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A NEW NON-LINEAR DESIGN METHOD FOR ACTIVE VEHICLE
SUSPENSION SYSTEMS
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Research Report No 700

Abstract: A novel non-linear design method based on linear quadratic optimal control
theory is presented that applies both to linear and (a wide class of) non-linear systems. The
method is easy to apply and results in a globally stabilising, near-optimal solution that can
be implemented in real-time. The key feature of the design method is the introduction of
state-dependence in the weight matrices of the usual linear quadratic cost function, leading
to a non-linear design method, even for linear dynamics, To demonstrate the method, a
simple linear suspension model is used, in conjunction with a non-linear state penalty,
which better reflects the engineering objectives of active vehicle vibration suppression.
Non-linear dynamics can equally well be accommodated. A number of simulations is
conducted and compared, favourably, with a passively mounted vehicle. These preliminary
results indicate the potential of the method.

Keywords: Non-linear control systems; quadratic optimal regulators; active vehicle
suspension; Riccati equations; global stability.

1. INTRODUCTION

Linear quadratic optimal control theory is a highly
developed approach for the synthesis of linear
optimal control laws and has been applied widely in
studies on active vehicle suspension systems. While
the approach is attractive in that it is possible to
penalise different varables so as to trade-off
between, say, ride comfort and handling, or comfort
and suspension travel, the way these vamables are
treated is essentially fixed — no provision is made to
allow the suspension to distinguish between a
smooth road and a rough one. Evidently, while
comfort might be a prime objective under normal
circumstances, on rough surfaces the suspension
should be stiffened to avoid hitting its limits, hence
incurring damage. Although, in principle, time-
varying weighting parameters are allowed in the
linear quadratic approach, lack of prior knowledge
of the road surface, and the anti-causal calculation
for the solution makes the introduction of these

difficult. The required amplitude dependence can
never, therefore, be achieved through the linear
quadratic approach.

In this paper we make use of a new result that
generalises the theory to non-linear - systems to
provide a non-linear design method that overcomes
the shortcomings mentioned above. The method
applies to systems having linear or, a broad class of,
non-linear dynamics. In brief, it turns out that the
infinite time-horizon linear quadratic regulator
problem, when solved aftresh at every state, leads to a
globally stabilising, near-optimal control policy
(Banks and Mhanna, 1992). Thus, for admissible
system dynamics, the weighting parameters can be
made to be functions of the state variables and the
desired amplitude dependence obtained. Thus, the
design stage allows for the introduction of non-
linearity in the weighting matrices, even for linear
dynamics, leading to a more “intelligent” control
strategy.
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In contrast to the finite-time linear quadratic optimal
control problem, which must be implemented off-
line, our method is causal, but has considerable
computational overhead. However, by using a
solution to the Riccati equation based upon the
matrix sign function (Gardiner and Laub, 1986), it is
possible to derive a parallel algorithm (Gardiner and
Laub, 1991) suitable for real-time implementation.

In (Lin and Kanellakopoulos, 1997) a different
approach to this problem is proposed using the
“backstepping” design method (Kanellakopoulos et
al, 1992) and a non-linear filter to achieve the
desired behaviour, Although a direct comparison is
not possible owing to the essential differences
between the two methods, we illustrate our approach
on the simplified (linear) model described there.

The remainder of the paper is organised as follows.
In §2 the linear quadratic regulator is first set out,
and the generalised results are stated. In §3 the
passive and active suspension models of (Lin and
Kanellakopoulos, 1997) are presented and the choice
of design parameters is discussed. The results of a
series of experiments are described in §4 and
conclusions are drawn in §5.

2. THE DESIGN METHOD
2.1 Linear quadratic regulator

The linear quadratic optimal regulation problem is
expressed as follows. Find the control policy, u, that
minimises the cost functional:

o = T(x’Qx+u'Ru)ﬁ 4}

subject to the linear time invariant dynamics:
x=Ax+Bu 2)
where x is an n-vector of system states, u is an m-
vector of control variables, A and B are matrices of
appropriate dimension and the superscript, 7,
indicates transposition. The matrices Q and R are
positive semi-definite and definite, respectively, and
are used to penalise particular states according to the
engineering objective and the control effort.

It is well known (c.g. Friedland, 1987) that the
control policy which solves the above optimisation
problem is a linear combination of the system states
and is given by:

u=Kx (3)
where X is in turn given by: ;
K=-R'B'P 4)

P is the positive definite solution of the algebraic

Y )= PA+A'P-PBRB'P+Q )

A unique, positive definite solution to the above
exists if the pair (4,B) is stabilizable and (4,T)is

detectable, with Q0 =I"T .

2.2 Non-linear quadratic regulator
The extension of the above to non-linear systems
looks identical, except that, instead of performing a
single optimisation and applying the resulting gain-
matrix for all time, the optimisation has to be carried
out at every time step. Comsider a mnon-linear
dynamical system that can be expressed in the form:
x = A(x)x+B(x)u (6)
where the Jacobians of A(x) and B(x) are subject to
some bounded growth conditions (Lipscihtz) and
A(0)=0,B(0) =0, then at each point, X, on the
state trajectory, a linear system is defined with fixed
A and B. In (Banks and Mhanna, 1992) it is shown
that solving the infinite-time linear quadratic
optimal control problem, pointwise on the state
trajectory, results in a globally stabilising, near-
optimal quadratic control policy for systems
described by equation (6). Thus, by choosing the u
that minimises the usual quadratic cost function at
every time step, we have a globally optimal control
policy for a very wide class of non-linear system.
Evidently, A(X). B(X) and Q are subject, pointwise,
to the same conditions as for the linear case. It is
clear that the proposed solution is identical to the
one obtained from equations (2, 3 and 4) when the
dynamics are linear.

As an aside, the dual situation follows directly from
the reasoning in (Banks and Mhanna, 1992) and
thus state estimation is possible via a non-linear
observer although this aspect is not addressed here.

Because the control synthesis takes place pointwise,
the designer is now fiee to select Q and R in ways
that are more directly applicable to the control
engineering objectives. In particular, these can be
made functions of the instantaneous state variables,
ie.

J= ]‘(fo(i)x +u'RX)ulit (7

subject to the needs for the solution of the Riccati
equation and the invertibility of R. Ensuring that
AX).B(X),R(X) and Q) satisfy these
requirements a priori is difficult in general, however,
for polynomial fiunctions which are not identically
zero, the required properties will be lost only at
isolated points and will not, therefore, persist.

3. SUSPENSION MODEL

Because we wish to emphasise the use of the non-
linear optimal control method for design, i.e. how




the integration of mathematical synthesis and
engineering objectives can be achieved, we adopt a
linear model of a vehicle suspension. The two-
degree-of-freedom, quarter-car model of figure | has
been widely studied in the literature, and it
Tepresents an active element operating in parallel
with passive linear elements — a spring, &,, and
damper, c,.

Y m,

Ya ‘

Fig. 1. Schematic of the two-degree-of-freedom,
quarter-car model.

The motions of the body and wheel (sprung, m,, and
unsprung, m,, masses, respectively) are denoted by
y,and y, respectively, while the deviation of the
road surface from some datum is denoted by 4. The
tyre is represented by a linear spring, k,, with no
damping, for simplicity. We assume that the control
force, f, can be applied directly as a result of the
control signal, with negligible actuator dynamics.
Again this is chosen for simplicity, so as not to
obscure the main point of the paper.

The equations of motion for the quarter car are given
by:

. k .. 1
Yi= __](.V1 _.y'l)_i(vl _.V1)+_f (83)
Iﬂl n]i ml

. k , ;
Y2 :"_hlk(yx _y2)+c_1(})] _‘yz)
mz m

2
(8b)
k, 1
- m, (yz - d) m, f
We choose state variables thus:

X, =Y,X, =Y,X,=,,%X, =y,, and identify the
control signal, w, with the force, £, leading to the
form of equation (2). Note that there is a direct feed-
forward path between the control force and sprung
mass acceleration — one of the primary indicators of
ride quality. A more realistic model would, of
course, incorporate actuator dynamics.

3.1 Design objectives

For the purposes of this paper let us suppose that our
primary - objective 1is to minimise passenger
discomfort. We do this by attempting to reduce the
accelerations to which the passenger is subject —
vertical only, in this simple case. Thus a candidate
for the cost function is y, = C,x +D,u, where C, is
the second row of 4, and D, is the second element of
B. However, ride comfort can only take precedence
when safety and integrity are not compromised.
Thus it is necessary to penalise some measure which
embodies these ideas, usually via the “rattlespace
deflection”, y, —y, =C,x,with C, =[l 0 -1 0].
In the conventional linear quadratic approach we
construct a cost function thus:

sz(qaj}lz-i—qr(yl —.Vz)2+m2)df

“@acracox ) ¥
= 1
+2x'q,C.D,u+ (an,;l + r)u2

0
Letting N=¢,CD, and R=qD:+r we
accommodate the cross-term in the usual way, thus
Q« Q-NR'N', A« A- BR"'N' (Friedland,
1987), with the original Q =gq,C,C,+¢,C.C,. The
parameters ¢,,q, are used to control the trade-off
between ride and handling.

To illustrate the non-linear design procedure we
mtroduce state-dependence into g, : thus
g, = 200w (y, - »,,.055,.001) with

(E-0)/5).6>0
w(£,0,6)=10, [f<o (10)
(€ +6)/6),6<-0

where @ =0 defines a deadzone, & >0, the distance
within which  first reaches unity, and p=5. The

rationale for this functional form is as follows. The
primary objective is to reduce body acceleration
hence we choose a constant g, (=1000). Although
this could also be allowed to be state-dependent, we
choose not to make it so because of technical
difficulties in ensuring the necessary detectability
conditions that arise from the inclusion of the cross-
term in equation 9. This, in turn, arises from the
specific choice of model and will be discussed later.
The secondary objective, which can over-nde the
first for safety reasoms, is to reduce overly large
excursions in the suspension strut. Thus, for a
rattlespace of +0.08m, a deadzone of +0.055m is
allowed before control action is taken. The non-

" linearity increasing to unity within the next 0.001m

of travel and dominating the cost function very
rapidly as travel approaches the limits.




We have been guided here by the fimction chosen in
(Lin and Kanellakopoulos, 1997), however, there the
non-linearity is applied to the strut closure in a very
different way.

4. RESULTS

We use the passive system (equation 8 with
S()=0 for all #) as a reference and compare its
behaviour with that of the non-linearly controlled
vehicle model for a variety of road surface profiles

I—cos8m), 0<r<0.25
Ay = a( cos ) | an
0, otherwise

as suggested in (Lin and Kanellakopoulos, 1997).
Figures 2-10 display the relevant results. In each,
the dashed line indicates the passive behaviour and
the solid curve indicates the controlled behaviour.
For a =0.025m , figures 2—4 show the sprung-mass
acceleration, the rattlespace deflection and the
control signal, respectively, as functions of time.
Likewise for figures 5-7 (a =0.038m ) and figures
8-10 (a =0.055m ). In all simulations, r=0.0001
and all other parameters are as given in (Lin and
Kanellakopoulos, 1997). Simulations are carried out
in Matlab™ using Euler’s method as the integration
routine with a step length of 0.001s.

For a small bump (a =0.025m ) we expect little or
no effect from the rattlespace weighting and that the
linear situation should obtain with ¢,=1000, g,=0.
This is indeed the case. Here, acceleration
excursions are reduced (figure 2) and the reduction
in rattlespace deflection (figure 3) arises indirectly
from penalising the acceleration. The control signal
that achieves these reductions is shown in figure 4.
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Fig. 2 Sprung-mass acceleration for a = 0.025m .

As the severity of the disturbance increases we
expect to see the state-dependency come into play.
For a=0.038m we see a sudden large reversal in
the control signal (figure 7) as the relative
displacement approaches the limits of travel.
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Fig. 3. Rattlespace deflection for a = 0.025m .
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Fig. 4. Control signal for a = 0.025m .

Here the rattlespace penalty dominates the cost
function. The control signal reverts to the linear
situation for t>0.35 approximately. The control
signal behaviour is manifested directly in the
acceleration signal (figure 5) while seeming to have
no discernible effect on rattlespace deflection (figure
6). Such impulsive accelerations would obviously
have implications for passenger comfort and for the
driver’s visual acuity through the mechanism of
“jerk” (derivative of acceleration). We shall return to
this later.
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Fig. 5 Sprung-mass acceleration for a = 0.038m .
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Fig. 6. Rattlespace deflection for a = 0.038m .
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Fig. 7. Control signal for a = 0.038m .

For a large disturbance (a = 0.055m ) we see highly
non-linear behaviour in the close-loop system. Now
the strut deflection approaches, closely, the limits of
travel. Indeed, for this size of bump, the passive
system would “bottom out” with implications for
safety, comfort and structural integrity. The
controlled system is prevented from bottoming out
by the application of large control “gpikes” (figure
10). Once again these are manifested directly in the
acceleration signal (figure 8) with even more severe
implications for the passengers

50
o
o 0 W"—m—ﬁ
E
f =
.8
E
©
g 50t
o
©
-100 : 4
0] 0.2 0.4 0.6 0.8 1

time (s)

Fig. 8 Sprung-mass acceleration for a = 0.055m .
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Fig. 9. Rattlespace deflection for a = 0.055m .
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Fig. 10. Control signal for a =0.055m .

Now the effect of the state-dependent weighting is
clearly evident in the rattlespace deflection response,
which bears little resemblance to the lmear
behaviour of the passive system.

a=0025m a=0038m a=0.055m
Accn. 2.435 5.625 11.784
(passive)
Accn. 1.336 4.270 79.343
(active)
Rattlespace | 3.939¢*  9.100¢™ 19.000¢™
(passive)
Rattlespace | 2.550¢”  6.069%™ 10.000¢™
(active)
Control 1375¢° 74736 5.181¢°

Table 1. Integrated-square values for the three bump
semi-heights.

From Table 1 we can compare the integrated square
of the values of the three signals of interest, over the
interval zero to one second. We see that for the small
and moderate disturbances the active system reduces
the integrated-square of the acceleration and of the
rattlespace deflection. In the case of the severe bump
the rattlespace value is reduced but at the expense of




seriously increased integrated square acceleration
and almost two orders of magnitude additional
integrated square control effort. Recall, however,
that the passive system bottoms out and so the
figures in the table pertaining to this situation are
not reliable.

Clearly, as the state-dependent penalty dominates
the cost function, the control policy becomes very
aggressive, resulting in a marked deterioration in
ride comfort. However, it must be recognised that the
model used here is highly simplified, to the point of
being unrealistic. Im particular, the direct
feedforward of the control signal into the
acceleration response is not strictly proper and leads
to a number of difficulties, both technical, as alluded
to earlier, and from the point of view of
interpretation of the present results; e.g. the effect of
the control signal would be significantly filtered in a
physical system. What is highlighted, however, 1is
the need for careful design of the penalty function.

In (Lin and Kanellakopoulos, 1997) qualitatively
similar effects are also experienced in that they are
able, by virtue of the introduction of non-linearity, to
prevent “bottoming” occurring. However, a direct
comparison is not possible because detailed
behaviour depends strongly on the individual
methods and the simulations of (Lin and
Kanellakopoulos, 1997) include non-linear actuator
dynamics that are ignored here so as not to obscure
the simplicity of the design method. It should be
reiterated  that  non-linearities  could  be
accommodated directly, subject to the conditions of
§2.2. This is no more difficult than in the linear
case, and does not require re-linearisation as might
be the case with gain-scheduling.

5. CONCLUSIONS

A new method for the design and synthesis of active
vehicle suspension systems is proposed, based on a
generalisation of linear quadratic optimal control
theory. The method is simple to apply and affords
much greater design flexibility than the conventional
approach. The resulting controller is non-linear,
even for linear dynamics, and can be implemented in
real-time.

To illustrate the applicability of the method, a simple
lLinear two-degree-of-freedom quarter-car model has
been studied using a rationale suggested in (Lin and
Kanellakopoulos, 1997) to design a non-linear
penalty function. Preliminary results show that the
method has potential and could be tuned to provide
desired closed-loop behaviour. However, the
shortcomings of the simplified model prevent more
concrete use being made of the results.

Some areas for future work are: the selection of more
appropriate penalty functions, O(x), R(x); the real-
time implementation of such a system; the
robustness of the method to modelling errors, and
quantification of how near to optimal the solution is,
and under what conditions.
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