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Abstract

A new direct approach to identifying the parameters of distributed parameter systems
from noise corrupted data is introduced. The model of the system which takes the form of a set
of linear or nonlinear partial differential equations is assumed known with the exception of a
set of constant parameters. Using finite difference approximations of the spatial derivatives the
original equation is transformed into a set of ordinary differential equations. The identification
approach involves smoothing the measured data and estimating the temporal derivatives using
a fixed interval smoother. A least squares method is then employed to estimate the unknown
parameters. Three examples that illustrate the applicability of the proposed approach are
presented and discussed.

1 Introduction

A large number of physical processes can be modelled by partial differential equations and
in many cases the partial differential equation (PDE) governing such systems can be derived
using the basic laws of physics or chemistry. The estimation of the unknown parameters of
the infinite-dimensional system however, involves comparing the measurements made on the
system with the solutions of the equations. The system parameters are then identified such
that the model can reproduce the observed dynamical behaviour as closely as possible with
respect to a chosen performance criterion.

Although the parameter estimation problem for distributed systems has been studied
and is well documented [see the survey papers of Goodson and Polis (1978), Kubrusly (1977),
Banks and Kunish (1989)], many of the methods available in the literature have been designed
to solve a particular identification problem where a number of restrictive assumptions apply.
The use of such approaches to solve a general more complicated parameter estimation problem
is therefore limited and often impossible. Examples of such limiting assumptions which confine
many identification methods to particular classes of distributed systems include knowledge of
the initial and boundary conditions, a linear form of the partial differential operators, a certain
number of measurement locations and of data samples available from these locations.

In this context the present paper proposes an original approach to the parameter identifi-
cation problem of distributed parameter systems which imposes only mild restrictions regarding
‘the observed system. The proposed approach can deal for example with systems described by
general, linear or nonlinear PDE’s the form of which is known a priori. The method does not
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require knowledge of the initial or boundary conditions. Also the number of measurement lo-
cations required is very small, depending on the order of the partial differential equation and of
the number of spatial coordinates (two locations for one-dimensional first order PDE’s , three
locations for one-dimensional second order PDE’s etc).

The approach taken here involves the use of finite difference approximations to convert
the original set of PDE’s into a set of ordinary differential equations. By exploiting the reg-
ularity of the solution with respect to the time variable a fixed interval Kalman smoother is
implemented to smooth the output data and estimate the additional time derivatives which ap-
pear in the differential equations. Finally, the unknown parameters can be estimated directly
from the data using simple least squares or other optimisation schemes.

The proposed method is implemented and tested under the assumption that the param-
eters which relate to specific physical properties of the distributed system, such as conductivity,
resistivity, charge density, stiffness or damping properties, diffusion or convection parameters,
can be assumed constant over the operating range. However, the time-varying parameter iden-
tification problem, not discussed in this paper, can also be solved by the same approach with
minimum additional effort.

2 System description

Assume that the system under consideration is governed by a general linear or nonlinear PDE
which take the form 5
u

ot'dnzy...00z,
where u(z,t) is the dependent variable z = (z1, z2..., Tn) €  C IR™ is the vector of spatial
variables, ¢t denotes time, § is the vector of unknown constant parameters, | = 7 + 7%, Jk,
F(-) and fq(-) are known linear or nonlinear functions. The boundary and initial conditions
for equation (1) are,

r eyt 1, 2, 8) = falt, z) (1)

B(u)zen, = uay(2,t),  T(u(z,0)) = u(z) (2)

which are assumed unknown in the parameter estimation procedure. In equation (2) B is
the differential operator which operates on the boundary €, of the spatial domain Q and T
1s a differential operator evaluated at ¢ = 0 providing the initial conditions of u and of time
derivatives of u.

Assume that the system measurements are recorded at sampling instants [0 At...nAt]
using a finite number of sensors distributed over the spatial domain. In practice the output will
be corrupted by measurement noise. Denote X = {z,} to be the vector of sensor locations, and
ug = [u(k,1)...u(k,nAt)] the output vector recorded from the kth sensor, the noisy observation
vector from the kth sensor can then be defined as

Zy = Uk + e (3)

where e, = [e(k,1) ... e(k,nAt)] is the measurement noise vector associated with the kth sensor.




Using finite differences equation (1) can be converted into a set of ordinary differential
equations. It follows that for each sensor located inside the spatial domain {2 we can write a
differential equation which has the following general form

( diulAy
dtJAJI 31...Aj"m-n_

Lanayliy B, B, 0) = falt,2) (4)

This results by replacing the partial derivatives with respect to the spatial variables by finite
difference approximations. In order to estimate the parameter vector # the signal and the
corresponding time derivatives involved in equation (4) have to be estimated initially.

An efficient solution to numerical differentiation of noisy signals which uses a fixed-lag
Kalman smoother to accomplish this task was proposed by Fioretti and Jetto (1989). With a
few modifications the same approach is implemented here to obtain accurate estimates of the
output signals and of the the time derivatives directly from noisy measurements. If equation (4)
" is linear-in-the-parameters # the parameter vector § can be estimated using the least-squares
method. Whenever the parameters enter equation (4) in a nonlinear fashion an alternative
method, such as gradient-descent optimisation scheme can be used.

3 Data smoothing and differentiation

In many practical situations a certain degree of regularity can be assumed for the output u(z, t).
In particular the smoothing and differentiation algorithm employed in this paper assumes u(z, t)
to be a C? function with respect to the time variable. In particular when p = co the solution
u(z,t) is continuously differentiable infinitely often with respect to the time variable .

Under these assumptions, for the output signal recorded from the kth sensor uk(t) it is
possible to define a state vector Uy(t) composed of the signal uk(t) and the derivatives d’_::}(ﬁ)_,
j=1,...,N, N < p (Fioretti and Jetto, 1989). By differentiating Ux(t) with respect to time it
is possible to write the following continuous state-space =quations.

dN-H'uk(t)

Ux(t) = DUL(t) + G (5)

where D is the (N + 1) x (N + 1) matrix
ro 10 ...0 "
001 ...0 ...

D= S (6)
000 ...1

| &

and G=1(0...0 1]T is a (N + 1)-dimensional vector.
Assuming At to be the sampling time, the discrete state space equations associated with
(5) have the following form

Ui(t + At) = AU(t) + W(t) (7
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where A is the state transition matrix

1 At A2l ... AtV /N!
0 1 At ... AN-D/(N 1)
AAt) = | : (8)
0 0 0o ... 1

Because in normal situations ug(t) is the only signal available for measurement, the measure-
ment equation for the kth sensor can be written as

2k(t) = HUL(t) + ex(t) = ua(t) + ex(t) (9)

where H = [1...0] is a (N + 1)-dimensional vector and ex(t) represents measurement noise.

It is easy to see that assuming ex(t) to be a white noise sequence, equations (7) and (9)
have a suitable form for Kalman filter implementation. In particular, the fixed interval smoother
described in Anderson and Moore (1979) provides an optimal solution to state estimation. The
~ state vector in this case consists of the measured output and the unobserved higher order
derivatives. The remaining (N + 1)th derivative of u*(t) in equation (5) will be treated as
white noise so the term W(¢) in (7) is a white noise sequence with the covariance matrix Q. It
can be shown (Fioretti and Jetto, 1989) that the generic element of Q is given by

At2m+3—(1’+j)

o =a’2”(m+1-z‘)!(m+1—J')!(2m+3*(i+j)) "

with o2 given by

= 1
%= 3A¢ (1)

The quantity ga, which formally represents the remainder of the Taylor series expansion of
order N of the signal, can be approximated as

M N+2
gpics — A
m

exp (w.At) (12)

In equation (12) M is the upper bound for the amplitude spectrum of the signal and w. = 27 f. is
such that f. defines a cut-off frequency above which the power spectral density of the observation
signal is negligible. In practice by computing the FFT and the power spectral density P, of
the measured signals both M and f. can be determined directly from data.

The fixed interval smoother was implemented here as a combination of two Kalman filters
one running forward in time and one moving backwards (Meditch, 1973). The state transition
matrices will be A for the filter moving forward and A~! for the backward moving filter.

If Vi = {zk(t1), z&(t2), .-, 2k(ta} is the set of available observations consider

Yo(t) = {a(t) zilta), .o aul(ti)} (13)
Yi(t) = {ze(t), ze(tisn), s za(tn)} (14)
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the sets of "past and present” and "future and present” observations at a given instant ; = 1At.
The smoothed state estimate at each time instant which represents the minimum variance
estimate given all the data, past and future, is given by the well known formulas

g(t:) = (P74 Pt ) H(PT 2k (ts) + Pyt ka(ts) (15)
P = cov(zx—z) = (P71 + P! (16)

where
Zka(t) = E{ze(t:)|Y, (8:)} (17)

denotes the filter running forward in time and
Zra(t) = E{zu(t:)[Y5" (2:)} (18)

denotes the estimate produced by the filter running backwards in time and P, and P; are the
covariance matrices corresponding to the forward and backward filters.

If the data sequence is short the two filters can be run forward and backwards a few times
in order to achieve convergence. In this case at the end of each run the covariance matrices
associated with each filter are interchanged and so are the final state estimates. In this way the
final estimates of the forward filter become initial conditions for the filter running backwards
and vice-versa.

The key assumption when smoothing is performed is that the forward-time and backward-
time system descriptions are equivalent so that the filters can cooperate by combining in an
optimal way the estimates obtained from two independent sets of measurements Y, (¢;) and
Y.F(t;+ 1) (Lewis, 1986).

If however the signal or the associated derivatives have isolated discontinuities, eventually
one of the models will fail to correctly describe the signal at that point. In this case it is possible
to allow only one of the filters to produce the estimate, instead of combining them, by using
an additional decision rule (NiedZwiecki and Sethares, 1995). In principle this could provide a
solution when the uhderiying stgnds have 1stigted singularitics. : :

A factor which clearly determines the accuracy of the estimates is the order of the signal
model used. In theory the estimation error tends to zero monotonically with N, the largest
order of the derivatives considered if data is sampled sufficiently fast relative to the frequency
band of the signal. In practice, N = 6,...,9 can be chosen with good results. A value for
N which is too large will generally slow down the computation and also increase the risk of
numerical instability.

The fixed-interval smoother can be applied to obtain the optimal state estimate, in
particular the output uy and the higher order derivatives of ux(t) with respect to time which
appear in equation (4). The Kalman smoother can also be used to smooth the outputs of the
neighbouring sensors which are used to compute the finite difference approximations of the
spatial derivatives in (1).

Assuming that equation (4) is linear-in-the-parameters a suitable form which allows §
to be estimated using simple least-squares, can be derived. Alternatively other optimisation
algorithms can be used to determine the unknown parameters.




4 Simulation Results

The following three examples are intended to test the proposed parameter estimation approach.

4.1 Examplel

In this example the following model studied in (Hara et al., 1988) is considered

A%*u(z *u(z '
B(tzjt) £k Ca a(mz,t) = —exp(—c)cos(2t), (z¢€ 0,1],t e [0,1]) (19)

When C' = 3.0 the solution u(z,t) of (19) is

u(z,t) = exp(—z)cos(2t) (20)

Using finite differences the partial differential operator with respect to the spatial variable is
replaced for z = z;, by a second-order centred difference approximation

T - ouel Bl el ey (o )

where Az is the step size of the data sampled along the z axis and up-1(t) = u(zy — Az, t),
u(t) = w(zx,t) and wps = u(zr + Az, t) are the outputs recorded from the sensors located at
T =z, — Az, z = 24 and z = 74 + Az along the z axis.

The data set used to perform the identification procedure was generated by sampling the
outputs up_1(t)), uk(t) and uky1(t) every At = 0.01s. The estimation procedure was performed
for different values of the step size Az in order to test the sensitivity of the estimated parameters
with respect to this variable.

For each value of Az the resulting data sequences consisted of 1000 data points each.
To make the simulation more realistic three uncorrelated white noise sequences with zero mean
and variance o? = 0.002 were added to the outputs. The resulting simulation data is plotted
in Fig.1.
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Figure 1: Example 1:Simulated noisy data: z; = 0.5, Az = 0.25 and o2 = 0.002
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A Kalman smoother with N = 9, the model order, implemented as described in Section 3
was used in each case to provide accurate estimates of ux(t), us-1(t), urs1(t), Fig.2, and %@,
Fig.2, at each sampling instant. As noted in Section 3, the values of M and f. which appear in
equation (12) were determined experimentally by computing the FFT and the power spectral
density P, of the output signals. In particular, f. was selected such that P, < p for f > f..
Numerical experiments have shown that by choosing the threshold p around (0.2% —0.5%) P**

good estimates of the cut-off frequency f. and indirectly of the parameter o2 can be obtained.
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Figure 2: Example 1:Smoothed output data (dashed) superimposed on the simulated noise-free
data (cont): zx = 0.5, Az = 0.25 and o2 = 0.002
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Figure 3: Example 1:Estimated (dashed) and true (cont) second-order derivative of u(0.5,1)



Step Size Sensor Location
Az zp =045 | zx = 0.5 | 7 = 0.55
0.45 3.049 3.05 3.041
0.425 3.0679 3.07 3.064
0.4 3.087 3.0898 3.082
0.375 3.106 3.09 3.1
0.35 3.116 3.125 3.116
0.325 3.123 3.138 3.131
0.3 3.139 3.14 a.132
0.275 3.12 3.122 3.11
0.25 3.057 3.0576 3.057

Table 1: Example 1: Estimates of C for different sensor locations z; and step sizes Az

The smoothed signals were subsequently used in equation (21) to estimate the unknown
parameter C. The results which are summarised in Table 1 compare favourably with the

results reported elsewhere (Hara et al., 1988; Sagara et al., 1991) where different techniques
were employed.

4.2 Example 2

Another system which was studied by Hara et al (1988)

Ou(z,t) 0%ufz,t)
5E T g = f(z,t), (z€[0,1],t€[0,1]) (22)

was also used to test the new parameter estimation approach
In equation (22) f(z,t) was given by

f(z,t) = 13exp (—z) cos (1.5t) — 9.32 exp (—0.5z) cos (2.1¢) (23)
The solution of the system described by (22) and (23) is
u(z,t) = 4exp (—z)cos (1.5t) + 2exp (—0.5z) cos (2.1¢) (24)

In this example, the system model was assumed to be described by the second-order
partial differential equation
0%*u(z, t) o *u(z, t) 0%u(z,t) Ou(z,t)
ot | Gast Bz? ot

Using finite differences this partial differential equation can be transformed into the
following ordinary differential equation '

d?ui(t) +‘C’_2 [duk(t) 3 duk-1(t) Up-1(t) + ursa(t) — 2ui(t) +C dug(t)
dt2 ' Azl dt dt Az? T

+ (s + C4

+ Ceu(z,t) = f(z,1) (25)

+Csux(t) = f(zk, )
(26)

|+¢Cs




where u,_1(t) = u(zx — Az, t), ur(t) = u(zk, t), ur+1(t) = u(zk + Az, t). 1000 data points for
each output variable, sampled every dt = 0.01s and contaminated by white noise with variance
o? = 4.10"* were used for the identification.

The identification was again performed using different values for the step size Az and
for different sensor positions zx. In each case a fixed interval smoother with N = 9 was applied
first and then the parameters were estimated using least-squares. The results are summarised
in Table 2. The accuracy of the estimates also compare favourably with that achieved using
spline functions (Hara et al., 1988).

The results obtained in Examples (1) and (2) illustrate that by applying the proposed
method, accurate estimates of the parameter vector associated with a distributed parameter
system can be obtained directly from noise corrupted data. For the examples considered,
the numerical simulations have shown that the estimates are not very sensitive to the sensors
locations. With respect to the distance between the sensor locations which is equivalent to
~ the step size used to discretise the partial differential equation along the spatial variable, only
a small deterioration of the accuracy of the parameter estimates can be noticed especially in
Example 2 as the discretisation step is reduced.

In general however, the choice of sensor locations in the spatial domain will be dictated
by practical considerations and observability requirements. While practical circumstances may
place restrictions on the choice of measurement locations, it is essential to ensure that for a
particular choice of measurement variables and locations the distributed system is observable,
that is, given the measurements z(t) the solution u(z,t) is uniquely determined within the
spatial domain Q. From this point of view the proposed method is quite flexible as it does not
require a special sensor configuration in the spatial domain. More on this topic can be found
in a number of papers which address the sensor location and the observability problem in more
detail (Wang and Fung, 1964; Goodson and Klein, 1970; Goodson and Polis, 1978).

4.3 Example 3

The final example considered here involves estimating the parameters of a nonlinear partial
differential equation. Many methods available in the literature assume a linear form of the
partial differential equation describing the distributed parameter system. From this point of
view this example emphasises the applicability of the proposed method to nonlinear distributed
systems.

Consider a diffusion process modelled by the following partial differential equation

du(z, t du(z, t 8%u(z, t
uf;t ) = uéw ) =+ Cgu(:c,t) + Cs—a(?"l + Cau(z, t)3 + Cs (27)
with the following boundary and initial conditions.
dusi]; t) =0, u(0,t) = 2sin (10t) (28)
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Step Size Sensor Location

A Tk = 0.45 I T = 0.5 I Tr = 0.55

0.45 Cs | 0.0357 0.0349 0.0342
Cyq| 0.0125 0.0119 0.0114
C,| 0.0158 0.0154 0.0149
Cs | -0.9995 | -0.9990 | -0.9986
0.425 Cs | 0.0316 0.0310 0.0305
Cy | 0.0163 0.0156 0.0150
C, | 0.0198 0.0193 0.0188
Cs | -0.9989 | -0.9987 | -0.9985
0.4 Cs | 0.0263 0.0260 0.0256
Cy | 0.0207 0.0200 0.0192
C, | 0.0246 0.0240 0.0234
Csy| -0.9972 -0.9973 -0.9973
0.375 Csy | 0.0192 0.0192 0.0192
Cy | 0.0261 0.0252 0.0244
C, | 0.0304 0.0297 0.0290
Cs | -0.9940 | -0.9943 | -0.9947
0.35 Cs | 0.0098 0.0102 0.0105
Cs| 0.0326 0.0315 0.0306
C. | 0.0375 0.0367 0.0359
Cs | -0.9885 | -0.9892 | -0.9899
0.325 Cs | -0.0031 | -0.0022 | -0.0014
Cs | 0.0404 0.0392 0.0381
C, | 0.0463 0.0453 0.0444
Cs | -0.9796 | -0.9808 | -0.9820
0.3 Ce | -0.0209 | -0.0194 | -0.0180
Cs | 0.0500 0.0487 0.0474
Cp | 0.0572 0.0561 0.0550
Cs; | -0.9655 | -0.9674 | -0.9692
0.275 Cs | -0.0463 | -0.0440 | -0.0418
Cs | 0.0619 0.0603 0.0588
C, | 0.0708 0.0695 0.0682
Cy | -0.9435 | -0.9462 | -0.9488
0.25 Cs | -0.0831 0.0798 -0.0766
Cy| 0.0764 0.0746 0.0729
C,| 0.0877 0.0862 0.0847
Cs | -0.9087 | -0.9124 | -0.9159

Table 2: Example 2: Estimates of Ca, C3, Cs and Cs for different sensor locations zx and step
sizes Az (02 =4-107*). True values C; =0,C3=-1,C4=0and Cs =0
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Using finite differences the partial differential equation can replaced by a system of
ordinary differential equations. In this example the resulting system of ordinary differential
equations was integrated using a fourth-order Runge-Kutta routine with the step dt = 5-10~* to
generate the simulation data. The parameters used in the simulation were C; = —1, C; = —10,
C3 =0.75, C4y = —4 and Cs = 3. A relatively large step size Az = 0.05 was used along the z
direction.

The ordinary differential equation corresponding to z = z; is as follows

due(t) _ _we(t) — wesa(?)
dt Az

Uk—-1(t) — 2u(t) + ur41(2)
Nz?

- lﬂuk(t) +0.75 - 4uk(t)3 +3 (29)
where ug_1(t), uk(t) and uksq(t) represent the outputs recorded from sensors located along the
T axis at z4_; = 0.2, zx = 0.3 and z4, = 0.4 respectively. The output sequences uj.1(2), ux(t)
and uk+1(t) resulting after simulation consisted of 2000 data samples each. The sequences were
down-sampled (decimated) by 2 and white noise with variance ¢? = 3.5 10~° was added to
each output prior to performing parameter identification. The fixed interval smoother was then

applied for the noisy output sequences, containing 1000 data points each, in order to smooth

the data and estimate du—;fﬂ

The resulting signals were used to determine the unknown parameters in equation (29) by
means of a least-squares algorithm. The estimated parameters C; = —1.0719, C; = —9.6396,
Cs = 0.7257, Cy = —3.8031 and Cs = 2.8463 are quite accurate given the relatively rough
discretisation along the z axis used initially to generate the simulation data.

5 Conclusions

A new direct approach to the identification of constant parameters in distributed systems
directly from noisy observations has been introduced. The technique requires a knowledge of
the form of the partial differential equations within a set of constant parameters but unlike
most of the existing approaches the equations can be either linear or nonlinear and moreover
the initial and boundary conditions do not need to be specified explicitly. The new method
also requires only a small number of sensor locations to collect data for identification and this
makes it particularly suitable for applications where technical or cost considerations prohibit
using a large number of sensors.

The algorithm, which involves smoothing the original noisy output measurements and
estimating the temporal and spatial derivatives involved in the model using a fixed interval
smoother, was tested with excellent results using three simulated examples including a nonlinear
distributed system.

The simulations performed show that the method is not sensitive to the choice of mea-
surement locations and discretisation step along the spatial variable. Although in all the exam-
ples considered the distributed systems were one-dimensional, the method can also be applied
to higher order systems the only difference being that additional sensor locations have to be
used in order to be able to approximate all the spatial derivatives required.
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