. A full description of the same solutes recorded at BAY 

between 1991 and 2010 is given in Nowak-Zwierz 2013, and is used here for comparative 

purposes (years 2009 and 2010). 

Moraine micro-catchment 

A sudden increase in concentrations of solutes commonly associated with carbonate 

weathering (namely *Ca2++*Mg2+ and HCO3
-) was recorded around Day 217 (2009) and Day 

207 (2010), which occurred when water discharge decreased markedly (see Fig. 5a). 

Interestingly, after those days, acquisition of *Ca2++*Mg2+ did not follow the pattern in 

HCO3
- acquisition. Instead, changes in *Ca2++*Mg2+ were accompanied by an increase in 

solutes associated with silicate weathering (namely Si, and *Na++*K+; see Fig. 5b) as well as 

*SO4
2- (Fig. 5c). The concentrations of *Na++*K+ and NO3

- reached the highest levels 
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recorded amongst all of the micro-catchments. NH4
+ was recorded few times during July 

2010 and rangeĚ ĨƌŽŵ ϯ ƚŽ ϭϵ ʅŐ L-1. No PO4
3-

Talus micro-catchment  

 was detected. Lastly, pH of the stream varied 

during both ablation seasons between 7.5 and 8.0 (Fig. 6). 

Although the concentrations of ions recorded at TM were different to those recorded at 

MM, the behaviour of solute acquisition was similar. The same sudden increase in ion 

concentrations on Day 217 (2009) and 207 (2010) was also observed. The exceptions were 

HCO3
- and *Na++*K+, whose concentrations increases were much less pronounced and even 

declined in the case of HCO3
-. Additionally, concentrations of *Ca2++*Mg2+ and *SO4

2- were 

amongst the highest recorded at all micro-catchments. NH4
+ was only recorded a few times 

during July 2010 and ranged from 3 to 25 ʅŐ L-1. Similarly to MM, no PO4
3-

Soil micro-catchments 

 was detected. pH 

varied between 7.3 and 8.2. 

In contrast to MM and TM, concentrations of all ions recorded at SM1 and SM2 sites were 

characterized by a steady increase during the ablation season without any sudden changes 

as described above (the exception was Si in 2009 which will be discussed below). No PO4
3- 

was detected at either sites and pH values (were similar and varied between 6.1 and 8.3 

(SM1) and 7.7 � 8.1 (SM2). Low pH values (< 7.7) at SM1, representing snowmelt, were 

recorded at the end of June 2009. Despite the similarities in temporal pattern of solute 

acquisition, differences in the solute concentrations were observed between the two soil 

micro-catchments. Therefore, concentrations of ions at SM1 were markedly higher than at 

SM2. For example, the concentrations of Si in 2010 were the highest observed in all of the 

micro-catchments. Also, a marked increase in Cl- concentrations distinguished SM1 from all 

other micro-catchments. Such a marked and steady increase in Cl- was a surprise to us and 

will be explored in detail later in the paper. Additionally, no NH4
+ was recorded at SM1 

while at SM2, similarly to TM and MM, NH4
+ was recorded a few times during July 2010 and 

varied between 3 and 1ϵ ʅŐ L-1

 

.  
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4.3 Solute yields 

A comparison of solute yields from all micro-catchments and from the entire watershed 

(BAY) is presented in Table 3. Data for BAY was taken from Nowak and Hodson (In Press) 

and are used here as a basis for establishing the efficacy of solute export from the micro-

catchments. The general characteristics in ion yields at all sites were similar. Therefore, 

HCO3
-,*Ca2+ and SO4

2- showed the largest yields and Si and NO3
- the lowest (NH4

+

 

 is not 

presented). However, the magnitude of ion yields varied among the sites for reasons that 

are explored in the discussion. Variations between the years were also apparent, for 

example due to differences in snowmelt capture during our monitoring (for SM1) and the 

length of monitoring period (for MM).  

4.4 Stable isotopes 

Variations in stable isotopes (expressed here as ɷ15N ĂŶĚ ɷ18O values relative to 

atmospheric-N2 and Vienna Standard Mean Ocean Water respectively) are presented in Fig. 

7 and 8.  A decreasing trend in ɷ18O was observed at SM1 which was neither observed at TM 

nor accompanied by any trend in ɷ15N (at either site, see Fig. 7). Fig. 8 shows that the ɷ18O 

values at this site were far lower than those observed in snowpack of this region, and in the 

BAY during early summer (the only available data being from before Day 186, when 

snowmelt caused high concentrations in the glacial outflow). The values at SM1 were also 

marginally lower than those from the other micro-catchments, although data was sparse at 

SM2 and MM.  Interestingly, the ɷ18O values from SM1 lay below the predicted range for 

microbial NO3
- (Fig. 8) and estimated under the assumption that one atom of atmospheric 

O2 (ɷ 18O = 23.5 �) and two atoms of water oxygen (range used here: -15 to -6.8 �) are 

assumed to oxidise the N substrate during nitrification (Casciotti et al., 2002). FŽƌ ɷ15N, the 

data was between -0.6 and + 6.0 � at all sites except the BAY, where the range was greater 

(-6.0 to 3.2 �). Therefore the ɷ15N values in the micro-catchments compare favourably to 

the ranŐĞ ŽĨ ɷ15N for soil organic matter and ammonium recorded by previous research in 

the area and used to define the range of microbial NO3
-

 

 in Fig. 8. 
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5. Discussion 

5.1 Landscape biogeochemical evolution following deglaciation and permafrost change in 

Svalbard  

In this section we focus on comparing solute acquisition and their transfer dynamics in the 

different micro-catchments using chemical weathering reactions that are already widely 

described in the literature (e.g. Tranter et al. 1993; Tranter et al. 1996; Anderson et al. 1997; 

Hodgkins et al. 1998; Brown 2002; Hodson et al. 2005). To establish the broad categories of 

chemical weathering processes we employ the statistical approach described by Nowak and 

Hodson (In Press), Nowak-Zwierz 2013, and Wadham et al., (2010). In so doing, a set of 

regression models between the solutes was produced and presented in Table 4. Scatterplots 

in Fig. 9 show the data used to define those models as well as the corresponding 

associations for main glacial meltwater channel (BAY).  

5.1.1 Temporal and spatial changes in solute acquisition 

Moraine micro-catchment 

Two groups: early (pre-snowmelt, before days 217 in 2009 and 211 in 2010) and late season 

(post-snowmelt, after the above days) were distinguishable in the MM dataset (Fig. 5). 

Meltwater chemistry during the early season was dominated by carbonate carbonation 

(similarly to BAY). However, regression models presented in Table 4 indicated that other 

processes of ion acquisition were also operating in the environment. Those were most likely 

dissolution of gypsum/anhydrite as well as dissolution of carbonate and silicate minerals 

coupled to sulphide oxidation. Moreover, it is probable that weathering of dust supplied 

from the melting snowpack contributed to the initial ion concentration (see Tranter et al. 

1996). 

As the season progressed a marked change in solute acquisition was observed. Carbonate 

carbonation was no longer a major process supplying the ions. Instead, dissolution of 

gypsum was much more pronounced and accompanied by silicate dissolution coupled to 

sulphide oxidation (see also Fig 5a,b). A further interesting artefact of the silicate mineral 

weathering was revealed by Model 8 (Table 4), where increase in slope during the late 

season indicated additional source of *K+. We interpret this as a sign of K-feldspar 
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weathering in the ice cored moraines which became an increasingly important source of 

base flow, due largely to the development of their active layer and the demise of the snow 

pack. A distinct feature of the moraines was the presence of fine, comminuted red 

sandstones transported down glacier from the southern part of the watershed. This feature 

was not present in any of the other micro-catchments and thus most likely explains why the 

concentrations of *K+ were greatest here. Lastly, (unlike in BAY) Models 6 and 7 (Table 4) 

suggested that NO3
-

Talus micro-catchment 

 production was concomitant with sulphide oxidation and silicate 

weathering. A case is therefore made for nitrification in the discussion below, when the 

isotope data are examined. 

Samples collected at TM were also divided into early and late season groups following the 

same justification as for MM.  However, in contrast to MM and BAY, during the early season, 

carbonate carbonation was much less pronounced and the higher proportion of ions was 

also supplied by gypsum/anhydrite dissolution accompanied by a weak signal from silicate 

weathering. Interestingly, Fig. 5a,c clearly shows a distinct switch in chemical weathering 

between early and late seasons when ions were no longer acquired by carbonate 

carbonation at all, and the major reaction was gypsum/anhydrite dissolution. Considering 

the similarity in geological settings of both TM and MM, such a change in ion acquisition 

between those sites may be the result of different geomorphological characteristics (i.e. the 

presence of rock glacier and patterned ground at TM) and/or landscape maturity. 

Furthermore, Model 7 and Fig. 9 indicated more pronounced nitrification than at MM, also 

resulting in greater nitrate flux (2009). 

Soil micro-catchments 

In contrast to both MM and TM, no marked change in solute concentrations were recorded 

on Days 217 (2009) and 211 (2010) at SM1 and SM2. Instead a steady increase of ions was 

captured from almost the beginning until the end of ablation seasons. In 2010, this was a 

consequence of post-snowmelt sampling and therefore, the results demonstrate only the 

chemistry typical of late season. However, sampling at SM1 in 2009 was undertaken 

throughout the whole ablation season, so the lack of the sudden transition in solute 

acquisition observed at TM and MM requires further explanation. We believe this was most 
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likely related to the influences of runoff regime, geomorphology and biological activity. For 

example, in contrast to other sites, the SM1 stream collects water only very slowly from the 

surrounding low relief hill slopes. Consequently, water slowly draining through tundra soils 

caused increased the residence time and therefore enhanced solute acquisition for much of 

the observation period. Field observations showed that SM1 had the highest soil moisture 

(data not shown) of all the micro-catchments, with many fully saturated, expansive areas 

near the channel that maintained water saturation well into August (Fig. 4). 

A decline in Si concentrations around Day 200 in 2009 coincided with a significant drop in 

concentrations of NO3
-, a fall in water discharge (to 6x10-4 m3 sec-1) and an increase in water 

temperature to above 7o

The processes of ion acquisition also differed between SM1 and SM2 (Table 4, Fig. 5 and 9). 

At SM1, the main reaction supplying ions was calcite carbonation, whilst carbonation of 

dolomite also occurred at SM2, reflecting the geological heterogeneity of the watershed. 

Furthermore, the difference was also noticeable in the intensity of sulphide oxidation that 

was accompanied by almost stoichiometric silicate weathering (uncharacteristic for glacial 

meltwaters, e.g. at BAY; see Hodson et al., 2002). Both sulphide oxidation and silicate 

weathering were more pronounced at SM2 according to the slope values of regression 

Model 9 (Table 4), in spite of lower concentrations than at SM1.  

C (data not shown). We believe this was linked to a diatom bloom 

at SM1 that was not observed at all the other micro-catchments where faster-flowing 

drainage and lower water temperatures were unlikely to support such a phenomenon. After 

recovery from uptake by diatoms, temporal changes in Si acquisition recorded at SM1 

mimicked those at TM and MM and thus reflected the transition from the early to late 

season.  

Lastly, a marked late season increase in Cl- concentrations during both ablation seasons was 

unique to SM1. This cannot be attributed to the elution of snow because the snowpack 

retreated from this part of the catchment first and there were no persistent snowbanks. 

Marine aerosol inputs of Cl- caused by high winds and evaporation effects were not 

responsible for such increase because these processes should have influenced streams 

across the entire proglacial area. Nor could the Cl- inputs be attributed to rock weathering, 

as the geological conditions are not favourable and simple laboratory dissolution reactions 
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using 10 g L-1 suspensions of freshly milled rock in deionised water showed no significant 

increase in Cl- concentrations with time (Hodson, Unpublished Data). It should be noted 

however, that SM1 is the only micro-catchment that lies entirely within the former marine 

limits. For example, marine bivalve shells are abundant in the active layer (field observation; 

see also Fig. 10), and so we attribute the Cl- increase to the release of marine salts from the 

permafrost of this former sea bed. The mobility of Cl-

 

 is such that it may be rapidly leached 

into the stream as the active layer deepens, making its seasonal concentration increase a 

potentially sensitive indicator of marine permafrost degradation in low elevation 

catchments such as SM1.  

5.1.2 The fingerprint of microbial activity in the micro-catchments 

The use of correlations between Si, NO3
- and *SO4

2- to detect microbial activity in the micro-

catchments (Table 4) was further supported by the ɷ15N ĂŶĚ ɷ18O values for NO3
-due to 

their proximity to the predicted range of microbial nitrate (Fig. 7 and 8). However, at TM, 

ƚŚĞ ɷ18O values were higher than the microbial NO3
- range, implying a little more snowpack-

derived NO3
- was present (in agreement with the observed persistence of snow cover in the 

TM watershed). Further, low ɷ18O values in SM1 NO3
- show that nitrification was effective 

throughout the entire summer. This was surprising, because it was expected that 

assimilation of NO3
- by vegetation would suppress the nitrification signal in runoff until 

senescence occurred (Tye et al., 2008). In addition, the ɷ18O values in SM1 NO3
- were in fact 

lower than the predicted range of microbial NO3
-, as was observed by Tye et al., (2008) just 

outside the Bayelva watershed. In Casciotti et al�s (2010) experimental study of oxygen 

isotope systematics during NH4
+ oxidation, both fractionation and isotope exchange effects 

are plausible explanations for such low values. The most robust interpretation of the 

present study is therefore that nitrification dominates the production of the NO3
- that is 

flushed from the SM1 micro-catchment by runoff very soon after the removal of the 

snowpack. The data from SM2 and MM, although sparse, also suggest that nitrification is 

important in these other micro-catchments, whilst the marginally higher values for the TM 

suggest that a small proportion of atmospheric NO3
- also enters the system from the high 

elevation snow that is present here.   
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5.2 Contribution of the micro-catchments to solute export from the entire watershed  

The important differences in solute dynamics in the landscape units represented by the 

various micro-catchments are easily noticeable (e.g. in Fig. 5 and 9, Table 4), yet they are 

almost impossible to establish from measurements conducted at BAY (Nowak and Hodson 

2013) and have not yet been detected in other watershed scale studies in Svalbard. For 

example, the average concentrations of ions recorded at BAY were up to two (HCO3
-, *Ca2+ 

+ *Mg2+), four (Si), seven (NO3-) and ten times (*SO4
2-

Water flux has a first order control over solute yields (Anderson et al., 1997) as is evident in 

their inter-annual variability (Table 3). The area-weighted solute yields of the micro-

catchments were therefore used to see how they influence the solute flux from the entire 

watershed. In so doing, the different micro-catchments were assumed to be representative 

of the total moraine (area 3.06 km

) lower than those recorded at the 

micro-catchments (Fig. 9), because the water flux through Bayelva was almost two orders of 

magnitude greater and therefore significantly diluted by icemelt.  

2), talus (6.72 km2) and tundra soils (4.18 km2, 22% of 

which was similar to SM1 and 78% to SM2) in the deglacierized area (areas according to 

www.svalbardkartet.npolar.no, 2013). The solute yields for 2010 (Table 3) were then 

multiplied by the representative areas to estimate the solute fluxes from each landscape 

unit. Fig. 11 shows the combined solute fluxes expressed as a proportion of the total 

watershed solute flux at BAY. As expected, the up-scaled solute fluxes from the aggregated 

micro-catchments never accounted for 100% of the solute flux due to missing terms in the 

balance calculations, namely large solute flux associated with the glacial inputs (not 

monitored in this study; see Nowak-Zwierz 2013) and error (ca. 15 � 25% for each flux 

estimates following Hodson et al., 2005). For example, the sum of micro-catchments 

accounted for just 17% of the Cl- flux during 2010, indicating a significant input from 

snowmelt. Hodson et al., 2005 have shown that the Cl- budget for the watershed is easily 

�closed� by accounting for snowmelt in this case using the 1999 and 2000 dataset and 

applying it to the entire watershed (BAY). We confirmed that the glacial input could easily 

account for the difference in other hydrological years after estimating the product of 

summer melting (using glacier mass balance data) and average Cl- concentrations reported 

http://www.svalbardkartet.npolar.no/�
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in supraglacial streams at this site (1.23 mg L-1 Hodson et al., 2002). However, the same 

closure in the solute budgets could not be achieved with the other ions, especially with 

respect to those derived from carbonate and silicate weathering. Nor could error analysis 

account for the different solute budget calculations for these ions, since they would require 

changes in the mean composition of micro-catchment streams that were unacceptable 

when compared to the range of values reported by earlier work (Hodson, 1994 and Hodson 

et al., 2002). The "missing" HCO3
-, Ca2+, Mg2+, K+

The comparison of the solute flux from the entire watershed and the micro-catchments 

resulted in an unexpected discovery. Unlike crustally derived solutes described above, the 

aggregated micro-catchment flux estimates for NO

 and Si were therefore acquired by glacial 

meltwaters from paraglacial fine sediment weathering (c.f. Fairchild et al., 1999) and 

shallow groundwater exchange, most likely in the hyporheic zone of the floodplain. This is 

also supported by the resent work presented in Nowak and Hodson (In Press) where it is 

shown that even a watershed accommodating cold-based glaciers and underlain by 

continuous permafrost has significant chemical weathering potential due to the presence of 

fresh fine reactive sediments released by the retreat of the glacier and rock-water contact at 

a range of time scales. Furthermore, the study also indicates the importance of the 

hyporheic zone in generation of solutes. This was also explored in front of Antarctic cold-

based glaciers of the McMurdo Dry Valleys where only glacial inputs of water to the glacier 

forefield are present (see Gooseff et al., 2013). Further research involving direct 

instrumentation and sampling of the proglacial sandur environment is therefore essential in 

order to better understand landscape solute fluxes during deglaciation. 

3
- and *SO4

2- represented more than 80% 

and 60% of the observed riverine flux at BAY, most of which was derived from moraine and 

talus environments. This shows the importance of microbial processes in these low water 

flux components of the deglacierized part of the watershed. It also reveals watershed 

potential for fertilization of down-stream marine environments with nutrients such as NO3
-, 

*SO4
2-, Si (Nowak-Zwierz 2013) and P that can also be associated with Fe3+ (Hodson et al., 

2004). Furthermore, a recent study in an Alaskan temperate fjord system by Fellman et al., 

(2010) showed that glacially derived dissolved organic carbon can enhance marine bacterial 

production.  Yet, at present, most Svalbard studies that examine the response of primary 

and secondary producers in the marine environment to climate change only give emphasis 
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to spring season algal blooms associated with sea ice melt (e.g. Hop at al., 2002; Hodal et al., 

2012). Therefore here we show that summer input of nutrients into marine environments 

now needs to be considered so that biological production can be better understood after 

the spring bloom.  

Lastly, our study also demonstrates for the first time that elevated concentrations of Cl-

 

 can 

be used as a signal to record the biogeochemical consequences of melting permafrost of 

marine origin. This signal indicates that the legacy of glaciation is still strongly apparent 

through the impact upon sea level change and the slow, gradual release of marine solutes 

from parts of the landscape uplifted since the end of the last glacial maximum.  

6. Conclusions 

Our novel study of moraine, talus and soil micro-catchments within High Arctic watershed 

helps to understand landscape biogeochemical evolution following deglaciation and 

permafrost change. It also sheds light on how those environments contribute to solute 

export from the entire watershed and into the downstream marine ecosystem.  

We show that seasonality in chemical weathering is strongest at sites where drainage is 

rapid and not restricted. Solute dynamics in different micro-catchments are also sensitive to 

other abiotic factors such as runoff volume, water temperature, geology, geomorphological 

controls upon hydrological flowpaths and landscape evolution following sea level and glacial 

changes.  

Biotic factors also influence the anionic composition of micro-catchment runoff via microbial 

SO4
2- and NO3

- production that is responsible for as much as 60 and 80 % (respectively) of 

the total *SO4
2- and NO3

-

Young environments nearest to the retreating glacier are characterized by high yields of 

solutes such as *Ca

 fluxes from the entire watershed.  

2+, HCO3
-, *Mg2+ and *SO4

2- due to the presence of fine reactive 

sediments. Those also provide an environment for microbially mediated chemical 

weathering reactions and the production of nutrients such as NO3
-. Interestingly, 

nitrification is occurring with similar intensity at all micro-catchments, regardless landscape 
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maturity. However, in younger environments, nutrients fluxes are larger and therefore can 

have a bigger effect on the downstream marine ecosystem.  

We also find that changes in permafrost have the most noticeable effect in the marine 

sediments uplifted since the last glacial maximum, which are now subjected to erosion, 

chemical weathering and ground thaw and influence the levels of marine derived ions such 

as Cl-

Lastly, the comparison between the micro-catchments and solute fluxes exported from the 

entire watershed into High Arctic fjord indicates that, despite large *SO

.  

4
2- and NO3

-

Therefore, although climatically driven change in the proglacial area such as deepening of 

the active layer and thawing of the permafrost has an influence on local ecosystems, the 

biogeochemical signal from the entire watershed (solute fluxes entering marine 

environment) is dominated by glacially derived products of rapid chemical weathering. 

Consequently only a study of micro-catchments existing within the watershed can uncover 

the landscape response to contemporary climate change. 

 yields 

from the aforementioned micro-catchments, a �glacial signal� dominates solute export from 

the watershed via a combination of quick weathering reactions of fine reactive sediments at 

the glacier terminus, rapid in-stream weathering of suspended sediments and processes 

occurring in the hyphoreic zones of the floodplain.  
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Fig. 1 The location of sampling sites in the Bayelva catchment on the Brøggerhalvøya, 

Svalbard and the geology of the watershed. Black lines indicate the borders of the micro-

catchments (SM1, SM2, TM, MM) with their sampling points (dots) and the whole Bayelva 

watershed (BAY). The map was modified from Norwegian Polar Institute:  

www.svalbardkartet.npolar.no, 2013. Photo credit: A. Hodson  
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Fig. 2 Abandoned meltwater channel at MM (upper) and sampling location at MM Photo 

credit: A. Nowak 
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Fig. 3 Sampling location at TM (upper left), patterned ground in the northern part of the 

micro-catchment (upper right) and rock glacier in the southern part (lower left and right). 

Photo credit: A. Nowak 
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Fig. 4 Sampling location at SM1 (upper left and right) and SM2 (lower left and right). Photo 

credit: A. Nowak 
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Fig. 5 Time series of ion concentrations (mg L-1) and water discharge (m3 sec-1) at various 

sampling sites in the Bayelva watershed during 2009 and 2010 ablation seasons.  
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Fig. 6 The change in stream pH at all micro-catchments and in the Bayelva during 2009 and 

2010 ablation seasons. Bayelva data are taken from Nowak and Hodson (In Press) 
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Fig. 7 TŝŵĞƐĞƌŝĞƐ ŽĨ ƐƚĂďůĞ ŝƐŽƚŽƉĞƐ ɷ15N-NO3
- ĂŶĚ ɷ18O-NO3

- recorded at MM, TM, SM1 

micro-catchments in 2010 
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Fig. 8 Stable isotope results for ɷ15N-NO3
- ĂŶĚ ɷ18O-NO3

- in the Bayelva and the micro-

catchments during 2010. The solid box represents the range of values for snow in the 

general study area as reviewed whilst the open circles represent snowpack samples from 

2010 (after Ansari et al., 2013). The hatched rectangle is the range of �microbial NO3
-� 

values estimated by assuming the nitrification of soil organic N or snowpack NH4
+ with 

minimal fractionation (Equation 1 in Ansari et al., 2013) and input ranges of ɷ18O-H2O (-15 

to -6.8 �) and ɷ15N -NO3
- (1.2 to + 5.2 �) derived for local soils (Tye and Heaton 2007), 

ground ice (Budantseva et al., 2010) and non-ornithogenic, marine-derived soils (see 

discussion in Yuan et al., 2009). The grey shaded area is the hypothetical zone for mixed 

NO3
- derived from the atmospheric and microbial sources 
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Fig. 9 The comparison of relationships between ions recorded at MM, TM, SM1, SM2 (left 

hand side) to those recorded at BAY (right hand side) during the 2009 and 2010 ablation 

seasons 
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Fig. 10 Bivalves in the uplifted marine sediments at SM1. Photo credit: A. Nowak 
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Fig. 11 Solute flux from combined micro-catchments expressed as a proportion of the total 

watershed solute flux measured at the BAY in 2010 
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Table 1 Comparison of sampling sites in Bayelva watershed including locations, areas and a basic 

description of their hydrology. 1

Micro-

catchment 

Discharge calculated for the 13 days period 

Location Area (km
2

Specific 

discharge (m) 
) Water regime 

2009 2010 

Moraine (MM) 

78o

11

54.807N 

o

0.33 

50.647E 

0.01 0.16 1 
Snowmelt, rainfall, ground ice 

melt including buried glacier ice 

Talus (TM) 

78o

11

54.808N 

o

0.39  

51.630E 

0.11 0.22 
Snowmelt, rainfall, ground ice 

melt including rock glacier ice 

Soil (SM1) 

78o

11

55.460N 

o

0.25 

49.903E 

0.47 0.02 

Snowmelt, rainfall, ground ice 

melt 

Soil (SM2) 

78o

11

55.706N 

o

0.67 

48.040E 

n/a 0.01 
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Table 2 The comparison of sampling strategies and hydrological monitoring within the pro-glacial 

area of the Bayelva watershed in Svalbard during 2009 and 2010 melt seasons. 1 -sampling after the 

snowmelt phase; 2

Site 

 - data logger was moved to another location when the main water flowpath from 

Austre Brøggerbreen changed due to glacier retreat 

Year 

Sampling 

period 
Sampling 

Bayelva 

discharge period 
Data logger 

Manual 

stream flow 

measurement 
Dates Days Dates Days 

MM 

2009 
13 June � 9 

September 
89 

Daily, 1every 2nd

8 June � 26 

September 

 day 

111 

CR 800, 2 Every 2 n/a nd day 

TM Daily, 1every 2nd n/a  day Every 2nd day 

SM1 Daily CR 800 Daily 

MM 

2010 
29 June � 

23 August 
56 

Every 4th

18 June � 9 

September 

 day 

84 

n/a Every 4th day 

TM Daily, 1every 2nd CR 800  day Every 2nd day 

SM1 Daily CR 1000 Daily 

SM2 Every 3rd n/a  day Every 3rd day 
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Table 3 The comparison of ion yields from the micro-catchments and the whole Bayelva watershed 

during 2009 and 2010 ablation seasons. 1

Site 

Yields were calculated for 13 day period 

Year 

HCO3 Si 
-
 Cl NO

-
 3 *SO

-
 4 *Ca

2-
 *Mg

2+
 *K

2+
 *Na

+
 

+
 

(kg km
2
a

-1
) 

1

2009 

MM 922 3 19 7 443 264 71 15 24 

TM 8023 46 306 21 2211 3495 833 67 48 

SM1 18548 139 1667 19 2624 4412 1275 187 229 

BAY 50931 149 2556 73 4321 13867 2387 404 210 

MM 

2010 

24476 67 286 103 3665 4492 1566 250 266 

TM 13107 82 374 58 5013 6430 1644 75 60 

SM1 2444 13 183 7 831 750 241 11 3 

SM2 1163 5 24 2 27 241 90 4 3 

BAY 31981 91.1 686 26 2285 9108 1309 239 105 

 



 

Table 4 The regression models between the aqueous products of well-known weathering processes recorded at various micro-catchments in the Bayelva 

watershed during 2009 and 2010 ablation seasons. R2

 

 values indicate the likelihood of the occurrence of the weathering process while slopes and intercepts 

indicate respectively stoichiometry of different weathering reactions and whether alternative mechanism(s) of chemical weathering supply any given 

solute. 

Site 

Regression 

Model No. 

X  

vs  

Y 

1 

HCO3

vs 

- 

*Ca
2+

+*Mg

2 

2+
 

*Mg

Vs 

2+ 

*Ca

3 

2+
 

*Mg

vs 

2+
 

*SO4

4 

2-
 

HCO3

vs 

- 

*SO4

5 

2- 

*SO4

vs 

2- 

*Ca

6 

2+
 

*SO4

vs 

2-
 

NO3

7 

- 

Si 

vs 

NO3

8 

-
 

Si 

vs 

*K

9 

+
 

Si 

vs 

*SO4
2-

 

;ʅEƋ L-1 ;ʅŵŽů L) 
-1

) 

SM1 

R

Slope 

2
 

Intercept 

0.96 

1.28±0.03 

144±64.6 

0.97 

2.07±0.04 

-81.6±41.3 

0.90 

1.16±0.05 

48.9±35.7 

0.73 

0.30±0.02 

141±44.9 

0.80 

2.32±0.13 

83.1±103 

0.54 

0.03±0.003 

-9.70±2.40  

086 

0.59±0.03 

-7.22±0.97 

0.62 

0.52±0.05 

4.97±1.40 

0.60 

8.27±0.79 

135±23.8 

SM2 

R

Slope 

2
 

Intercept 

1.00 

1.13±0.02 

-161±32.7 

0.36 

0.93±0.33 

586±229 

0.54 

2.66±0.66 

474±57.8 

0.83 

0.12±0.02 

-148±27.8 

0.83 

5.11±0.63 

827±55.0 

0.85 

0.07±0.01 

-1.98±0.64 

0.75 

0.31±0.05 

-3.63±1.12 

0.57 

0.16±0.04 

3.30±1.03 

0.85 

2.29±0.26 

-11.7±6.01 

TM early 

season 

R

Slope 

2
 

Intercept 

0.76 

1.73±0.16 

-596±232 

0.88 

2.23±0.14 

114±78.8 

0.93 

0.48±0.02 

316±13.2 

0.38 

0.74±0.16 

-593±229 

0.78 

1.04±0.09 

828±55.3 

0.78 

0.01±0.001 

0.85±0.30 

0.44 

0.64±0.12 

-3.87±1.39 

0.29 

0.94±0.25 

-0.51±2.85 

0.62 

60.0±7.99 

-451±90.9 

TM late 

season 

R

Slope 

2
 

Intercept 

0.09 

0.61±0.66 

3047±1205 

0.37 

2.04±0.88 

199±1146 

0.23 

0.12±0.08 

1017±176 

0.05 

-0.45±0.65 

3180±1200 

0.81 

0.76±0.12 

1059±291 

0.01 

-0.001±0.004 

14.3±9.00 

0.92 

0.62±0.06 

-3.57±1.52 

0.46 

0.38±0.14 

14.6±3.33 

0.04 

-5.51±9.14 

1308±222 

MM early R 1.00 2
 0.98 0.97 0.92 0.91 0.95 0.81 0.69 0.85 
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season Slope 

Intercept 

1.41±0.01 

-16.4±13.1 

1.71±0.05 

251±26.2 

1.01±0.04 

92.1±16.7 

0.48±0.03 

-162±33.2 

1.70±0.11 

416±47.6 

0.01±0.001 

0.64±0.29 

0.58±0.06 

-1.89±0.78 

1.76±0.25 

1.78±3.24 

20.4±1.85 

-88.5±23.7 

MM late 

season 

R

Slope 

2
 

Intercept 

0.78 

5.23±1.61 

-1594±1163 

0.99 

1.82±0.10 

343±81.5 

0.99 

0.56±0.03 

111±27.0 

0.67 

2.90±1.19 

-1160±859 

0.98 

1.09±0.10 

520±104 

0.97 

0.014±0.001 

-1.76±1.58 

0.90 

1.38±0.23 

-9.52±3.92 

 0.98 

3.45±0.22 

-8.91±3.87 

0.95 

54.4±7.19 

-336±110 

 

Model 1. Establishes stoichiometry of carbonate weathering. For example, slope close to 1 indicates carbonation, while close to 2 indicates dissolution. However, additional 

sources of ions (in this case *Ca2+ + *Mg2+) can sometimes significantly increase the slope. Furthermore, an uptake of ions (for example creation of secondary mineral like 

gypsum) can decrease the slope. The judgment on which reaction is taking place depends on comparison to other regression models, catchment geology and chemical 

weathering kinetics. Significant, positive intercepts indicate that other processes are responsible for acquisition of ion(s) placed on Y axis, in this case *Ca2+ + *Mg2+ such as 

silicate weathering or gypsum/anhydrite dissolution, while significant negative intercepts indicate an additional source of ion(s) on X axis, in this case HCO3
-

Model 2. Establishes relative importance of dolomite as a carbonate source of *Mg

  

Model 3. Establishes importance of sulphide oxidation as a driver of the *Mg

2+ 

2+

Model 4 and Model 5. Establishes importance of sulphide oxidation coupled to carbonate dissolution, resulting in a slope close to 1. Large intercept identifies other processes 

influencing *SO

sources presented above 

4
2-

Model 6. Establishes relationship between NO

 concentrations such as gypsum/anhydrite dissolution  

3
- production and *SO4

2-

Model 7. Establishes relationship between NO

 production, which are both largely assumed to be microbially-mediated 

3
-

Model 8. Establish stoichiometries of silicate weathering and/or relative importance of K-feldspars 

 production and longer residence time flowpaths conducive to silicate weathering, or uptake of both solutes during diatom 

blooms 

Model 9. Establishes importance of sulphide oxidation as a driver of silicate weathering 

 

 

T
his article is protected by copyright. A

ll rights reserved. 


	Abstract
	1. Introduction
	2. Location
	2.1 The watershed (BAY)
	2.2 The Microcatchments
	2.1.1 Moraine micro-catchment (MM)
	2.1.2 Talus micro-catchment (TM)
	2.1.3 Soil micro-catchments (SM1, SM2)
	3. Methods
	3.1 Meteorological conditions
	3.2 Hydrological monitoring
	3.3 Water sampling
	3.4 Laboratory analyses
	3.5 Solute provenance and yields
	3.6 Stable isotope analyses
	4. Results
	4.1 Meteorological conditions
	4.2 Solute concentrations
	4.3 Solute yields
	4.4 Stable isotopes
	5.1.1 Temporal and spatial changes in solute acquisition
	5.2 Contribution of the micro-catchments to solute export from the entire watershed
	6. Conclusions
	Acknowledgments
	This research was funded by a Marie Curie Initial Stage Training Network (NSINK- Sources, sinks and impacts of atmospheric nitrogen deposition in the Arctic, project number R/123386). The authors would like to thank DNMI for the provision of meteorolo...
	References
	Hjelle A. 1993. The geology of Svalbard. Norskpolar Institutt Handbok 7.
	Fig. 9 The comparison of relationships between ions recorded at MM, TM, SM1, SM2 (left hand side) to those recorded at BAY (right hand side) during the 2009 and 2010 ablation seasons
	Fig. 10 Bivalves in the uplifted marine sediments at SM1. Photo credit: A. Nowak
	Fig. 11 Solute flux from combined micro-catchments expressed as a proportion of the total watershed solute flux measured at the BAY in 2010

