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Abstract

Support Vector Machines (SVMs) are used for system
identification of both hnear and non-linear dynamic
systems. Discrete time linear models are used to il-
lustrate parameter estimation and non-linear models
demonstrate model structure identification. The VC
dimension of a trained SVM indicates the model accu-
racy without using separate validation data. We con-
clude that SVMs have potential in the field of dynamic
system identification, but that there are a number of
significant 1ssues to be addressed.

1 Introduction

Support vector machines (SVMs) were developed in a
pattern classification context as an implementation of
structural risk minimisation [6]. Regression estimation

can be performed by an extended form of SVM and has -

been shown to perform well in areas such as identifying
chaotic time series models [4].

This paper demonstrates SVMs in linear and non-
linear system identification applications. Simple re-
gression problems illustrate practical implications of
SVMs including linear dynamic model parameter es-
timation. Nonlinear systems show how SVMs include
the minimum complexity in their constitution to solve
a problem with a particular set of parameters.

A feature of this type of learning algorithm is that an
estimate of generalisation ability may be obtained from
a trained network without using test data, assuming
the training data is representative. Vapnick Chervo-
nenkis (VC) theory [5] is the fundamental idea behind
SVMs which defines a measure of a learning machine’s
complexity (VC dimension). This metric provides a
bound on the probability of test set errors and can be
calculated theoretically for a type of learning machine,
or estimated from a particular trained learning ma-
chine. These general attributes are useful for system
identification, especially for non-linear systems where
required model complexity is difficult to estimate.

2 Support Vector Regression

Support Vector Machines for regression purposes yield
an approximation function of the form

I
f(&) = Z(ai —al)K(%:,%) +b (1)

The function, K, can be a linear dot product or
a nonlinear function obeying Mercer’s condition [2].
In the linear case, the function, K, can be separated
and the weights found by Eizl(a; — a?)z; . Non-
linear kernel functions imply a non-linearly expanded
feature space (Hilbert space) in which inner products
are performed. A sum of convolved inner products, K,
[6] replace an expansion, ¢, of input vectors, Z; i.e.
Zi:l K(Z;,Z) = W.¢(Z). The use of kernel functions
replaces a possibly very high dimensional Hilbert space
and therefore does not explicitly increase the feature
space dimension.

The algorithm calculates values «; and o associated
with a subset of training vectors, ;. The subset of
training vectors are called support vectors. The value,
b, in equation (1) is a bias term.

To calculate the parameters, the following cost func-
tion is minimised.

C(w,b) = %52 + GZK(&) +{(&)  (2)

subject to
Vi— (0.8 +b) <& +e (3)
WE+b—y; <& +e (4)
8.8 210 ds Lpwvyl (5)

This functional minimises the magnitude of the
weights, w, within the limits of the interpolation func-
tion (1) causing errors on the training data. The pa-
rameter, C, controls the cost incurred by training er-
rors and is used for regularisation. The slack variables,
£, are introduced to accommodate errors on the train-
ing set.

The constraints also include a term, ¢, which al-
lows a margin of error without incurring any cost. A
non-negative value of ¢ means that the support vec-
tors can be a sparse subset of the training data. The
e-insensitive zone defines a manifold in feature space
where the approximating function can exist without
being considered a training error. Minimisation of the
weight vector norm fixes the approximation function
within this manifold, if possible.

The function, (, can be used to adjust the loss func-
tion to training noise, e.g. quadratic or Huber ro-
bust loss function [3]. The choice of the function ¢
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is limited by the optimisation process chosen. The
preferred method of optimisation is quadratic pro-
gramming, which limits the function, ¢, to a linear
or quadratic function of §. For example choosing
¢(u) = u? the loss function can be written as the fol-
lowing Lagrangian

L(@,b,€, €& &, 7i) =
Mol + § S (€ +67)
- E;:l o;[é + e+ yi — (0.8 + b)) (6)
T 27'11 ol [6F + € —yi — (0.8 + b))
=iz mb + &

Lagrange multipliers &, o*, 7, 7" are introduced for con-
straints (3)-(5).

Partially differentiating (6) w.r.t W, £, £ and b and
back substitution yields the functional in the parame-
ters &, &",7,7". The choice of { in this example makes
constraint (5) redundant and so terms including 7 can
be dropped giving,

L(& &) =
1 * N
—5 Lij=1(e —ai)(e _,"‘j)(zi-ﬂ:j)
+ 271;:1(053 = g’l«;)w —€dY i ai+taf

1 ol
wZz’:l = G’a

This dual quadratic functional can be maximised
using any standard optimisation technique. The
quadratic form of the cost function is convex and hence
has a unique solution. The training process finds val-
ues of Lagrange multipliers, @;, . Each pair of these
variables complements a training vector, #;. Training
vectors not involved in defining the constraints (3) and
(4) must satisfy Kithn-Tucker conditions and so both
multipliers are set to zero. The pairs, oy, af, with a
positive value define the set of support vectors, Z;.

This complementary set and a bias value, b, give the
necessary information for the interpolation function
(1). The bias value can be calculated from any sup-
port vector &; using equation (1) and setting f(&;) =

y; +sgn(a; —ajf)e+ oy —af .

(7)

3 Experiments

Examples of the SVM paradigm are described for sim-
ple cases of linear and non-linear regression, and ap-
plied to parameter estimation of dynamic systems.

3.1 Function Approximation

Figure 1(a) shows a single dimensional linear approxi-
mation of the function y = z. It demonstrates how a
non-zero é-insensitive zone allows the constraints (3) &
(4) to be in effect for a sparse set of training vectors,
Z;. In the noise free case this results in an approxi-
mation error that is a function of € and the range of y
and Z. The insensitive zone will give unbiased results

. when uniform additive noise is present and the value €

is equal to the maximum noise amplitude.

(8) y=x (b) y=sin(x)

151 .f\
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Figure 1: (a) The linear case shows the training data
(crosses) with 0.1 € insensitive zones marked on each as er-
ror bars. The estimated function (solid line) has a minimum
gradient constrained by the e insensitive zone. The two
support vectors are marked by circles. (b) The sin function
training data is estimated with Gaussian kernel functions
ezp[(Z: — £)?/4]. Four support vectors are required. Their
corresponding contributing Gaussians are shown (dotted).

The nonlinear example in figure 1(b) shows how the
superposition of the Gaussian kernel functions, centred
at the support vectors, constructs the sin function. In
many practical nonlinear regression problems noise is
also present and the art of learning the underlying func-
tion lies in not over-fitting the noise while capturing the
non-linearities. The value of C in the cost function (2)
trades training set precision for regularisation. The
e-insensitive zone trades precision for sparsity in the
support vectors. The choice of both these parameters
requires knowledge of noise distribution in the training
data.
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order ai as bl bg #SV
1(s) || 05 | - 05 | - -
1(m) || 0.500 - 0.500 - 3
2(m) || 0.500 | 0.167 | 0.167 | 0.167 4
26) || 05 | 0 | 05 | 02 | -
2(m) || 0.500 | 0.000 | 0.500 | 0.200 5

Table 1: Linear system parameters of system (s) and esti-
mated model (m). Noise free training examples were used.
€ was set to 107> and C set to 10°.

3.2 Dynamic System Parameter Iden-
tification

For the purposes of time series prediction and system
identification, the objective is to find a set of parame-
ters for a proposed model. These parameters are cho-
sen to fit measured values of output, and usually, input
data.

3.2.1 Linear Systems

A difference equation of the form (8) is a suitable type
of model for discrete measurements from determinis-
tic linear systems. The model parameters are then the
order of the model, N,, Ny, and the values for the co-
efficients a,, b,.

N. Ny
y(k) = anu(k—n) =Y bay(k—n)  (8)

The results of estimating parameters of system or-
ders 1 & 2 are shown in table 1. In cases where the
estimation model order is the same as the generating
model the coefficients are found accurately. In the case
where a second order estimation model and first order
generating model are used, the parameters do not ap-
pear to concur. Pole-zero cancellation is responsible
for the observed discrepancy. A consequence of this is
that there is a degree of freedom in the solution.

When the model order is correct the number of sup-
port vectors is one larger than the dimension of the
input space (N, + Nj + 1). This is the maximum VC
dimension of a linear learning machine. Geometrically
the support vectors are the minimum number of points
required to define a hyper-plane in the feature space.

Where the model order is greater than that of the
system, the number of support vectors is less than the
maximum VC dimension of the learning machine. Each
pole-zero cancellation gives rise to an extra degree of

a, bl bg bg #SV
System 0.5 0.3 0.2 0.015 -
Pol(2) || 0.500 | 0.299 | 0.200 | 0.0151 15
Pol(3) || 0.500 | 0.297 | 0.201 | 0.0153 | 35

Table 2: Non-linear system coefficient values after expan-
sion of kernel functions (£;.Z + 1)%, (£:.Z + 1)°. Ineffective
coeflicients are below 0.001.

freedom and hence one less support vector per cancel-
lation. The solution of the hyper-plane is that which
minimises the sum of squared weight values, w;, but
does not necessarily set individual weights to zero.

For linear systems, the coeflicients (&, 5} are equal to
the weights ().

3.2.2 Non-linear Systems

Nonlinear systems are problematic for system iden-
tification because model structure permutations can
be huge. The dimension explosion when NARMAX
[1] type models are expanded for linear parameter es-
timation can be prohibitive. The effective number
of non-linear terms in the real system is generally
much smaller than that of a general NARMAX model
F(g-1.n,,%0.N,,€0.N,). Where ; are the noise terms.

SVMs allow a high dimensional feature space to be
represented implicitly by scalar kernel functions. Suit-
able kernel functions include Gaussian, hyperbolic tan-
gent, and polynomial, which can be directly related to
network configurations such as radial basis, multi-layer
perceptrons, or polynomial learning machines. During
training, only the necessary number of non-linear terms
are found to describe the training data.

The following noise free non-linear system 1is used to
demonstrate the use of various kernel functions.

y(k) = ayu(k — 1) — biy(k — 1) (9)
—bgy(k - 2) — bg’yz(k - 1)

The model used for identification is

y(k) = f (u(k — 1), u(k - 2),y(k — 1),y(k - 2)) (10)

Table 2 shows results with two types of polynomial
kernels. The coefficients have been estimated accu-
rately within the bounds of e-insensitivity. The inef-
fective coefficients were all found have absolute values
less than 10~2. The number of support vectors in-
creases as the complexity of kernel functions increases.
Inaccuracies in coefficient estimation also increase with
kernel function complexity.

a*




The inaccuracy of model coefficients is related to the
SVM’s decreasing generalisation ability because data
can be over-fitted when complexity is available in the
learning machine. A bound to generalisation ability is
given by the structural risk [5]. This can be calculated
with probability 1 — 7:

gt " i \/?(rog%' +1)logofd)

for I > h, and where R(«) is the risk, given parameters,
@, and Remp(c) is the empirical risk. Empirical risk is
a function of test set errors which in these examples
is zero (i.e. solution lies inside the insensitive zone).
The additional term is the confidence term which in-
cludes, h, the VC dimension of the SVM, and I, the
number of training vectors. Polynomial functions have
finite VC dimensions which are less than or equal to
the expanded dimension. SVMs using kernels such as
Gaussians, have possibly infinite VC dimension. The
actual VC dimension of a trained SVM is estimated
from he;: = R2|w,|? [6] where R is the smallest radius
of a sphere which contains training vectors in feature
space. W, is the optimal weight vector.

A practical implication of the above generalisation
bound is that for any kernel function, an indication
of generalisation ability can be gained from the ratio
of support vectors to training vectors. In the extreme
case, if the number of support vectors equals the num-
ber of training examples it is improbable that future
estimates will be accurate. These metrics can be used
to compare prototype learning machines with different
kernel functions without the need for test data.

3.2.3 Noisy Data

In real system identification problems, data is usually
corrupted by noise. Uncertainty can arise from mea-
surement instruments, system noise, or unmodelled dy-
namics. The character of the noise may be additive,
multiplicative, and be variously distributed. Compar-
isons are made with SVMs and least square estimates
for stochastic systems.

Uncorrelated white noise in linear systems can be
modelled as additive noise at the output. The following
model’s uncertainty averages to unbiased estimates of
parameters by using simple least square methods.

The system model used is

y(k) = au(k — 1)+ by(k — 1)+ £(k)  (12)

First-order model €
(Sys.) ] (LS) [0.001 | 0.1 | 1.0 3
a 0.5 0.488 | 0.488 | 0.487 | 0.483 | 0.432
b 0.4 0.418 | 0.418 | 0.416 | 0.392 | 0.3353
#SV 50 42 6 3
Second-order model
a 0.5 0.490 | 0.490 | 0.489 | 0.494 | 0.4171
az 0 -0.281 | -0.280 | -0.283 | -0.324 | -0.147
b1 0.4 0.146 | 0.145 | 0.149 | 0.204 | 0.102
b2 0 0.232 | 0.232 | 0.233 | 0.283 | 0.0568
#SV 50 46 5 4
MPO 0.404 | 0.405 | 0.410 | 0.466 | 0.888

Table 3: Results from Gaussian noise added to data from
1st order system. Parameters are shown for first-order and
second order models with various values of €. The second-

order model is tested by the mean magnitude of errors from
model predicted output (MPO)

where £(k) is Gaussian white noise with standard de-
viation 0.5, and input u(k — 1) is Gaussian white noise
with standard deviation of 10.

The results in table 3 show that for small e
insensitivity zones the parameter estimates are unbi-
ased and similar to least square estimates. Indeed
without insensitivity the loss function {(&) = &7 im-
plements a least square estimation. The number of
support vectors for diminishing e values increases until
each training vector is included in the support vec-
tor set. The reason for this is that noise in training
data forces errors in the training set for small values of
€. Training vectors which cause errors meet the con-
straints (3)-(4) and hence become support vectors.

The second-order models are performance tested us-
ing the mean absolute error from model predicted out-
puts, produced from separate test data. The MPO
error can be seen to increase dramatically when e is
set to 2. This insensitivity is greater than output noise
amplitudes and so the number of support vectors con-
curs with the noise free case. The e-insensitivite zone
is not an appropriate loss function for Gaussian noise
because its deviation from its mean is not limited.

Table 4 shows the effects of uniform additive noise
on linear and non-linear models. The linear model
SVMs perform comparably with least square esti-
mates. By comparing the SVMs trained with uni-
form noise to those trained with Gaussian noise it can
be seen that performance is improved where support
vectors are sparse. The non-linear system given by




First-order model €
(Sys.) (LS) 0.9 1.0 1.1 1.2
a 0.5 0.507 0.505 0.509 0.510 0.507
b 0.4 0.389 0.386 0.384 0.375 0.346
#5V 8 6 4 3
Second-order model 0.9 1.1 1.4
a) 0.5 0.509 0.501 0.508 0.487
b 0.015 0.382 0.396 0.398 0313
bs 0.4 0.0176 0.0108 0.0096 0.0124
#8V 12 9 6

Table 4: Results with Uniform noise added to data from
a linear 1st order system and non-linear first order system.
Parameters are shown for varying e.

y(k) = aru(k — 1) — bry(k — 1) = bay?(k — 1) + (k)
also shows the SVM'’s performance to compare well
with a least squares estimate.

. The analytical properties of SVMs can be seen to
be compromised in stochastic problems because noise
generates additional support vectors. Sometimes in-
sensitivity may be increased with little effect on model
accuracy with the benefit of yielding a sparse support
vector set. In circumstances where signal to noise ratio
is good, and noise amplitude is restricted, the insensi-
tivity zone can allow the SVM to solve a problem as if
a deterministic case.

4 Conclusions

The properties of support vector regression are at-
tractive for non-linear system identification because
high dimensional expansions are not explicitly required
to solve for linear parameters. By comparison with
other kernel-based learning methods such as radial ba-
sis functions, SVMs have the advantage that the num-
ber of kernels and centre positions are found automati-
cally and optimally. Other parameters associated with
kernels can be optimised relatively easily because pro-
totypes do not have to be tested to judge performance.

In linear models the occurrence of pole-zero cancella-
tion caused by an excess of lags is detected by missing
support vectors. In general, however, for non-linear
or stochastic systems, the expected number of support
vectors is not easily calculated, and superfluous model
lags may be difficult to spot. For analytical treatment
of the model, standard model coefficients can be calcu-
lated from the weighted sum of the relevant terms in
the kernel functions.

Ordinary support vector regression does not always
give a parsimonious model description as can the

orthogonal parameter estimation algorithm for non-
linear stochastic systems [1]. Arbitrarily complex sys-
tems can however be learnt with controllable and mea-
surable ‘accuracy’ within the physical limits of the ma-
chine. The SVM’s inherent properties fulfill the ma-
jority of requirements for general purpose linear and
non-linear system identification.

Problems that must be overcome to improve SVMs
practical viabilty are mainly concerned with the treat-
ment of noisey data. For stochastic systems, a dillema
exists between model accuracy and simplicity, for
which the magnitude of e-insensitivity is instrumental.
The pre-requisite value for ¢ has many practical dis-
advantages because of the arbitary nature of the noise
it is attempting to eliminate. Further weakness lies
in model order identification. Detection of superfluous
lags is detectable for deterministic linear systems only,
and explicit identification of model order is not auto-
matic. Methods of improving these points are currently
under investigation.
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