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Applications of Laplace–Carleson embeddings to

admissibility and controllability

Birgit Jacob∗ Jonathan R. Partington† Sandra Pott‡

January 31, 2014

Abstract

It is shown how results on Carleson embeddings induced by the Laplace
transform can be use to derive new and more general results concerning the
weighted (infinite-time) admissibility of control and observation operators
for linear semigroup systems with q-Riesz bases of eigenvectors. As an ex-
ample, the heat equation is considered. Next, a new Carleson embedding
result is proved, which gives further results on weighted admissibility for
analytic semigroups. Finally, controllability by smoother inputs is charac-
terised by means of a new result about weighted interpolation.

Keywords. Semigroup system, controllability, admissibility, Hardy space,
weighted Bergman space, Interpolation, Carleson measure.

2000 Subject Classification. 30D55, 30E05, 47A57, 47D06, 93B05, 93B28.

1 Introduction

The main purpose of this note is to show how recent results on Carleson em-
beddings, mostly derived in [14], may be applied to the theory of well-posed
linear systems. We shall discuss concepts such as admissibility, controllability
and observability, for which some standard references are the books [23, 20] and
the survey [9]. Our basic tools will be the theory of a class of function spaces
known as Zen spaces, which include the standard Hardy and Bergman spaces.

The structure of the paper is as follows. In Section 2, we review the basics of
the theory of admissibility for diagonal semigroups, introduce the key embed-
ding results for Zen spaces, and derive new admissibility results in this context.
Section 3 treats the case of analytic semigroups (corresponding to measures
supported in a sector), where we are able to move away from the Hilbertian
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(L2) context and study general Lp spaces. We also derive a new embedding
theorem and apply it to weighted admissibility. Finally, in Section 4 we con-
sider notions of controllability, which are linked with interpolation questions.

Although the norms most commonly used in physical applications are un-
weighted L1 and L2 norms, it is also useful to consider Sobolev spaces (control
by smoother inputs) and weighted Lp spaces (when the size of the input may
depend on time), see [4, 24] and the references therein.

2 Admissibility for diagonal semigroups

Let A be the infinitesimal generator of a C0–semigroup (T (t))t≥0 defined on a
Hilbert space H, and consider the system

dx(t)

dt
= Ax(t) + Bu(t), x(0) = x0, t ≥ 0, (1)

where u(t) ∈ C is the input at time t, and B : C → D(A∗)′ is the control
operator. Here D(A∗)′ is the completion of H with respect to the norm

‖x‖D(A∗)′ = ‖(β − A)−1x‖H ,

for any β ∈ ρ(A). To ensure that the state x(t) lies in H it is sufficient that
B ∈ L(C, D(A∗)′), that

∫∞
0 T (t)Bu(t) dt lies in H for each input u ∈ L2(0,∞),

and
∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

H

≤ m0‖u‖L2(0,∞)

for some m0 > 0 (the infinite-time admissibility condition for B). We note that
the C0–semigroup (T (t))t≥0 has an extension to D(A∗)′.
Dually, we may consider the system

dx(t)

dt
= Ax(t), y(t) = Cx(t),

with x(0) = x0, say. Here C : D(A) → C is an A-bounded observation operator
mapping; i.e., for some m1, m2 > 0,

‖Cz‖ ≤ m1‖z‖ + m2‖Az‖.

C is infinite-time admissible, if there is an m0 > 0 such that y ∈ L2(0,∞)
and ‖y‖2 ≤ m0‖x0‖ for all x0 ∈ D(A). Note that y(t) = CT (t)x0 for every
x0 ∈ D(A).

In this paper we shall refer simply to admissibility throughout.

The duality here is that B is an admissible control operator for (T (t))t≥0 if
and only if B∗ is an admissible observation operator for the dual semigroup
(T (t)∗)t≥0.
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Admissibility is an important concept in the theory of well-posed systems, and
we refer to the survey [9] and the book [23] for the basic background to the
subject. For diagonal semigroups, admissibility is linked with the theory of
Carleson measures as in [8, 25]; namely, supposing that A has a Riesz basis of
eigenvectors, with eigenvalues (λk) lying in the open left half-plane C−, then
a scalar control operator corresponding to a sequence (bk) is admissible if and
only if the measure

µ :=
∑

k

|bk|2δ−λk

is a Carleson measure for the Hardy space H2(C+) on the right half-plane: this
means that the canonical embedding H2(C+) → L2(C+, µ) is bounded. In fact,
the extension to normal semigroups has also been made [26].
Generalizations to α-admissibility, in which u must lie in L2(0,∞; tα dt) for
−1 < α < 0, were studied by Wynn [28]. The key fact here is that under the
Laplace transform the space L2(0,∞; tα dt) is mapped to a weighted Bergman
space, and for these there are analogues of the Carleson measure theorem avail-
able.
The results below enable us to take this generalization further and consider
admissibility in the sense of the input lying in much more general spaces
L2

w(0,∞) = L2(0,∞;w(t) dt).
In order to state the link between admissibility and embeddings in the greatest
generality possible, we assume now that 1 ≤ q < ∞ and the semigroup (T (t))t≥0

acts on a Banach space X with a q-Riesz basis of eigenvectors (φk); that is,
T (t)φk = eλktφk for each k, with each λk lying in C−, and (φk) is a a Schauder
basis of X such that for some C1, C2 > 0 we have

C1

∑

|ak|q ≤ ‖
∑

akφk‖q ≤ C2

∑

|ak|q

for all sequences (ak) in ℓq. In practice, this will mean that without loss of
generality we can assume that X = ℓq and that the eigenvectors of the generator
of (T (t))t≥0, denoted by A, are the canonical basis of ℓq. We suppose also that
we have a Banach space Z of functions on (0,∞), which may be an Lp space
or a weighted space L2(0,∞;w(t)dt), whose dual space Z∗ can be regarded,
respectively, as either Lp′(0,∞) or L2(0,∞;w(t)−1dt) in a natural way. Here,
and throughout the paper, p′ denotes the conjugate exponent to p, i.e., p′ =
p/(p − 1).
The following result links admissibility and Laplace–Carleson embeddings (that
is, Carleson embeddings induced by the Laplace transform).

Theorem 2.1 Let B be a linear bounded map from C to D(A∗)′ corresponding
to the sequence (bk). The control operator B is Z-admissible for (T (t))t≥0, that
is, there is a constant m0 > 0 such that

∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

X

≤ m0‖u‖Z , u ∈ Z,

if and only if the Laplace transform induces a continuous mapping from Z into
Lq(C+, dµ), where µ is the measure

∑ |bk|qδ−λk
.
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Proof: Clearly we may suppose without loss of generality that X = ℓq and
that φk = ek, the standard basis of X. We have that

∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

X

=

∥

∥

∥

∥

∥

∫ ∞

0

∑

k

eλktbkeku(t) dt

∥

∥

∥

∥

∥

X

=

(

∑

k

|û(−λk)|q|bk|q
)1/q

,

from which the result follows easily.

A duality argument gives the corresponding result for observation operators.

Theorem 2.2 Let C be a linear bounded map from D(A) to C. The observation
operator C is Z-admissible for (T (t))t≥0, that is, there is a constant m0 > 0
such that

‖CT (·)x‖Z ≤ m0‖x‖X

for all x ∈ D(A), if and only if the Laplace transform induces a continuous
mapping from Z∗ into Lq′(C+, dµ), where µ is the measure

∑

|ck|q
′
δ−λk

and
ck := Cφk.

Proof: Again we may suppose without loss of generality that X = ℓq and
that φk = ek, the standard basis of X. Z-admissibility is equivalent to the
condition that

sup
f,x

∣

∣

∣

∣

∫ ∞

0
CT (t)xf(t) dt

∣

∣

∣

∣

< ∞,

where we take f ∈ Z∗ and x = (xk) ∈ D(A) both of norm 1. Calculating
CT (t)x, we see that this is equivalent to the condition that

sup
‖f‖=‖x‖=1

|
∑

k

ckf̂(−λk)xk| < ∞,

and, taking the supremum over the set of x of norm 1 in D(A), which is dense,
we obtain

sup
‖f‖=1

‖(ckf̂(−λk))‖q′ < ∞,

which is easily seen to be equivalent to the boundedness of the Laplace–Carleson
embedding from Z∗ into Lq′(C+, dµ).

In general we shall state our results in terms of control operators, leaving the
interested reader to deduce the corresponding results for observation operators.

Now let ν̃ be a positive regular Borel measure on [0,∞) satisfying the following
(∆2)-condition:

R := sup
r>0

ν̃[0, 2r)

ν̃[0, r)
< ∞. (∆2)
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Let ν be the positive regular Borel measure on C+ = [0,∞) × R given by
dν = dν̃ ⊗ dλ, where λ denotes Lebesgue measure. In this case, for 1 ≤ p < ∞,
we call

Ap
ν =

{

f : C+ → C analytic : sup
ε>0

∫

C+

|f(z + ε)|pdν(z) < ∞
}

a Zen space on C+. If ν̃({0}) > 0, then by standard Hardy space theory, f has
a well-defined boundary function f̃ ∈ Lp(iR), and we can give meaning to the
expression

∫

C+
|f(z)|pdν(z). Therefore, we write

‖f‖Ap
ν

=

(
∫

C+

|f(z)|pdν(z)

)1/p

,

a notation that makes sense whether or not ν̃({0}) = 0. Clearly the space A2
ν

is a Hilbert space.
Well-known examples of Zen spaces are Hardy spaces Hp(C+), where ν̃ is
the Dirac measure at 0, or the standard weighted Bergman spaces Ap

α, where
dν̃(r) = rαdr, α > −1. Some further examples constructed from Hardy spaces
on shifted half planes were given by Zen Harper in [6, 7].
The following proposition, given in [14], is elementary and appears for special
cases in [6, 7]. Partial results are also given in [2, 3].

Proposition 2.3 (Proposition 2.3 in [14]) Let A2
ν be a Zen space, and let w :

(0,∞) → R+ be given by

w(t) = 2π

∫ ∞

0
e−2rtdν̃(r) (t > 0).

Then the Laplace transform defines an isometric map L : L2
w(0,∞) → A2

ν .

Note that the existence of the integral is guaranteed by the (∆2)-condition.

We shall require the following Laplace–Carleson Embedding Theorem from [14].

Theorem 2.4 (Theorem 2.4 in [14]) Let A2
ν be a Zen space, ν = ν̃ ⊗ λ, and

let w : (0,∞) → R+ be given by

w(t) = 2π

∫ ∞

0
e−2rtdν̃(r) (t > 0). (2)

Let µ be a positive regular Borel measure on C+. Then the following are equiv-
alent:

1. The Laplace transform L given by Lf(z) =
∫∞
0 e−tzf(t)dt defines a bounded

linear map
L : L2

w(0,∞) → L2(C+, µ).

2. For a sufficiently large N ∈ N, there exists a constant κ > 0 such that
∫

C+

∣

∣

∣
(LtN−1e−λt)(z)

∣

∣

∣

2
dµ(z) ≤ κ

∫ ∞

0
|tN−1e−λt|2w(t)dt for each λ ∈ C+.
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3. There exists a constant κ > 0 such that

µ(QI) ≤ κν(QI) for each Carleson square QI .

where QI denotes the Carleson square QI = {z = x + iy ∈ C+ : iy ∈
I, 0 < x < |I|}.

From this we may deduce a result characterizing admissibility for normal semi-
groups in the sense of L2

w(0,∞).

Theorem 2.5 Suppose that A : D(A) ⊂ H → H has a Riesz basis (φk) of
eigenvectors with eigenvalues (λk) satisfying Reλk < 0 and let B be a linear
bounded map from C to D(A∗)′ given by the sequence (bk). Let A2

ν be a Zen
space and let w be given by (2). Then the following statements are equivalent.

1. B is an admissible control operator with respect to L2
w(0,∞), that is, there

exists a constant m0 > 0 such that
∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

H

≤ m0‖u‖L2
w(0,∞)

for every u ∈ L2
w(0,∞).

2. For a sufficiently large N ∈ N, there exists a constant κ > 0 such that

‖(λ − A)−NB‖2 ≤ κ

∫ ∞

0
|tN−1e−λt|2w(t) dt, (λ ∈ C+).

3. There exists a constant κ > 0 such that

µ(QI) ≤ κν(QI) for each Carleson square QI ,

where µ =
∑

k |bk|2δ−λk
.

Proof: This follows from Theorem 2.1 and Theorem 2.4, taking q = 2 and
Z = L2

w(0,∞). Note that the resolvent condition follows because

‖(λ − A)−NB‖2 =
∑

k

|λ − λk|−2N |bk|2 =

∫

C+

dµ(z)

|λ + z|2N
,

and the Laplace transform of tN−1e−λt is a constant multiple of (λ + z)−N .

Remark 2.6 Theorem 2.5 in the case that ν̃ equals the Dirac measure in 0,
that is A2

ν = H2(C+), is due to Ho and Russell [8], and Weiss [25]. In the case
dν̃ = rαdr, α ∈ (−1, 0) the result is due to Wynn [28]. Using Theorem 2.5 any
α > −1 can now be considered.

In [5], Haak applied Carleson measure theory to find conditions for admissibility
of the system (1) above, with A generating a diagonal semigroup defined on ℓq,
and inputs lying in the space Lp(0,∞). Using the Hausdorff–Young inequality,
it is possible to characterize admissibility in the situation p ≤ 2 and 1 < p′ ≤
q < ∞.
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Theorem 2.7 Let p ≤ 2 and 1 < p′ ≤ q < ∞. Suppose that A : D(A) ⊂ ℓq →
ℓq is a diagonal operator with eigenvalues (λk) satisfying Reλk < 0, and let B
be a linear bounded map from C to D(A∗)′ corresponding to the sequence (bk).
Then the following statements are equivalent.

1. B is an admissible control operator with respect to Lp(0,∞), that is, there
exists a constant m0 > 0 such that

∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

ℓq

≤ m0‖u‖Lp(0,∞)

for every u ∈ Lp(0,∞).

2. There exists a constant κ > 0 such that

µ(QI) ≤ κ|I|q/p′

for all intervals in I ⊂ iR, where µ =
∑

k |bk|qδ−λk
.

3. There exists a constant κ > 0 such that

‖(λ − A)−1B‖ℓq ≤ κ|Re λ|−1/p

for all λ ∈ C+.

The theorem is a corollary of Theorem 2.1 combined with [14, Thm. 3.2]. More-
over the equivalence of Part 1 and 2 can be found in [5].

Example 2.8 We study the one-dimensional Schrödinger equation on the in-
terval [0, 1], which is given by

∂z

∂t
(ζ, t) = i

∂2z

∂ζ2
(ζ, t) − z(ζ, t), ζ ∈ (0, 1), t ≥ 0,

∂z

∂ζ
(0, t) = 0,

∂z

∂ζ
(1, t) = u(t), t ≥ 0,

z(ζ, 0) = z0(ζ), ζ ∈ (0, 1).

The PDE can be written equivalently in the form (1) with X = ℓq, Aen =
(−in2π2 − 1)en, and bn = i

√
2 for each n. Let q ≥ p′ and p ≤ 2. By Theorem

2.7 , the operator B is an admissible control operator with respect to Lp(0,∞).

3 Admissibility for analytic semigroups

There is no general characterization of admissibility of the system (1) above,
with A generating a diagonal semigroup defined on ℓq, and inputs lying in the
space Lp(0,∞), p > 2, as there is no known full characterization of boundedness
of Laplace–Carleson embeddings

Lp(0,∞) → Lq(C+, µ), f 7→ Lf =

∫ ∞

0
e−t·f(t)dt.
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However, characterizations are possible in some cases with additional informa-
tion on the support on the measure.
If the measure µ is supported on a sector S(θ) = {z ∈ C+ : | arg z| < θ} for
some 0 < θ < π

2 , then the oscillatory part of the Laplace transform can be
discounted, and a full characterization of boundedness can be achieved (see
also [5], Theorem 3.2 for an alternative characterization by means of a different
measure).

Theorem 3.1 (Theorem 3.3 in [14]) Let µ be a positive regular Borel measure
supported in a sector S(θ) ⊂ C+, 0 < θ < π

2 , and let q ≥ p > 1. Then the
following are equivalent:

1. The Laplace–Carleson embedding

L : Lp(0,∞) → Lq(C+, µ), f 7→ Lf,

is well-defined and bounded.

2. There exists a constant κ > 0 such that µ(QI) ≤ κ|I|q/p′ for all intervals
in I ⊂ iR which are symmetric about 0.

3. There exists a constant κ > 0 such that ‖Le−·z‖Lq
µ
≤ κ‖e−·z‖Lp for all

z ∈ R+.

From this we may deduce a result characterizing admissibility for analytic semi-
groups with respect to Lp(0,∞).

Theorem 3.2 Let 1 < p ≤ q < ∞. Suppose that A : D(A) ⊂ ℓq → ℓq is a
diagonal operator with eigenvalues (λk) satisfying Reλk < 0 and (−λk) ⊂ S(θ)
for some θ ∈ (0, π

2 ), and let B be a linear bounded map from C to D(A∗)′ given
by the sequence (bk). Then the following statements are equivalent.

1. B is an admissible control operator with respect to Lp(0,∞), that is, there
exists a constant m0 > 0 such that

∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

ℓq

≤ m0‖u‖Lp(0,∞)

for every u ∈ Lp(0,∞).

2. There exists a constant κ > 0 such that

µ(QI) ≤ κν|I|q/p′

for all intervals in I ⊂ iR which are symmetric about 0, where µ =
∑

k |bk|qδ−λk
.

3. There exists a constant κ > 0 such that

‖(z − A)−1B‖ℓq ≤ κz−1/p

for all z ∈ R+.
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Remark 3.3 Let µ, θ, p and q be as in Theorem 3.2. In [5], Theorem 3.2, the
equivalence of the following statements is shown:

1. B is an admissible control operator with respect to Lp(0,∞), that is, there
exists a constant m0 > 0 such that

∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

ℓq

≤ m0‖u‖Lp(0,∞)

for every u ∈ Lp(0,∞).

2. There exists a constant κ > 0 such that µ̃(QI) ≤ κ|I|q/p for all intervals
in I ⊂ iR which are symmetric about 0, where dµ̃(z) = |z|qdµ(1

z ).

Now let us consider the case p > q for sectorial measures µ. In [14] a condition
in terms of the balayage Sµ of µ has been obtained. Recall that the balayage
Sµ of a positive Borel measure µ on C+ is given by Sµ(t) =

∫

C+
pz(t)dµ(z),

where pz denotes the Poisson kernel of the right half plane. Let Sn := {z ∈ C |
2n−1 < Re z ≤ 2n}.

Theorem 3.4 (Theorem 3.5 in [14]) Let µ be a positive regular Borel measure
supported in a sector S(θ) ⊂ C+, 0 < θ < π

2 and let 1 ≤ q < p < ∞. Then the
following are equivalent:

1. The embedding

L : Lp(R+) → Lq(C+, µ), f 7→ Lf,

is well-defined and bounded.

2. The sequence (2−nq/p′µ(Sn)) is in ℓp/(p−q)(Z).

3. The sequence (2n/p‖Le−2n‖Lq
µ
) is in ℓqp/(p−q)(Z).

If p′ < q, then the above is also equivalent to

4. tq(2−p)/pSµ ∈ Lp/(p−q)(R).

As a corollary we obtain the following result.

Theorem 3.5 Let 1 ≤ q < p < ∞. Suppose that A : D(A) ⊂ ℓq → ℓq is a
diagonal operator with eigenvalues (λk) satisfying Reλk < 0 and (−λk) ⊂ S(θ)
for some θ ∈ (0, π

2 ), and let B be a linear bounded map from C to D(A∗)′ given
by the sequence (bk). Then the following statements are equivalent.

1. B is an admissible control operator with respect to Lp(0,∞), that is, there
exists a constant m0 > 0 such that

∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

ℓq

≤ m0‖u‖Lp(0,∞)

for every u ∈ Lp(0,∞).
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2. The sequence (2−nq/p′µ(Sn)) is in ℓp/(p−q)(Z).

3. The sequence (2n/p‖(2n − A)−1B‖ℓq) is in ℓqp/(p−q)(Z).

If p′ < q, then the above is also equivalent to

4. tq(2−p)/pSµ ∈ Lp/(p−q)(R).

Here µ =
∑

k |bk|qδ−λk
.

Example 3.6 We study the one-dimensional heat equation on the interval
[0, 1], which is given by

∂z

∂t
(ζ, t) =

∂2z

∂ζ2
(ζ, t), ζ ∈ (0, 1), t ≥ 0,

∂z

∂ζ
(0, t) = 0,

∂z

∂ζ
(1, t) = u(t), t ≥ 0,

z(ζ, 0) = z0(ζ), ζ ∈ (0, 1).

This PDE can be written equivalently in the form (1) with X = ℓ2, Aen =
−n2π2en, and bn defined by bn = 1 for each n. By Theorem 3.2 (for 1 ≤ p ≤ 2)
and Theorem 3.5 (for 2 ≤ p < ∞), the operator B is an admissible control
operator with respect to Lp(0,∞) if and only if p ≥ 4/3.

Control problems involving smoother, Sobolev–space valued, controls are re-
lated to embeddings of the form

Hp
β(0,∞) → Lq(C+, µ), f 7→ Lf =

∫ ∞

0
e−t·f(t)dt,

given by the Laplace transform L. Here, for β > 0 the space Hp
β(0,∞) is given

by

Hp
β(0,∞) =

{

f ∈ Lp(R+) :

∫ ∞

0

∣

∣

∣

∣

∣

(

d

dx

)β

f(t)

∣

∣

∣

∣

∣

p

dt < ∞
}

,

‖f‖p
Hp

β

= ‖f‖p
p +

∥

∥

∥

∥

∥

(

d

dx

)β

f

∥

∥

∥

∥

∥

p

p

.

Here ( d
dx)βf is defined as a fractional derivative via the Fourier transform. We

call Hp
β the Sobolev space of index β.

In [14, Corollaries 3.7 and 3.8] the following characterisations of the bounded-
ness of the Laplace–Carleson embedding has been proved.

Proposition 3.7 (Corollary 3.7 in [14]) Let µ be a positive Borel measure
supported in a sector S(θ) ⊂ C+, 0 < θ < π

2 , and let q ≥ p > 1. Then the
following are equivalent:

1. The Laplace–Carleson embedding

L : Hp
β(0,∞) → Lq(C+, µ), f 7→ Lf,

is well-defined and bounded.
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2. There exists a constant κ > 0 such that µq,β(QI) ≤ κ|I|q/p′ for all intervals
in I ⊂ iR which are symmetric about 0. Here, dµq,β(z) = (1+ 1

|z|qβ )dµ(z).

3. There exists a constant κ > 0 such that ‖Le−·z‖Lq
µ
≤ κ‖e−·z‖Hp

β
for all

z ∈ R+.

Proposition 3.8 (Corollary 3.8 in [14]) Let µ be a positive regular Borel mea-
sure supported in a sector S(θ) ⊂ C+, 0 < θ < π

2 and let 1 ≤ q < p, β ≥ 0.

Suppose that Sµβ,q
∈ Lp/(p−q). Then the embedding

L : Hp
β(0,∞) → Lq(C+, µ), f 7→ Lf,

is well-defined and bounded.

As an application we are able to characterize admissibility with respect to
Sobolev space valued control functions.

Theorem 3.9 Let 1 < p < q < ∞. Suppose that A : D(A) ⊂ ℓq → ℓq is a
diagonal operator with eigenvalues (λk) satisfying Reλk < 0 and (−λk) ⊂ S(θ)
for some θ ∈ (0, π

2 ), and let B be a linear bounded map from C to D(A∗)′.
Write µ =

∑ |bk|qδ−λk
. Then the following statements are equivalent.

1. B is an admissible control operator with respect to Hp
β(0,∞), that is, there

exists a constant m0 > 0 such that
∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

ℓq

≤ m0‖u‖Hp
β
(0,∞),

for every u ∈ Hp
β(0,∞).

2. There exists a constant κ > 0 such that µq,β(QI) ≤ κ|I|q/p′ for all intervals
in I ⊂ iR which are symmetric about 0. Here, dµq,β(z) = (1+ 1

|z|qβ )dµ(z).

3. There exists a constant κ > 0 such that ‖(z − A)−1B‖ℓq ≤ κ‖e−·z‖Hp
β

for

all z ∈ R+.

Theorem 3.10 Let 1 < q < p < ∞. Suppose that A : D(A) ⊂ ℓq → ℓq is a
diagonal operator with eigenvalues (λk) satisfying Reλk < 0 and (−λk) ⊂ S(θ)
for some θ ∈ (0, π

2 ), and let B be a linear bounded map from C to D(A∗)′.

Suppose that Sµ̃β,q
∈ Lp/(p−q). Then B is an admissible control operator with

respect to Hp
β(0,∞), that is, there exists a constant m0 > 0 such that

∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

ℓq

≤ m0‖u‖Hp
β
(0,∞),

for every u ∈ Hp
β(0,∞).
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In the setting of analytic diagonal semigroups, it is also possible to charac-
terise L2((0,∞), tαdt)-admissibility of control operators and L2((0,∞), t−αdt)-
admissibility of observation operators in the range 0 < α < 1 in terms of a
Carleson-type condition or a resolvent condition (compare this with the coun-
terexample by Wynn in [27] for a diagonal semigroup).
Generally, the difficulty in the case α > 0 stems from the well-known fact that
the boundedness of Carleson embeddings on Dirichlet space cannot be tested
on reproducing kernels or by means of a simple Carleson-type condition [21].
In the case of sectorial measures, however, such a characterisation is possible,
at least for 0 < α < 1. For a interval I ⊂ iR, let TI denote the right half of the
Carleson square QI .

Theorem 3.11 Let µ be a positive Borel measure supported in a sector S(θ) ⊂
C+, 0 < θ < π

2 , and let 0 < α < 1. Then the following are equivalent:

1. The Laplace–Carleson embedding

L : L2((0,∞), tαdt) → L2(C+, µ), f 7→ Lf,

is well-defined and bounded.

2. There exists a constant γ > 0 such that

µ(TI) ≤ γ|I|1−α

for all intervals in I ⊂ iR which are symmetric about 0.

3. There exists a constant κ > 0 such that

‖Lt−αe−tz‖L2(C+,µ) ≤ κ‖t−αe−tz‖L2(tαdt)

for all z ∈ R+.

Proof: The implication (1) ⇒ (3) is immediate. For (3) ⇒ (2), let z = zI =
|I|/2 denote the centre of the Carleson square QI over an intervals I ⊂ iR which
is symmetric about 0. Then the modulus of the function

(Lt−αe−tzI )(s) =
Γ(1 − α)

(zI + s)−α+1
(3)

is bounded below by Γ(1 − α) 1
(2zI)−α+1 on TI , and therefore

µ(TI) ≤ (2zI)
2−2α

Γ(1 − α)2

∫

C+

|(Lt−αe−tzI )(s)|2dµ(s)

≤ κ2 (2zI)
2−2α

Γ(1 − α)2
‖t−αe−tzI‖2

L2(tαdt) =
κ2

Γ(1 − α)
|I|1−α.

Let us now consider (2) ⇒ (1). We use the argument from [14], Thm 3.3. For
n ∈ Z, let

Tn = {x + iy ∈ C+ : 2n−1 < x ≤ 2n,−2n−1 < y ≤ 2n−1}.

12



That is, Tn is the right half of the Carleson square QIn over the interval In =
{y ∈ iR, |y| ≤ 2n−1}. The Tn are obviously pairwise disjoint.
Without loss of generality we assume 0 < θ < arctan(1

2), in which case S(θ) ⊆
⋃∞

n=−∞ Tn (otherwise, we also have to use finitely many translates Tn,k of each
Tn, for which the same estimates apply) .
Now let z ∈ Tn for some n ∈ Z. Then we obtain, for f ∈ L2((0,∞), tαdt),

|Lf(z)| ≤
∫ ∞

0
|e−zt||f(t)|dt ≤

∫ ∞

0
|t−α/2e−2n−1t||f(t)tα/2|dt

≤ Cα2(−n+1)(1−α/2)(M(tα/2f))(2−n+1),

where Cα > 0 is a constant dependent only on the L1-integration kernel φα(t) =
χ[0,∞)(t+1)(t+1)α/2e−t−1, and Mf is the Hardy–Littlewood maximal function.
We refer to e.g. [22], page 57, equation (16) for a pointwise estimate between
the maximal function induced by the kernel φα, and M . Note that we can easily
dominate φα by a positive, radial, decreasing L1 function here. Consequently,

∫

S(θ)
|Lf(z)|2dµ(z) ≤ C2

α

∞
∑

n=−∞

2(−n+1)(2−α)(M(tα/2f)(2−n+1))2µ(Tn)

≤ γC2
α

∞
∑

n=−∞

2(−n+1)(2−α)2n(1−α)(M(tα/2f)(2−n+1))2

= γC2
α21−α

∞
∑

n=−∞

2−n+1M(tα/2f)(2−n+1)2

. ‖f‖2
L2(tαdt).

We therefore have the following corollary of Theorem 3.11 and Theorem 2.1.

Corollary 3.12 Let 0 < α < 1. Suppose that A : D(A) ⊂ ℓ2 → ℓ2 is a
diagonal operator with eigenvalues (λk) satisfying Reλk < 0 and (−λk) ⊂ S(θ)
for some θ ∈ (0, π

2 ), and let B be a linear bounded map from C to D(A∗)′.
Write µ =

∑ |bk|2δ−λk
. Then the following statements are equivalent.

1. B is an admissible control operator with respect to L2((0,∞), tαdt), that
is, there exists a constant m0 > 0 such that

∥

∥

∥

∥

∫ ∞

0
T (t)Bu(t) dt

∥

∥

∥

∥

ℓ2
≤ m0‖u‖L2((0,∞),tαdt),

for every u ∈ L2((0,∞), tαdt).

2. There exists a constant κ > 0 such that µ(TI) ≤ κ|I|1−α for all intervals
in I ⊂ iR which are symmetric about 0.

3. There exists a constant κ > 0 such that

‖Lt−αe−λt‖L2(C+,µ) ≤ κ‖t−αe−λt‖L2(tαdt)

for all λ ∈ R+.
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4. There exists a constant κ > 0 such that

‖(λ − A)α−1B‖ ≤ κλ(α−1)/2

for all λ ∈ R+.

Proof: It is enough to check that conditions 3 and 4 are equivalent. Note
that for λ ∈ R+

‖(λ − A)α−1B‖2 =
∑

k

|bk|2|λ − λk|2α−2,

which is a constant multiple of ‖Lt−αe−λt‖2
L2(C+,µ) (cf. (3)) . Similarly, we have

that ‖t−αe−λt‖2
L2(tαdt) is a constant multiple of λα−1.

Note that the corollary is also valid in the limiting case α = 0.

4 Exact controllability for diagonal systems

We consider the equation

dx(t)

dt
= Ax(t) + Bu(t), (4)

with solution

x(t) = T (t)x0 +

∫ t

0
T (t − s)Bu(s) ds,

suitably interpreted. We now consider an exponentially stable C0 semigroup
(T (t))t≥0, on a Hilbert space H, i.e.,

‖T (t)‖ ≤ Me−λt, (t ≥ 0),

for some M > 0 and λ > 0. Suppose first that B is admissible. Then we have
a bounded operator B∞ : L2(0,∞;U) → H, defined by

B∞u =

∫ ∞

0
T (t)Bu(t) dt.

The system is exactly controllable, if its range R(B∞) equals H. If B is not ad-
missible, then the operator B∞ is commonly defined as a mapping into a larger
(extrapolation) space and exact controllability requires that its image contains
H.

Although we shall be working with exact controllability in infinite time, it is pos-
sible (but much more difficult) to use interpolation and embedding techniques
in Paley–Wiener spaces in order to obtain analogous results on finite-time con-
trollability. Some results along these lines can be found in [13].

In [10] exact controllability for diagonal systems with scalar inputs was char-
acterised in terms of Carleson measures (a version for multivariable inputs was
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given in [11]). In particular if A has a Riesz basis of eigenvectors, with eigenval-
ues (λn) (as always, assumed to lie in C−, but with no separation assumptions
made), then with a control operator corresponding to a sequence (bn) the system
is exactly controllable if and only if

νλ :=
∑

n

|Re λn|2
|bn|2

∏

k 6=n p(λn, λk)2
δ−λn

is a Carleson measure. Here p(λn, λk) is the pseudo-hyperbolic metric, i.e.,

p(λn, λk) =

∣

∣

∣

∣

λn − λk

λn + λk

∣

∣

∣

∣

.

Exact controllability by inputs in Sobolev spaces H2
β with 0 < β < 1/2 was

characterised in [12, Thm. 3.8]. In [14, Thm. 3.9] the following result was
proved, which enable us to dispense with the restriction on β.

Theorem 4.1 Let µ be a positive Borel measure on the right half plane C+

and let β > 0. Then the following are equivalent:

1. The Laplace–Carleson embedding

H2
β(0,∞) → L2(C+, µ)

is bounded.

2. The measure |1 + z|−2βdµ(z) is a Carleson measure on C+.

In [19], [18], the following theorem was proved:

Theorem 4.2 Let (gk)k∈N be a sequence of nonzero complex numbers and let
(zk)k∈N be a Blaschke sequence in C+. Write b∞,k =

∏

j 6=k p(zj , zk).
Let m2 = sup(ak)∈ℓ2,‖(ak)‖2=1 inff∈H2(C+),gkf(zk)=ak

‖f‖H2.
Then

m2 = ‖Jµ2
‖

where

µ2 =

∞
∑

k=1

|2 Re zk|2
|b∞,kgk|2

δzk
,

and Jµ2
is the Carleson embedding

Jµ2
: H2(C+) → L2(C+, µ2).

Using Theorem 4.1, we obtain

Corollary 4.3 Let (gk)k∈N be a sequence of nonzero complex numbers and let
(zk)k∈N be a Blaschke sequence in C+. Write b∞,k =

∏

j 6=k p(zj , zk). Let

mβ = sup
(ak)∈ℓ2,‖(ak)=1‖

inf
f∈H2

β

{‖f‖H2
β

: gkLf(zk) = ak}.

Then mβ < ∞, if and only if there is a constant κ > 0 such that

∑

zk∈QI

|2 Re zk|2|1 + zk|2β

|b∞,k|2|gk|2
≤ κ|I| for all intervals I ⊂ iR.
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Finally, Corollary 4.3 enables us to characterize controllability by inputs in
Sobolev spaces H2

β.

Theorem 4.4 Let β > 0. Suppose that A : D(A) ⊂ H → H has a Riesz basis
(φk) of eigenvectors with eigenvalues (λk) satisfying Reλk < 0 and let B be a
linear bounded map from C to D(A∗)′. Write b∞,k =

∏

j 6=k p(λj , λk). Then the
following statements are equivalent.

1. System (4) is exactly controllable with respect to H2
β, that is,

H ⊂ B∞(H2
β).

2. there is a constant κ > 0 such that

∑

−λk∈QI

|2 Re λk|2|1 − λk|2β

|b∞,k|2|gk|2
≤ κ|I| for all intervals I ⊂ iR.

Similar results can be proved for null-controllability, along the lines of [10].

5 Conclusion

Other techniques for analysing admissibility and controllability are of course
available (see, for example, [1, 16, 17, 20, 23]), and these include Carleman
inequalities, multipliers, moment problems and spectral analysis. However,
the advantage of the present approach is that it gives a complete answer in
terms of necessary and sufficient conditions in the case of diagonal systems and
weighted input spaces. As a referee has pointed out, further questions may
be asked about non-homogeneous problems, perturbed systems (including non-
linear terms), and indeed stabilizability. These would make interesting research
projects in their own right, and beyond the scope of this paper, although the
issue of perturbed systems is addressed in the context of Carleson measures in
the very recent paper [15].
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groups. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Ver-
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