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Abstract: This paper investigates the problem of
stabilising one of the high order periodic orbits of a
chaotic oscillator using linear and nonlinear
feedback controllers. An algorithm to extract the
unstable periodic orbit that provides the reference
trajectory is proposed. The advantages and
disadvantages of  each control structure are
analysed using numerical simulation.
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1. Introduction

There has been an increasing interest in recent years
in the study of controlling chaotic nonlinear systems
in the physics, mathematics and engineering
community. A good review on the state-of-the-art
development and current research in this area can be
obtained from the survey article [1].

Since the early attempts at controlling chaos much
has changed and the attitude towards chaos itself has
been greatly modified. At the beginning the major
research effort was spent on eliminating chaotic
behaviour from nonlinear systems. Nowadays it has
been pointed out that, under certain conditions,
chaotic behaviour may be useful [2].

For example, in communications it has been
suggested that chaotic systems can be used for secure
communication [3]. Chaotic lasers, chaotic diode
resonators and Chua electronic circuits have been
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controlled and applications have been found in the
medical sciences and process engineering.
It has been suggested that brain and heart research

‘may benefit from further developments in controlling

chaotic systems. For several types of chemical
reactors which can exhibit chaotic motion, such as
fluidised bed reactors, by stabilising one of the high-
order unstable periodic orbits which develop during
the chaotic regime very good mixing of the reactants
can be achieved while avoiding at the same time the
risk of an explosion. In power electronics chaos has
been detected in simple DC buck converters so
controlling and suppressing chaos in this area may
also be beneficial. Hence, controlling a chaotic system
has become a very important goal and is the subject of
much on-going research.

In this paper it is shown that existing techniques
used to control nonlinear systems can be successfully
applied to control chaotic oscillators. In particular a
conventional linear controller and two nonlinear
controllers are designed and used to stabilise one of
the high-order unstable periodic orbits embedded
within the chaotic attractor of a well known nonlinear
oscillator. Based on numerical simulations the
advantages and disadvantages presented by each
implementation are discussed. A practical algorithm
to extract the unstable periodic orbit from data is also
introduced.

2. Feedback Control of the Chaotic Van der Pol
Oscillator

The control engineering approach to controlling
chaotic systems is based almost entirely on using




conventional feedback controllers to suppress chaos,
to stabilise the system while tracking a reference
periodic orbit or to synchronise two chaotic systems
while rejecting uncertain disturbances.

Usually, conventional feedback controllers are
designed for non-chaotic systems, in particular most
of them are linear feedback controllers designed for
linear systems following a well established control
methodology. In contrast, deriving a control algorithm
that ensures that the chaotic system trajectory follows
one of its unstable periodic orbits may not be trivial at
all.

However, this does not mean that for example the
chaotic system’s sensitivity to initial condition makes
it uncontrollable by means of conventional feedback
controllers,” as some have speculated. Indeed it turns
out that conventional feedback control of chaotic
systems are generally difficult yet it is not impossible.

The chaotic system considered here is the modified
Van der Pol oscillator with periodic forcing which can
be described by the following differential equation

d’y _

dt’
where a=0, b=0.1, c=1, A=10. Equation (1) without
the forcing term was used to model a vacuum tube
circuit originally studied by Van der Pol. If the system
is acted on by a periodic forcing term as in equation
(1) various nonlinear phenomena can occur including
hysteresis or jump effects, subharmonic or
superharmonic vibrations and, for the given choice of
parameters, chaos.

d
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2.1 Unstable Periodic Orbit Extraction

There are situations when it is desired to stabilise
one of the high-order periodic orbits of the system.
For example, in a fluidised bed reactor, better mixing
and better heat transfer can be achieved when the
particles in the reactor move chaoctically i.e. the
pressure fluctuations inside the reactor are chaotic.
However, if the reactor is uncontrolled it is possible
for the pressure inside the reactor to build up to
dangerous levels that can lead to an explosion.

In such situations, a possible solution is to control
the system to one of the high-order unstable periodic
orbits, ensuring similar mixing performance for the
reactants while precluding any risk of explosion.

It is well known [4] that any chaotic attractor
consists of an infinite number of unstable periodic
orbits as 7/ — oo and that the trajectory of the system

)

comes arbitrary close to such periodic orbits during
its evolution.

In order to unveil one of these unstable periodic
orbits, the model estimated for the modified Van der
Pol oscillator was integrated with an integration step

dy(/ct 3T

Figure 1. Chaotic attractor (dash-dot) and Unstable
Perniodic orbit (cont)

dt=7/150 to generate 20,000 data points.
The idea is to use the simulated data sequence to
determine  the  pairs of  time nstants

7, ()= (tm(i), 9 (i)) such that the trajectory of the
system between these time instants is nearly periodic
that is

|x(tﬁn(i)=x0)_x(tm(i)axo)kE (2)
where x(14,(1),%,) and x(Z,(i),x,)are the vectors
of state variables at moment . (7) and £,(7)

respectively, X, represents the vector of initial

conditions and ¢ is a small positive value representing
the radius of the ball (or neighbourhood) in the state
space which contains both ends of the nearly periodic
trajectory.

For this example £ =0.05 and the state variable

vector was defined as x = [y ,Q, u]
dt
Using a software routine to search for recurrent
points several periodic trajectories were identified.
One such trajectories was used to generate the
reference signal, shown in figure (1), which 1s a
periodic extension of the original periodic orbit.




This reference signal (¥ ,% ,u) will be used in the

following sections to implement different control
strategies.

2.2 A conventional linear controller

The problem considered here is to control the
periodically driven Van der Pol oscillator to the
unstable periodic orbit unveiled in the previous
section. For the purpose of designing a suitable
controller the model of the system was assumed
unknown and had to be identified directly from a set
of noisy observations recorded from the system. A
direct identification procedure similar to that
introduced in [5] but based on a polynomial model
structure was employed here.

The estimation procedure produced the following set
of parameters a=0.1072, b=0.104, ¢=1.0036,
A=9.9203. Even though the estimated parameters are
very close to the original system’s parameters it
would be interesting to investigate the influence of the
estimation errors on the control performance.

By introducing y, =y and y, = % equation (1)

can be rewritten as

fi,)i =¥

dt
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Denoting (¥,,Y, )= (j?,%y;-) the reference unstable

trajectory that is targeted (observe that the reference
input # is not used at this stage) in the sense that for
any given e>(0 there exists an 7, such that
B2 )jl< e @)
|y, = V.l<e
forall 1> 7,

For this purpose consider initially the conventional
feedback controller of the form

k k') -y
{"} » _[ 4 1_]{% ﬂ (5)
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which yields the following controlled Van der Pol
equation

ay -
},’f‘ =f. (V) =k + (A =kp)y, + k3 + kL0,
dy 2
— =8y =k - ey +[(a=byl) = ky,ly,
+hy\ P, + Ky ¥s
. (6)
The problem of determining a suitable controller
described by equation (5) consists of determining the
feedback gain matrix

K—_—{k” k121| (7)
k21 k22

which ensures that the controlled system is stable. By
linearising equation (3) around the controlled
trajectory the following characteristic equation can be
formed
det[J, —sI]=
—kii— 5 1-k
= de‘{ Sz . 12~2 }
—ky =3y} =26y, —kp+(a—byr)—s
= 5% + 5(ky, + by + b9, — @) + kyy (K + B9 — )
+H(1 = k) by + 3P7 +2b9,7,) =0
(8)
It follows that the gain matrix can be determined by
requiring that this equation has all its roots located in
the open left-hand side of the complex plane. This can

lead however to more than one solution. For this
reason here it is assumed that k,, =k, = 0. Then it

follows that the gains k,,and k,, have to be chosen to
satisfy the following inequalities

k., >-by +a
WET R . ®
k21 > =y, —Zby1y1

It should be noted that for k, =k, =0 the

corresponding controlled linearised Van der Pol
equation obtained from (6) is completely controllable,
so that the controlled Van der Pol oscillator is locally
controllable by a conventional feedback of the
“canonical form”

0 0 -y
{ j|w = _{ }[kzi kzz]‘:yl }2 :\ (10)
1 1 ¥y X2

The computer simulations shown in figures (2) and
(3a,b) illustrate that the control is quite efficient.

It should be pointed out that the conventional
concept of controllability only means that the system
trajectory can be brought from any initial position to
any desired target position of the state vector by a

)




suitably designed control input when both the initial
control position and the desired periodic orbit are
located inside the controllability region. For large
values of the control gain k,,,k,, called high gain,
the controlled Van der Pol
approximately

8 T

equation becomes

dy(t)/dt

y(t)
Figure 2: Linear Control: Reference (cont.)
Controlled Trajectory (dot)
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Figure 3: Linear Control Error Dynamics:

@e=y-3 ®e=y-¥

@ (11)
"'L';;_ = k¥ = R ) =Rl — 1)

which has a particular solution (y,,¥,)=(¥,,%,).
This implies that for very large values of the control

gain the feedback controller should have a much
better effect in achieving the desired goal.

For small values of the gain vector however the
oscillatory term Acos(t) may dominate the designed
feedback control input. Hence in the simulation results
the gain vector was assigned relatively large values
[k, k,, 1=[25 25]. In practice by increasing the
control gain the control error can be further reduced.
2.2 A feedback controller with feedforward

The control problem under investigation can be
reformulated by observing that the reference
trajectory which represents the control goal is in fact a
solution of the same Van der Pol differential equation
(1) namely

%i—lzyz
(12)
ay,

-E-='jf"2(a—bj?]2)—-cﬁl3 + Acost

By subtracting (12) from (3) and denoting

e= [yl —),)_1 ] it is possible to derive the following
Ya—=X,

error equation
de [0 1} { 0 ]
—_—= e+ Sy | 7] |
dt 0 a by ¥, + ¢y —by;y, — oy,

{O } {Oil
+ |+ (D)
Acost — Au 1
(13)

where w(t) is the feedback control
w(t) =o(p(1),y(1),u(),t) in order to achieve the
control goal specified in equation (4) (here y and y

denote the vectors

b » 1" and [571 % ]T respectively) This problem
is equivalent to that of rendering the origin a global
attractor for the error system (13).

The main task is to choose an appropriate function
w(t) in order to achieve the desired control by
linearising the system involved via a feedback plus
feedforward action.

In this example, it is relatively easy to see that if the
linear part of equation (13) is controllable then (4) 1s
ensured by choosing

w(t)=(L-BK)e+I(y,t)+h(¥,t)— Acost + Al
= (L- BK)e+byjy, + &y} =055 = F;

—Acost + A
(14)




The compensation of the penodic terms in the error
equation (12) means that the control is more effective
than when using a purely linear controller.

The results of the simulations carried out with the
same choice of control gain as in the previous
example, namely K=[5 5], are illustrated in figures (6)
and (7a,b).

From these figures it is apparent that the
performance of the controller is similar, in terms of
error dynamics and accuracy of the control, to that
achieved with the previous nonlinear controller. The
new controller however no longer includes the
expensive nonlinear action provided by the terms
I(y,t) and A(Y,?).

A simple explanation of the fact that the
performance of the controller was not affected bv
omitting two nonlinear compensation terms can be
given if these nonlinear terms are rewritten by making
the substitution y(¢) = y(¢) +e(t)

Uy.0) +h(F,0) =byly, +cy] —bFPF, - =
= (b +c)e’ +[(26 +30)7, +b7, |¢*
{6 +3¢)5? + 2673, Je

(16)

Noting that the reference signal is bounded, it is
easy to see that expression (16) tends to zero as
e — 0. In particular for the choice of parameter
values a,b and ¢ given in equation (1) the contribution
of the nonlinear terms (16) will be very small and will
decrease rapidly as e approaches zero.

The only other source of errors which explains the
small ripple in figures (7a,b) remains the estimation
error of the parameter 4 in equation (1). In principle,
however, the control error due to parameter
inaccuracy can be reduced by increasing the control
gain.

3. Discussion

This paper has investigated the problem of
suppressing and controlling chaos in the modified Van
der Pol oscillator. For this purpose an algorithm for
unveiling one of the high order periodic orbits
embedded within the chaotic attractor has been
proposed and tested. This orbit was to provide a
reference trajectory for the control system.

A linear and two nonlinear controllers were
implemented and simulations were carried out in each
case. The simulation results have shown that in the

case of the linear controller the existence of the
forcing term require the use of high gain controllers to
dominate the oscillatory effects. By using a nonlinear
controller that compensates all the nonlinearities
involved in the error equation (12) it has been shown
that better performance and less control effort can be
achieved but this at the expense of significantly
complicating the control structure.

To alleviate this problem a simplified control
structure in which two nonlinear compensation terms
have been omitted has been proposed. Numerical
*simulations and theoretical results have proven that by
simplifying the control structure the overall
performance of the control was not affected.

Numerical simulations carried out also illustrated
that the modelling errors were successfully rejected by -
the controller.
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