
This is a repository copy of A comparison between Alice and Elizabeth chatbot systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/81930/

Book:

Shawar, BA and Atwell, E (2002) A comparison between Alice and Elizabeth chatbot 
systems. University of Leeds, School of Computing research report 2002.19 . 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


  University of Leeds  
 

SCHOOL OF COMPUTING  
 

RESEARCH REPORT SERIES  

 
Report 2002.19  

 

 
 

 
 
 

A Comparison Between  
Alice and Elizabeth Chatbot Systems 

 

 by  
 

Bayan Abu Shawar & Eric Atwell 
 

 
 

 
 

 
December 2002  

 
 

 

 

 



 1

Abstract 
  

This study examines two chatter bots systems called ALICE and Elizabeth, which 
are adapted from ELIZA program. Joseph Weizenbaum implemented ELIZA in 1966 
and it was originally designed to emulate a psychotherapist. 
This report also provides an introduction to the analysis of ALICE and Elizabeth 
focusing in the knowledge representation and pattern matching algorithms for each 
one of them. The report then illustrates the main differences between them and 
concludes that it will be easier to build machine learning for ALICE because of its 
simple pattern matching techniques than building one for Elizabeth since it depends 
on rules. 
 

Introduction 
A chatbot is a computer program aimed at simulating the conversation of a human 
being. 
Section one of this research presents a study about ALICE chatterbox system, which 
is an abbreviation for Artificial Linguistic Internet Computer Entity that is implemented 
by Dr. Richard S. Wallace in 1995. Section Two displays a study for Elizabeth 
chatterbox system that is implemented by Dr. Peter Millican in University of Leeds. 
Both sections discuss how knowledge is represented within each system, displaying 
some necessary information about input, output patterns, how they are used and 
how the interpreter of each system do pattern matching to generate answers. Finally, 
section three illustrates the comparison between these systems. 
 

 
 

 
1.  ALICE System 
 

 ALICE:  the Artificial Linguistic Internet Computer Entity. Is a robot that you can 
make chatting with it. ALICE knowledge is stored in AIML files. 

AIML is an abbreviation of  The Artificial Intelligent Mark up Language  that is a derivative 
of Extensible Mark up Language(XML). The next sections describe  necessary information 
about AIML elements, its categories, how they are used in ALICE and Pattern Matching 

Algorithm. 
 

1.1 AIML Files 
Each AIML file start with an <aiml> tag represent the AIML version being used, and it 
contains the AIML elements which consists of data objects called AIML objects. These 

objects are made up of units called topics and categories,  which contain either parsed or 
unparsed data.  

The topic is an optional top level element, has a name attribute and a set of categories related 
to that topic. Each category contains a pattern represent the user input and a template implies 
robot response. 

 



 2

The full AIML format with topic is: 

 

< aiml version=”1.0” > 

< topic name=” the topic” > 

 

<category> 

<pattern>PATTERN</pattern>  

<that>THAT</that> 

<template>Template</template> 

</category> 

       .. 

       .. 

       .. 

</topic> 

</aiml> 

 

 

Note that:  

• Each element has an open and close tag. 

• <that> tag is optional depends if current user input( pattern ) depends on a  previous 
bot output. 

 
 

1.2 Types of Categories 
 

There are three types of categories: 
1- Atomic Category.   2- Default Category  3- Recursive Category. 
 

1- Atomic Categories: are those with patterns that does not have wildcards “*” or “_”. 
 

<category> 

<pattern>10 DOLLARS</pattern> 

<template> wow, what a cheap</template> 

</category> 

 

In the above category: 
 
If the user Input: 10 dollars 

Then root output:  wow, what a cheap. 
 

2- Default Categories: are those with patterns has a wildcards “*” or “_”. These patterns 
results from a reduction process while the robot searching for the appropriate matching. 
These wildcards match any input but they are differ in their alphabetical order. 

Assume the previous category, if  the robot  does not find the previous atomic pattern, 
then he will try to find the following default pattern: 

 



 3

<category> 
<pattern>10 *</pattern> 

<template> It is ten.</template> 
</category> 

 
So robot output will be: It is ten. 
 

 
3- Recursive categories: It is a property of template not pattern. The template calls the 

pattern matcher recursively using <srai> and <sr> tags which refers to Simply recursive 
artificial intelligence and symbolic reduction. 

 

      Recursive categories: have many application: 

1- Mapping inputs to another inputs in order to:  

a. Simplify the language. 
b. Map multiple patterns to the same response so it solve the problem of  

synonymous patterns. 

2- Partitioning: break down an input into one or more parts, and then combine their 
responses back together. 

 
1.a   Simplification  user input to a simpler pattern form  

 

For example, in English there are different ways to ask about X: 

• Describe x? 

• Tell me about X? 

• Do you know what X is? 

The knowledge stored in the simplest way, so whatever the question is, it will be reduced to 
category like <What is >. 

 
Assume the user input : WHAT DO YOU KNOW ABOUT NEURAL NETWORKS 
Bot output: A neural network is a model of computation based on neuron cells. 

 
Actually the following categories are used in matching: 

 
<category> 
<pattern>WHAT DO YOU KNOW ABOUT NEURAL NETWORKS</pattern> 

<template> 
<srai>WHAT IS A NEURAL NETWORK</srai> 

</template> 
</category> 
 

In the previous category he found the atomic pattern then simplifying it to a new form, and 
search for this new input again, and match it with: 

 
<category> 
<pattern>WHAT IS A NEURAL NETWORK</pattern> 

<template> 
A neural network is a model of computation based on neuron cells. 

</template> 
</category> 



 4

Consider the following example that deals with synonymous patterns and partitioning. 
 

Assume you have the following  categories: 
 

(1) <category> 
<pattern>_ HOW ARE YOU</pattern> 
<template> 

<sr/>  <srai>HOW ARE YOU</srai> 
</template> 

</category> 
 
(2) <category> 

<pattern>HALO</pattern> 
<template>  

<srai>HELLO</srai> 
</template> 
</category> 

 
(3) <category> 

<pattern>HELLO</pattern> 
<template> 
<random> 

<li>Well hello there!</li> 
<li>Hi there!</li> 

<li>Hi there. I was just wanting to talk</li> 
<li>Hello there !</li> 
</random> 

</template> 
</category> 

 
(4) <category> 

<pattern>HOW ARE YOU</pattern> 

<template> 
<random> 

<li>Everything is going extremely well.</li> 
<li>I'm doing fine thanks how are you?</li> 
<li>Everything is running smoothly.</li> 

</random> 
</template> 

</category> 
 
If the user Input: halo how are you? 

Then Root output:  hi there! I'm doing fine thanks how are you? 

 

The process is done as follows: 

 
1- This input will match category(1) that partition it into two sentences: 

Sentence one: represent by <sr/> tag that match ( _ ) which is the word HALO. 
Sentence two: HOW ARE YOU that is the result of reduction operation to the original 

input by using <srai> tag then he will scan for these two patterns. 



 5

 
2- An atomic patterns will find for HALO which is substituted by HELLO  in 

category(2) and match it again with category (3)  and the answer will be selected 
randomly from the template list of category(3). Here it deals with synonymous since 

halo and hello has the same output. 
 
3- An atomic pattern which is in category(4) will match sentence 2, and a random answer 

will be selected from the template list of its category. 
 

4- AIML interpreter will combine these answers together and display it. 
 
Not that: <sr/> = <srai> <star/> </srai>, call recursive matcher and apply it to the input in 

<star/>, that is in wildcards. 
 

 

1.3 Preparation for Pattern Matching  
 
Before starting pattern matching procedures each input to the AIML interpreter must pass 
through two processes: 

1- Normalization Process.   

2- Producing input path from each sentence. 

 
1.3.1 Normalization Process, involves 3 steps: 

 

a. Substitution Normalizations:  

are heuristics applied to an input that attempts to retain information in the input that 

would otherwise be lost   during the sentence splitting or pattern fitting normalization. 
It can distinguish the dot notation if it is used as an abbreviation, end of sentences or 
just prefix of extension name and replace it by its  appropriate meaning. 

 
b. Sentence Splitting Normalization: 

      Split input into sentences using rules like ” break sentences at periods”, after ?  
      and !. 

 Note that: Splitting is done before matching, between  partitioning occurred  

                               during pattern matching. 
   

c. Pattern Fitting Normalization: 

              It involves two tasks: 

• Removing punctuation from input to make it compatible with speech 

conversation. 

• Converting input letters to upper case, this is necessary, because if origin 

user input was either lower or upper case it will be matched with patterns 
stored in capital letters but the opposite is not true. 

 
Note that: The normalization process must applied in the previous order and  
                  at least Pattern Fitting Normalization must be done.  



 6

Example: 
 

Input substitution 
normalized form 

sentence-splitting 
normalized form 

pattern-fitting 
normalized form 

"What time is it?"  "What time is it?"  "What time is it"  "WHAT TIME IS IT"  

"Quickly, go to 
http://alicebot.org!
"  

"Quickly, go to 
http://alicebot 
dot org!"  

"Quickly, go to 
http://alicebot dot 
org"  

"QUICKLY GO TO HTTP 
ALICEBOT DOT ORG" 

":- ) That's funny."  "That is funny."  "That is funny"  "THAT IS FUNNY"  

"I don't know. Do 
you, or will you, 
have a robots.txt 
file?"  

"I do not know. Do 
you, or will you, 
have a robots dot 
txt file?"  

"I do not know"  

"Do you, or will you, 
have a robots dot txt  
file"  

"I DO NOT KNOW"  

"DO YOU OR WILL YOU 
HAVE A ROBOTS DOT 
TXT FILE"  

1.3.2 Producing Input Path for each sentence: 
 

This path  has the following form: 

 
Input <That>Tvalue<Topic>Pvalue 
 
 It has three elements: 

 

a- Normalized Input.  

 

b- <That> tag: previous bot answer, normalized in the same way as input. 
Tvalue = previous bot answer if exists. 

Else 

Tvalue = * 

 

c-  <Topic> tag: is an optional top level element that contains categories and has 
a name attribute assign to it, in order to allow interpreter to prefer responses 
dealing with that topic. 

Pvalue = Topic name if exists. 

Else 

Pvalue = * 
 

Example: 
   

Normalized input Previous bot output 
(normalized) 

Value of topic 
predicate 

Input path 

"YES"  "DO YOU LIKE 
CHEESE" 

""  "YES <that> DO YOU LIKE 
CHEESE <topic> *"  

"MY NAME IS NOEL"  "I GUESS SO"  "MUSHROOMS" "MY NAME IS NOEL <that> I 
GUESS SO <topic> MUSHROOMS" 



 7

1.4 Pattern Matching Behaviour 
 

AIML interpreter try to match word by word to obtain the largest pattern matching which is 
the best one. 

This behaviour can be described  in terms of the class Graphmaster which has a set of nodes 
called Nodemappers_ that map branches from each node_ and branches represents the first  
words of all patterns and for wildcards. So it is parent child relationship. 

 
Assume the user input start with word  X and the root of this tree structure is a folder of file 

system that contains all patterns and templates, the pattern matching algorithm applied here 
using depth first search techniques. 
 

1. If the folder has a subfolder  start with underscore then turn to ,“_/” , scan through it to 
match all words suffixed X, if no match then: 

 
2. Go back to folder, try to find a subfolder start with word X, if so turn to “X/”, scan for 

matching the tail of X. Patterns are matched. 

If no match then: 
 

3. Go back to the folder, try to find a subfolder start with star notation, if so, turn to “*/”, 
try all remaining  suffixes of input following “X” to see if one match. If no match was 
found, change directory back to the parent of this folder, and put “X” back on the head 

of the input. 
 

4. When match is found, the process stops, and the template that belongs to that category 
is processed by interpreter to construct the output. See graph(1). 

 

 

Example 
 

Assume the following categories: 

 

(1)  <category>  
<pattern>_ WHAT IS 2 AND 2< /pattern>  
<template>  
<sr/>  <srai>WHAT IS 2 AND 2</srai>  
</template>  
</category>  
<category>  
 

(2)  <pattern>WHAT IS 2 *</pattern>  
<template>  
<random>  
<li>Two.</li>  
<li>Four.</li>  
<li>Six.</li>  
<li>12.</li>  
</random>  
</template>  
</category>  



 8

 

(3)  <category>  
<pattern>HALO</pattern>  
<template>   
<srai>HELLO</srai>  
</template>  
</category>  

 
(4)  <category>  

<pattern>HELLO</pattern>  
<template>  
<random>  
<li>Well hello there!</li>  
<li>Hi there!</li>  
<li>Hi there. I was just wanting to talk</li>  
<li>Hello there !</li>  
</r andom> 
</template>  
</category> 

 

 
 

User Input: halo what is 2 and  2 ? 
Robot output: Hi there! Six. 

 

 



 9

The tree structure of the pattern matching process is: 

                            

 halo what is 2 and 2 ? 
 

                                                Normalized process 

 

                             HALO WHAT IS 2 AND 2 
 

           Applying step 1,  match with 
                                                        

                                         _ WHAT IS 2 AND 2 
Portioning into 2 sentences   

 

     
 

                           <sr/>         <srai> WHAT IS 2 AND 2 </srai> 
 

       

                              HALO                                                                    No match for      

                                                                                                              Go back one step 

   Match with                                                                                        And try to find 
 

                             HELLO                             WHAT IS 2 AND * 
 
        Atomic match                                                                                  No match 

       Select randomly                                                                             back another step 
         From  the list                                                                    and try to find 

                                                       
    

             WHAT IS 2 * 
 
 Match found 

           Select randomly  
           From the list 

                                            

 
         

                                                     
 
 

 
 

                            Combine two answers 
 

                             Robot output      
 

                                          Hi there! Six. 

Well hello there! 
Hi there! 
Hi there. I was just     
wanting to talk. 
Hello there ! 

Two. 
Four. 
Six. 
12. 
 



 10

 



 11

2. Elizabeth 
 
It is an adaptation of Joseph Weizerbaum’s Eliza program, in which the various 
selection, substitution, and phrase storage mechanisms have been enhanced and 
generalized to increase both flexibility and its potential adaptability. 
 
2.1 Script File format 

 
Knowledge is stored as a script in a text file, where each line in this text is started 
with a script command notation to distinguish between them, these notations are: 
W, Q, V, I, K, N, O, M, ‘& ‘, AND ‘/ ‘, that denotes in order, welcome message , quitting 
message, void input, input transformation, key word pattern, key word response pattern, 

output transformation, memorised phrase, action to be performed within a message, and a 
comment. 

 
The script file may contain at most 4 parts as bellow: 
 
Part One: Script command lines holding robot responses dealing with   the cases of 
welcome, void and no key word messages. 

• Welcome messages: begins with ‘W’ letter and one of them will be 
selected randomly by the system when it is started. 

• Void messages:  begins with ‘V’ letter and one of them will be selected 
when user input is empty, the case when the user  just press enter. 

• No key word messages:  begins with ‘N’ letter and one of them will be 

selected randomly by the system when there is no keyword pattern match 
occur. 

 
Example: 
 
W   HELLO, I AM Elizabeth. WHAT DO YOU LIKE TO TALK ABOUT  ? 
V    CAN’T YOU THINK OF ANYTHING T O SAY ? 
N   TELL ME WHAT YOU LIKE DOING? 
  
Part Two: Input transformation rules, that transforming user input to another form 

to be compatible with the defined keyword  patterns set. It begins with ‘I’ letter 
denoting input.  
Example: 

I    mum => mother 
 I    dad => father 

This means when there is word mum within user text, it will be replaced by the word 
mother, and dad will be replaced by father. 
 
Note that:  these rules must be written in lower case. 
 
Part Three: Output transformation rules that change personal pronouns to be 
appropriate as a response. It begins with ‘O’ denoting output. 
 



 12

Example: 
O   i am => YOU ARE 

 O   i => YOU 
O   my => YOUR 

 
Note that: the right hand side will used in the final response so it must be in upper 
case, but left hand side may be lower when changing input pronoun or may be upper 
when dealing with robot response.  These will be obvious later on within the pattern 
matching process. 
 
Part Four: Key word patterns that will be used  with its responses in matching 
process. Each keyword pattern line start with ‘K’ letter followed by its response that 
begins with ‘R’ letter. 
 
There are two types of key word patterns: 

• Simple Patterns: matching only single word 
K   MOTHER 
R   TELL ME MORE ABOUT YOUR FAMILY 
if  the word ‘mother’ appear in the input match occur and  
the message “TELL ME MORE ABOUT YOUR FAMILY” 
 will appear as a response . 

 
• Composite patterns: the keyword pattern may be a sentence of phrase, 

word, string letter, anything and nothing. 
 

K   I  THINK [phrase] 
R    WHY DO YOU THINK  [phrase] ? 
if the user input was: I think I am ill. 
Robot output will be: WHY DO YOU THINK YOU ARE  ILL ? 
[phrase] will be matched with “ i am ill “. Note that the pronoun I is changed 
to you according to the previous output transformation rule. 
 

Different keywords can have the same response and at the same time any keyword may have  
a set of responses to be selected randomly by the system. 

Example: 
 
 K   MOTHER 
     K   FATHER 
     R   TELL ME MORE ABOUT YOUR FAMILY? 
     R   TELL ME ABOUT YOUR CHILDHOOD?  
     R   ARE YOU THE YOUNGEST IN YOUR FAMILY? 
 
So if the user enter a sentence that contains ‘mother’ or ‘father’ they will have the 
same response. 



 13

Note that: 

• Within the Input/Output Transformation and Keyword patterns, the text 
pattern may contain: a letter, a string within word, a word not included 
punctuation, a phrase of  contiguous words, anything of contiguous words 
and punctuations, a bracket match only anything between brackets only, 
any punctuation mark, and also nothing. These patterns in previous order 
are denoted by : [letter], [string], [word], [phrase], [any], [bracket],[*], and [ ]. 
Any text pattern must contain at least  one element according to its  

   category, but you can add ‘?’ at the end of each one represent  
nothing( i.e. [word?]: one word or nothing), also these can take  
numbers [phras1], [phrase2], and so on. 

 

• When the script command is stored in the system, an index code is attached 
to it to identify the command later on, by default the index code has 3 digit 
form(i.e.: ‘001’), and it is possible also for the user to create his own index 
code that simplify further actions for him. 

 
 

2.2 Pattern Matching 
Before starting the matching process, an active text is generated by: 

1- Converting user input to lower case. 
2- Inserted spaces between words and punctuation. 
3- Removing some characters from the input, except: 
       ! " ' ( ) , - . 0…9 : ; ? A…Z a…z 

The matching process involves five phases: 
1- Matching with Input Transformation Rules. 
2- Matching with Keyword patterns. 
3- Matching with Output transformation rules. 
4- Matching with Void or No keyword messages. 
5- Performing any Dynamic processes. 

 

Phase One:  Input Transformation Matching 
Apply input transformation rules on the active text using the following algorithm: 
Step  0: For each provided rule, in turn according to their index code: 
 
Step 1: Search the active text to see if it matches the left hand side of  

  the rule, IF Match then,  
 

a.   Replace it by the right hand side of that rule,  
b. Perform any related action or record it to be performed later on in   phase 

five. 
c. Repeat step 1 for the rest of the active text. 

If the same rule is applicable to the active text more than 10 times in    
succession, then it is applied just once. 

    
Step 2: Go back to step 0, consider the second rule provided and  

  repeat the same process. 
Note that: you have to check all the input rules either match occur or not. 



 14

Phase Two: Keyword pattern matching. 

Try to find a key word within the active text, using the following:   
Step 0: For each keyword pattern defined, in turn, starting from the  
              lower index code do: 
          
Step 1: Try to find this keyword within the active text,  

  IF Match occurs then, 
a. One response will be selected randomly from the response list related 

to this keyword pattern 
b. Record the index code of this response so it will not be used if same 

match occurs on the next occasion. 
c. Perform any related action or record it to be performed later on in   

phase five. 
d. Go to Phase Three. 

 
ELSE  

Go back to step 0, pick up the second keyword and repeat the process. 
 

IF No match occurs after searching all defined keyword patterns then go to Phase 

Four 
 

Phase Three:  Output transformation matching 
Includes two steps: 

1- Apply the output transforming rules on the active text using the same 
algorithm in Phase One. 

2- Change the active text to upper case and display it as the robot response. 
 
Phase Four:  Since no match occur with the keyword patterns then either the  active 

text is: 
a. Void _empty_, and one of the void messages denoted by ‘V’ will be 

selected as a robot response. 
 

OR 
 

b. No keyword found within the active text, in this case a response will be 
selected randomly from No keyword messages denoted by ‘N’. 

 
Phase Five: Perform any Recorded Dynamic Process  

perform the assigned actions in phase one and three if exists. This process will be 
discussed   in the next  section. 
 
Note that: 

• If two keyword patterns exists in the same active text, then the response is 
selected according to keyword that has less index code. 

• If the same input reoccurs within a single conversation then if possible the 
system will attempt to make a different random choice from one previously 
made. 

 



 15

Example 
 
Assume you have the following script file: 
 
/ The Script begins with Welcome, Void, No-Keyword and Quit responses: 
 
‘001’  W  HELLO, I'M Elizabeth. WHAT WOULD YOU LIKE TO TALK    
                ABOUT? 
‘001’   V  CAN'T YOU THINK OF ANYTHING TO SAY? 
‘002’ V  ARE YOU ALWAYS CHIE ? 
‘001’ N  TELL ME WHAT YOU LIKE DOING. 
‘001’ Q  GOODBYE!  DO COME BACK SOON. 
 
/ Next come the Input transformations: 

 
‘001’  I  mum => mother  
‘002’  I  dad => father 
 
/ Then the Output transformations: 
 
‘001’   O  i am => YOU ARE 
‘002’ O  you are => I AM 
‘003’ O  my => YOUR 
‘004’ O  your => MY 
‘005’ O  me => YOU 
‘006’ O  I  IS => I AM 
‘007’ O  YOU IS => YOU ARE 

 
/ And four groups of Keyword transformations: 
 
‘001’   K  I THINK [phrase] 
          ‘001’  R  WHY DO YOU THINK [phrase] ? 
‘002’ K  MOTHER 
‘003’ K  FATHER 

     ‘001’      R  TELL ME MORE ABOUT YOUR FAMILY. 
     ‘002’      R  WHAT DO YOU REMEMBER MOST ABOUT YOUR  
                         CHILDHOOD? 
     ‘003’      R  ARE YOU THE YOUNGEST IN YOUR FAMILY? 

 
‘004’ K   [phrase1] IS YOUNGER THAN [phrase2] 

      ‘001’   R   SO [phrase2] IS OLDER THAN [phrase1] . 
 
‘005’ K   I LIKE [string]ING 

      ‘001’     R   HAVE YOU [string]ED AT ALL RECENTLY? 

 
 ‘006’  K    [ ] my [phrase] 
   & {M [phrase]} 

‘001’   R   YOUR [phrase] ? 
 
 



 16

The following trace using the previous script to illustrate different inputs with its responds: 
 

User Input I nput 

Transforming 

 

Keyword Patterns  Output 

Transforming 

Respond Actions 

Dad loves Mum Match: ‘001’ 

 mum => mother 
            ‘002’  

dad => father 

Match:  

‘001’K MOTHER 
‘001’ R  

TELL ME MORE ABOUT YOUR 
FAMILY. 

- TELL ME MORE ABOUT 

YOUR FAMILY. 

- 

My sister is a 

teacher. 

- Match:  

‘006’ K  my [phrase] 
[phrase] => sister is a teacher 
‘001’ R YOUR is a teacher? 

- YOUR SISTER IS A 

TEACHER? 

‘fam’ M  

 sister is a teacher 

My brother is 

younger than me. 

- Match: ‘004’ K 

[phrs1] IS YOUNGER THAN 
[phrs2] 

[phrs1] => my brother 
[phrs2] => me 
‘001’ R  SO [phrs2] IS OLDER 

THAN [phrs1]. 

Match: 

[phrs1] with ‘003’ 
my => YOUR 

[phrs2] with ‘005’ 
me => YOU 

SO YOU IS OLDER 

THAN YOUR BROTHER. 

- 

I like reading - Match ‘005’ 
K  I LIKE [string]ING 

[string] => read 
‘001’ R HAVE YOU [string]ED AT 
ALL RECENTLY? 

- HAVE YOU READED AT 
ALL RECENTLY? 

- 

 



 17

2.3 Dynamic Process 
 

Performing a set of actions that modify the script while the conversation is in 
progress. These actions are included within curly brackets that is preceding by ‘&’ 

symbol.  

Its format is:  & { Script Command   } and you can have as many deep as you 
want.  
These actions includes adding, memorization and deleting script commands. 
 
1. Adding new Script command: 

  
This action will add a new script command if it is not exist and replace it 
by new one if it is already found. 
 
Example: 
 

I  my sister => my sister 
   & { K  MOTHER 
              & { N  DOES ANYTHING ELSE ABOUT YOUR MOTHER ? } 
          R  HOW WELL YOUR MOTHER AND SISTER GET ON? } 
 
There are two actions to be performed in the following sequence: 
 
Action 1:  

 
When matching occur with the input rule, my sister, it will remain the 
same and giving answer as appropriate, at the same time the system 
will search for the keyword ” MOTHER”, if find then Add the response ” 
How Well YOUR Mother  AND SISTER   GET ON?” to its response list, 
and record the action inside the inner curly brackets.  
ELSE  
add the keyword “mother” and its response to the end of the keyword 
patterns group and record the inner action. 
 
Action 2 : 
 
When matching occur with “MOTHER”, then a no keyword message 
will add it to the list or replace the old one. 

 
2. Memorization a script command 

 
This is used to hold the user input or robot response for further using 
during the conversation. 
This script command is denoted by ‘M’ letter. 
 
Example: 

 
K  [ ] MY [PHRASE] 

 & { M fam  [PHRASE] ? 
        R  YOUR [PHRASE] ? 



 18

 
        [ ] means that “my” must be at the beginning of the sentence. 
 
        IF the user enter : my brother is beautiful. 
        Robot answer: YOUR BROTHER IS BEATIFUL? 
        Action performed:  memorizing [ brother is beautiful ] and associate it    
                                         with “fam” as his index code. 
 
 
3. Deleting Script Command: 

 
Delete and script command by using back slash notation. 

 
V \    :  Deletes all current void input messages. 
M \ fam : deletes the memorization command with index “fam”. 

 
 

Note that 
• This process is generated according to a specific order, they are 

performed only after the user’s input has been fully processed to 
generate an appropriate output. 

• The memorized actions always precede any other action. 
 

2.4 Implementing Grammatical Rules 
 
Elizabeth has the ability to produce a grammar structure analysis of a sentence using 

set of input transformation rules to represent certain grammar. This provide an 
introduction to some of the major concepts and techniques of natural language 

processing. 
 
Consider the following grammar: 

 
S => NP  VP 

NP => D  N 
VP => V  NP 

 
It can be represented by the input rules to deal with certain nouns, verbs and 
determiners, as follows: 
 
I  a => (A d) 
I   the => (THE d) 
I   cat => (CAT n) 
I   dog => (DOG n) 
I   rabbit => (RABBIT n) 
I   bites => (BITES v) 
I   chases => (CHASES v) 
I   likes => (LIKES v) 
I   ([brak1] d) ([brak2] n) => (([brak1] D) ([brak2] N) np) 
I   ([brak1] v) ([brak2] np) => (([brak1] V) ([brak2] NP) vp) 



 19

I   ([brak1] np) ([brak2] vp) => (([brak1] NP) ([brak2] VP) s) 
K   [any?] 
R   [any?] 
 
W  TYPE A SENTENCE USING:  A, THE, CAT, DOG, RABBIT, BITES,  
      CHASES, LIKES 
 
This script starts from the Welcome message, so 
 
Robot: TYPE A SENTENCE USING:  A, THE, CAT, DOG, RABBIT, BITES,  
            CHASES, LIKES 
user input is: the cat likes the dog 
Response :  (((THE D) (CAT N) NP) ((LIKES V) ((THE D) (DOG N) NP) VP) s) 
 
This answer is given according to the following trace: 
 
(THE d) (CAT n) (LIKES v) (THE d) (DOG n) 
((THE D) (CAT N) np) (LIKES v) ((THE D) (DOG N) np) 
((THE D) (CAT N) np) ((LIKES V) ((THE D) (DOG N) NP) vp) 

(((THE D) (CAT N) NP) ((LIKES V) ((THE D) (DOG N) NP) VP) s) 
 

 
 
3. A Comparison between ALICE and Elizabeth 
 
From the previous two sections, you can determine the following: 

 
• ALICE used a simple pattern template to represent input and output, 

and also using simple pattern matching algorithm. 
      Between Elizabeth uses Input rules, keyword patterns and output      
      rules to generate a response. 

 
• The recursive techniques used in ALICE is considered as a power 

point of the system, it is used for simplifying the input by calling 
match categories  recursively. Contradictory, the nature of some rules 
in Elizabeth may cause cycling or iteration, which is solved by 
applying the rule only once if it is applicable for the active text more 
than 10, times in succession.  

 

• In ALICE there is the ability to combine two answers in the case of 
splitting happened within Normalization Process, or the partitioning 
caused by the recursive process, The recursive process provide a 
way to partition the sentence to two sentences then combine their 
results which is not available by Elizabeth. 

 
• The most important and strong issue in ALICE is the pattern 

matching algorithm, which is easy and depend on depth first search. 
This algorithm try to find the longest pattern matching between 



 20

Elizabeth gives the response according to the first Keyword pattern 
matched. 

 
• Both systems can change personal pronouns, a lot of complicated 

appear in Elizabeth related to writing some rules in upper case and 
others in lower, which may cause a lot of errors and give unsuitable 
answers. Also both systems allowed memorization for the previous 
input, output for further using, but Elizabeth allow other actions to 
occur while the conversation is under progress, that is called the 
dynamic process like adding, modifying and deleting script 
commands. 

 

• If the same input repeat during the conversation, Elizabeth try to give 
different answers by using different random selection responses from 
the respond list. In ALICE sometimes give you the same answers or 
different one. 

 
• Elizabeth has the ability to give the derivation structure for a sentence 

using the grammatical analysis which is not provided by ALICE. 
 

• Elizabeth allow the user to create his own script files and it 
incorporates analysis tables for all steps in matching, helping the user 
to understand how this answer is generated.  

 
4. Conclusion 
Both systems are chatbots systems that are adopted form Eliza program, and 
each one has advantages and disadvantages. Alice stored a huge corpus text 
and Elizabeth provides the grammatical analysis for sentences, both of them 
give a good introduction To Artificial Intelligence, Natural Language 
Understanding and Patten Matching. The main inference point is it will be 
easier to build a machine learning for ALICE since it uses simple patterns, 
templates to represent input and output. Elizabeth uses more complex rules 
for which you need to write Input transformation, Output transformation and 
keyword patterns to represent a user input and Elizabeth answer. You can do 
that by simple pattern template using ALICE. Another important point used by 
ALICE is the ability to partition the user input or splitting it into two sentences 
and then combines the answers. This is an important issue in language 
processing. Elizabeth does not provide this facility. According to Elizabeth 
structure it will be difficult to do splitting.   
 

5. References 

1. ‘ Alice and Aiml: a powerful Alternative to HTML and voice XML’ 
XML Journal, vol. 2, issue 10, www.XML-Journal.com 

 
2. Cara Feinberg, ‘ Frontiers of Free Marketing’, The American 

Prospect vol. 12 no. 14, August 13, 2001. 
 
3. David Pescovitz, ‘ Look What’s Talking: Software Robots’, The 

New York Times, March 18, 1999. 



 21

 
4. Justin Hunt, ‘ The King is ready for a chat’, Guardian, Thursday 

February 1, 2001. 
 
5. Noel Bush, (2001) ‘Artificial Intelligence Mark up Language (AIML)  
        version 1.0.1’ 
      http://alice.sunlitsurf.com/TR/2001/WD-aiml/ 
 
6. Peter Millican, (2002) Elizabeth Help Files. 
7. Richard S. Wallace, (200) ‘Symbolic Reduction in AIML’ 

                   http://alice.sunlitsurf.com/documentation/srai.html 
 

8. Richard S. Wallace, (2001) ‘AIML Pattern Matching Simplified’ 
  http://alice.sunlitsurf.com/documentation/matching.html 

 
9. Richard S. Wallace, ‘How It All Started’ 

  http://alice.sunlitsurf.com/articles/wallace/start.html 
 

10. Richard S. Wallace, ‘From Eliza to ALICE’ 
http://alice.sunlitsurf.com/articles/wallace/eliza.html 

 
11. Thomas Ringate,  (2001)  ‘AIML Primer’  

  http://alice.sunlitsurf.com/documentation/aiml-primer.html 
 

12. Thomas Ringate, (2001) ‘AIML Reference Manual’ 
        http://alice.sunlitsurf.com/documentation/aiml-reference.html 

 
 


