UNIVERSITY OF LEEDS

This is a repository copy of Beyond the micro: advanced software for research and
teaching from computer science and artificial intelligence.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/81879/

Version: Published Version

Book Section:

Atwell, ES (1986) Beyond the micro: advanced software for research and teaching from
computer science and artificial intelligence. In: Leech, G and Candlin, C, (eds.) Computers
in English language teaching and research : selected papers from the 1984 Lancaster
symposium. Longman , 167 - 183. ISBN 0582550696

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

— E]] R L] N E | E] T

et PAM_ 1 PR RITY aQeuy o S PRSIl o

b

"QMPUTERS [N eNGisH (ANGUALE EDOUCATION AL PESEARCRH”
LANCASTER coppiisueD gy LonahaN, 1986

7

Introduction to Chapter 12

Although, as Eric Atwell points out, the computing power required by
workers in artificial intelligence or computer science in general far
outstrips what can be expected to be at hand for language teachers in
school interested in CALL, it is important not to be dismissive of the
facilitics presently available to the latter, especially given the rapid
increasc of power cven in microcomputers. From this mare optimistic
position, then, Atwell provides readers of this collection with a very
atuable service indeed. Me documents and illustrates for the uscr
concerned with language cducation how already available systems and
programs can be put to use by the teacher, by the applied linguist,
and, in principle, by the learner.

Atwell begins by cxploring operating systems (VAS and UNIX),
showing how they can be used to accommodate several users simul-
tancously, handling a scries of complex tasks. There is obvious value
here for the educational institution wanting to overcome the problem
of accessibility and varicd learning tasks. Associated with his dis-
cussion of operating systems, Arwell provides a glossary to a range of
programs useful to the language teacher and learner, focusing espe-
clally on text editors, spelling checkers and style ‘improvers’. One very
valuable suite of programs discusscd here is The Writer’s Workbench,
with language analysis facilities as immediately uscful in the class-
room as they have proved to be for independent authors. Once again
we detect the growing move towards enabling learner autonomy with
the aid of available software not necessarily conceived with the
language learner in mind.

Finally, in this paper; Atwell tackles one of the problems heralded
in carlicr papers in the collection, that of the need to augment
BASIC as the main programming language for micro users. As he
points out, the usefulness and increasing av: atlability of ADA, LISP,
PROLOG, POP-11 and POPLOG should greatly inerease the range
of languages which can be made use of in the near future, even
in relatively limited computing environments, by rescarchers into
Yanguage analysis and language learning.

i

.5.
m.
m
B

o
3
]
1)

-5

i
=
i

q.:uma'saﬁ pue Su

= ARl

ALl R ity S

I N ™ NN W = =

12 Beyond the micro: advanced software
for research and teaching from
computer science and artificial
intelligence

Fric Atwell

Lecturers and researchers in British university and polytechnic
computer studies departments generally have access to rather greater
computing power than most linguists or English language teachers.
As well as a range of micros, the computer scientist can use powerful
multi-user mainframes and single-user mworkstations with very fast
program exccution speeds, a megabyte or more of main memory,
hundreds or thousands of megabytes of disk memory, and correspond-
ingly sophisticated software. However, because of the phenomenal
rate of progress in computing, the computer science and artificial
intefligence research and teaching tools of today may well be within
the reach of other researchers and teachers tomorrow, or at least in
a couple of years’ time. This chapter looks at some of this software,
concentrating on facilities which seem particularly relevant to English
language teaching and research.

Sophisticated operating systems

The operating system is the main program resident in a computer,
which schedules and organizes the use of processing resources in
such a way that the user is unaware of the ‘nitty gritty’ of how the
hardware actually works at a low level, For a micro user, the operating
system is used mainly for file-handling: for instance, the user can load
a file from a disk by issuing a simple command, without having to know
anything about how blocks of binary code are read and interpreted,
or about the detailed sequence of signals sent between the processing
unit and the disk drive. On a modern mainframe, the operating system
has to be much more sophisticated, to cater for a large number of

i

Beyond the micro 109

users with widely varying requirements. Deitel (1983) explains this
in more detail; here, we look at some of the most relevant aspects of
advanced operating systems.

VMS and UNIX

VMS and UNIX are two of the most widely available and popular
operating systems in British universities and polytechnics today. VMS
is available on VAX mini and mainframe computers; its great attraction
is that, although a sophisticated multi-user operating system with a
very wide range of facilities, it is very user-friendly to beginners and
casual users. Wherever possible, commands are English words, e.g.
PRINT to print out a file on the printer; SHOW TIME to display
the current date and time on the terminal; SET PASSWORD to
allow the user to set (or change) his or her password. As more
experienced users wish to save keystrokes, all commands can be
abbreviated to their first few letters, so long as this remains unam-
biguous (c.g. PRINT can be abbreviated to PRIN, PRI, or PR, but
not P alone as other commands also start with P).

UNIX is also available on VAX computers, and on a wide range
of other machines as well. UNTX was originally developed at Bell
Laboratories; at the time, most operating systems were built round
specific computers, and Bell researchers decided to develop a
‘machine-independent’ operating system tailored for the user rather
than the machine. Bell still hold the trademark rights for UNIX, but
the system was so good that UNIX-look-alike systems have been or
are being developed by most other computer manufacturers. UNIX
has the reputation of appearing rather strange to the beginner, mainly
because many commands are short mnemonics whose meanings are far
from obvious to the newcomer; for example, ‘wc’ (short for Word
Count) counts the number of words and/or letters and/or lines in
a document; ‘mv’ (MoVe) is used to change the name of a file; ‘who’
displays a list of all users currently logged-in to the system. However,
once the user has learnt a basic vocabulary (a task which should not
particularly daunt the linguist, armed with a UNIX primer such as
Miller and Boyle (1984) or Bourne (1982)), UNIX turns out to be
an ideal environment for developing software, as it has a particularly
rich set of ‘tools’ and facilities to aid the developer.

Concurrency

With a multi-user operating system, many users can interact with the
computer apparently simultancously. For this to be possible, the

e

' ™™ N W -

E P PRSI

BT AT S T S A e e 5

12 Beyond the micro: advanced software
for research and teaching from
computer science and artificial
intelligence

Eric Atwell

Lecturers and researchers in British university and polytechnic
computer studies departments generally have access to rather greater
computing power than most linguists or English language teachers.
As well as a range of micros, the computer scientist can use powerful

multi-user mainframes and single-user mworkstations with very fast

program execution speeds, a megabyte or more of main memory,
hundreds or thousands of megabytes of disk memory, and correspond-
ingly sophisticated software. However, because of the phenomenal
rate of progress in computing, the computer science and artificial
intelligence research and teaching tools of today may well be within
the reach of other researchers and teachers tomorrow, or at least in
a couple of years” time. This chapter looks at some of this software,
concentrating on facilities which seem particularly relevant to English
language teaching and rescarch.

Sophisticated operating systems

The operating system is the main program resident in a computer,
which schedules and organizes the use of processing resources in
such a way that the user is unaware of the ‘nitty gritty’ of how the
hardware actually works at a low level. For a micro user, the operating
system is used mainly for file-handling: for instance, the user can load
a file from a disk by issuing a simple command, without having to know
anything about how blocks of binary code are read and interpreted,
or about the detailed sequence of signals sent between the processing
unit and the disk drive, On a modern mainframe, the operating system
has to be much more sophisticated, to cater for a large number of

|
“
*
|
|
{
!

2

) 1
Beyond the micro 109

users with widely varying requirements. Deitel (1983) explains this
in more detail; here, we look at some of the most relevant aspects of
advanced operating systems.

VMS and UNIX

VMS and UNIX are two of the most widely available and popular
operating systems in British universitics and polytechnics today. VMS
is available on VAX mini and mainframe computers; its great attraction
is that, although a sophisticated multi-user operating system with a
very wide range of facilities, it is very user-friendly to beginners and
casual users. Whercver possible, commands are English words, e.g.
PRINT to print out a file on the printer; SHOW TIME to display
the current date and time on the terminal; SET PASSWORD to
allow the user to set (or change) his or her password. As more
experienced users wish to save keystrokes, all commands can be
abbreviated to their first few letters, so fong as this remains unam-
biguous (¢.g. PRINT can be abbreviated to PRIN, PRI, or PR, but
not P alone as other commands also start with P).

UNIX is also available on VAX computers, and on a wide range
of other machines as well. UNTX was originally developed at Bell
Laboratories; at the time, most operating systems were built round
specific computers, and Bell researchers decided to develop a
‘machine-independent’ operating system tailored for the user rather
than the machine. Bell still hold the trademark rights for UNIX, but
the system was so good that UNIX-look-alike systems have been or
are being developed by most other computer manufacturers. UNIX
has the reputation of appearing rather strange to the beginner, mainly
because many commands are short mnemonics whose meanings are far
from obvious to the newcomer; for example, ‘wc’ (short for Word
Count) counts the number of words and/or letters and/or lines in
a document; ‘mv’ (MoVe) is used to change the name of a file; ‘who’
displays a list of all users currently logged-in to the system. However,
once the user has learnt a basic vocabulary (a task which should not
particularly daunt the linguist, armed with a UNIX primer such as
Miller and Boyle (1984) or Bourne (1982)), UNIX turns out to be
an ideal environment for developing software, as it has a particularly
rich set of ‘tools’ and facilities to aid the developer.

Concurrency

With a multi-user operating system, many users can interact with the
computer apparently simultaneously. For this to be possible, the

W b L

—

Brmmellimmd bd S

operating system must be able to organize a large number of processes
running concurrently. This is actually achieved by a technique called
interlequing: the system maintains a list of processes currently running
‘simultaneously’; each process on the list can take a turn at getting
the system’s full attention for a few milliseconds, and then it must stop
and wait until the system cycles round to’its next turn. The prob-
lems of concurrent programming are dealt with in more detail in Ben-
Ari (1982). Of course, the details of concurrency are kept hidden
from users, so that an individual logging-in appears to have a virtual
machine all to himself or herself. However, there are times when a
single user would like to be able to run more than one process at a
time, and UNIX makes this particularly easy. Firstly, adding ‘&’ to
the end of 2 command line causes the command to be run as a second
process, concurrently with the main log-in process. For example,
if a user has a program SLOWPROG which takes a long time to run,
and he or she also wants to do some interactive work such as editing
files, etc., then in most operating systems he or she will just have to
wait until SLOWPROG has finished before typing any more
commands; but in UNIX, the line

slowprog &

will cause SLOWPROG 1o be run as a separate process, leaving the
terminal free for issuing other commands. Another use of concurrency
is when a complex task is broken down into several programs, each
passing their results on as input to the next program. For example,
if 2 user wanted to count the number of spelling errors in a file
MYTEXT, then he or she could run a spelling-check program over
MYTEXT to produce an output file TEMP containing a list of
errors, and then run a word-counting program over TEMP to output
the number of words in this file. Under UNIX, there is no need for
a temporary file between each process: programs can be pipelined to
run concurrently and pass results directly from one process to the
next, e.g.
spell mytext 1 wc

This means that quite complex tasks can be performed simply by
pipelining the appropriate tools together; this facility is not available
on other operating systems,

General-purpose tools

Even in widely varying applications areas, there are a number of
comparatively simple tasks that many users will carry out repeatedly;

PE I

LR b

s

b W Beyohsecsns micre— A T1 |

and so an advanced operating system like VMS or UNIX will include
a number of general-purpose tools or utilities for such tasks. For
example, often users may need to sort a list of numbers into ascending
or descending order, or sert a list of words into alphabetical order;
rather than have to write their own sorting program, they can use the
SORT command to sort the file containing the list. Another useful
tool is a command to list the differences between two files; for example,
if @ user writes a program which produces an output file CUTPUTH,
and later amends the program and runs it again te produce an output
file OUTPUT?Z, then he or she could straightforwardly uncover any
differences between the files caused by the change in the program,
A third commonly-available tool is a command to COUNT the number
of lines and/or words and/or characters in a file.

Text editors

These simple tools simply take one or more files as input, do some
standardized processing, and produce the appropriate output file.
More sophisticated tools allow the user interactive control over the
processing. For example, all operating systems have at least one editor
for editing the contents of files (many systems have several alternative
editors!). The simplest type of editor is a [ine editor: the user edits
the file by typing a sequence of editing commands, effectively a
‘program’ which is interpreted and executed interactively. Unfortu-
nately, the file itself is not directly visible to the user unless he or
she explicitly displays lines using the appropriate command; this of
course is not particularly helpful, so nowadays many operating systems
also offer a screen editor as an alternative to line editors. With a screen
editor, the text of the file itself is displayed on the terminal screen,
and the user can ‘move around’ in the file by positioning the cursor
with special arrow keys; mainframe screen editors are much closer
than line editors to the text editors available on home micros and
word-processors.

Help

Another very important tool is the Aelp system. On most mainframe
aperating systems, it is possible to find out how to use a command
by typing HELP followed by the command, e.g.

HELP SORT

This will cause information on the SORT command to be displayed.
With a good help system, a beginner can use the facilities of an

| P Y well i L - §

operating system without constantly having to refer to printed
documentation and reference manuals to check the exact spelling and
usage of commands; as the reference manuals accompanying a modern

operating system can fill a large bookcase, this is particularly
important!

UNIX tools for language analysis

The UNIX operating system is particularly well-endowed with tools
which could be very uwseful to English language teachers and
researchers. Apart from the general-purpose tools mentioned above
which could be adapted for linguistic applications, UNIX includes
a number of tools specifically designed for analysis of English
language text files. In this section we examine these in detail. Of
course, other operating systems may well have utilitics roughly equiv-
alent to some of the UNIX tools below (in particular, several alterna-

tive ‘spelling-checkers’ are available), but none that I know of have
all of them.

GREP

GREP prints out all lines in a file containing a specified string, c¢.g.
grep ‘spell’ myfile

This will print out all lines in the file MYFILE containing the string

spell (including, e.g. spellbound and misspelling, but not speft). In fact,

the files searched by GREP need not be English text files, but this

application is obviously the most relevant for the English language

teacher or researcher.

The string searched for can contain various wildcards, e.p. a period
‘" matches any character, a carat ‘A’ matches the beginning of a line,
and a dollar-sign ‘$’ matches the end of a line. For more complicated
mnmqorn.m‘ a variant of grep, EGREP, allows extended regular
cxpressions as patterns to be searched for, e.g.

egrep ‘{any|some)(onelbody) myfile

This searches for all lines containing anyone, anybody, someone, or
semebody.

SPELL

SPELL takes as input an English text, and produces a list of probable
misspellings.

T T T 1 R

Licro i3

Y,

The program collects words from a named English text file, and
looks up each textword in its spelling list. If an exact match cannot
be found for a textword, then an attempt is made to strip off any
inflections, prefixes, and suffixes, and the putative root is looked up
again; if a match still cannot be found, the textword is added to the
output file of misspellings.

The user can choose between two standard wordlists, one for
British English, and the other for American English. Alternatively,
the user can nominate another list to be used — in practice, what
usually happens is that users want to add more words to the standard
list. So that the spelling-checker can look up each textword quickly,
the spelling list is not stored as a straightforward textfile: the infor-
mation is restructurcd into a hash table, a form that allows particular
words to be found rapidly, If the user wishes to update a hashed
wordlist, therc is another tool, SPELLIN, which merges the list of
additions into the hashed wordlist.

Of course, a ‘spelling-checker’ that simply checks each textword
against a spelling list can never be perfect. To begin with, the system
will continually throw up proper names, technical terms, etc., as
misspellings. A user can compensate for this by adding these new
words to the spelling list, but the spelling list will never be complete,
and adding many rare words can cause other problems. For example,
if a user wanted to write a paper on the problems of castrated male
sheep, he or she might be tempted to add the word mether to the
spelling list; but thereafter, misspellings of weather or whether would
not be recognized!

Another problem arises with inflected and derived forms of words.
To save space (and hence speed up searches), most derived and
inflected forms are not stored explicitly in the spelling list: instead,
if a textword is not found straightforwardly, affixes are stripped off,
and an attempt is made to find the ‘root’. Unfortunately, SPELL
places very few restrictions on which affixes can occur with which
roots, and this allows some misspellings {such as ‘wnbay’, ‘ntoing’
‘fntoly’) to slip through the net. Because of this potential problem,
users have the option of getting SPELL to output all words not
literally in the spelling list; in this list, words which might plausibly
be derived from roots in the spelling list have their putative morpho-
logical structure indicated. Also, SPELL uses a STOPLIST of
common misspellings which might otherwise go unnoticed because
they could plausibly be derived from words in the spelling list (e.g.
‘thie = ‘thy’ — %’ + ‘ier’); users can use their own versions of this
too.

N Ll Al § -

Note that this allowance for users to provide their own wordlists
means that SPELL can be readily adapted to other fasks. For
example, teaching texts are often written using a limited controlled
vocabulary; if the list of words in this controlled vocabulary is used
as the spelling list, a writer can readily check that his or her text
conforms to the limitations.

DICTION

DICTION performs a similar task to that of SPELL, but at the level
of phrases rather than just single words — it searches a specified
English text file for phrases which are often indicative of bad or
wordy diction. Whereas SPELL produces a list of possible misspell-
ings without context, DICTION prints out whole sentences, with the
dubious phrase(s) highlighted by square brackets..

Of course, the choice of which phrases are to be pinpointed as
objectionable is rather more subjective than the decision about what
to put in the spelling list, and users are free to supply their own list
of pet hates in addition to or instead of the standard file. As with
SPELL, this means DICTION can be adapted to other applications;
for instance, Cherry, who originally developed the DICTION
program, has produced a variant SEXIST, which scours a document
for potentially sexist phrases.

EXPLAIN

DICTION merely produces a list of sentences with dubious phrases
marked, leaving it up to the user to decide what corrections or
changes to make to the original text. EXPLAIN is an interactive
thesaurus which can be used to elicit suggested corrections for the
phrases marked by DICTION. In fact, both DICTION and
EXPLAIN use the same file of dubious phrases; in this file, each
phrase is paired with a suggested correction, but DICTION ignores
this second part to each entry. When users provide their own list of
phrases to be searched for, they can provide suggested substitutions
as well (although this is not essential).

STYLE

STYLF reads an English text file, and prints out a summary of read-
ability indices, sentence length and type, word usage, and sentence
openers; in other words, STYLE attempts an analysis of the surface

-

|
!
!
i

o

I
1 s =

5 F 2 - jond
characteristics of the writing style of a document. The following is
STYLE’s analysis of this chapter:
readability grades:
(Kincaid) 16.4 (auto) 18.3 (Colemnan-Liaw) 12.7 (Flesch) 15.2
(35.4)
sentence info:
no. sent 167 no. wds 5431
av sent leng 32.5 av word leng 499
no. questions 2 no. imperatives 0
no. nonfunc wds 3420 63.0% av leng 6.32
short sent (<28) 46% (76) long sent (>43) 22% (37)
longest sent 127 wds at sent 164; shortest sent 3
wds at sent 125
sentence fypes:
simple 30% (50} complex 21% (35)
compound 18% (30) compound-complex 31% (52)
word usage:
verb types as % of total verbs
to be 38% (199) aux 18% (96) inf 18% (94)
passives as % of non-inf verbs 19% (83)
types as Y% of total
prep 11.0% (598) conj 4.0% (216) adv 5.5% (299)
noun 29.3% (1591) adj 20.3% (1100) pron 3.4% (183)
nominalizations 1% (73)
sentence beginnings:
subject opener: noun (48) pron (6) pos (0 adj 31)
art (24) tot 65%
prep 16% (26) adv 10% (16)
verb 1% (2) subconj 7% (12) conj 0% (0)
expletives 1% (2)

"To produce this analysis, STYLE has to analyse the textin a fairly
Yntelligent’ way. First, the text has to be divided up into sentences.
This is not a trivial task, as
1. not all full stops mark sentence breaks (e.g. 3.J4, Mr. E. Avwell);
2. the text may not all be straightforward running prose — there may

be ‘non-sentences’, like section headings, lists, or tables.

The next step is a simple surface syntactic analysis of each
sentence; STYLE does this by running another program, PARTS.
PARTS first assigns a set of possible parts of speech to every ward
in a sentence: cach textword is looked up in a short wordlist of 350
common words. If it is not found there, an attempt is made to match
the word against onc of 51 suffixes indicative of specific word classes.

L. i
176 EricAmwell

Finally, if this fails too, the textword is provisionally assigned the class
UNK (‘unknown’). PARTS then disambiguates words with more than
one possible part of speech (e.g. little: adjective/adverb), and assigns
a proper part of speech to words marked UNK. This is done, not
by conventional parsing techniques, but by an algorithm which uses
various heuristics about the expected local contexts of each part of
speech. The designer herself stated that ‘the method chosen for
PARTS is best described as seat-of-the-pants’ (Cherry 1980, p. 2),
but it is surprisingly successful! Besides, the statistics output are only
meant to be a rough guide, since style cannot be quantified precisely;
so 100% accuracy is not required.

Having divided the text into sentences, it is fairly straightforward
to calculate the various figures shown in the above example. The four
readability grades are calculated using the formulae:

Kincaid: (11.8*sylperwd) + (0.39*wdpersent) — 15.59

Automated Readability Index (auto):

(4.7 *letperwd) + (0.5*wdpersent) — 21.43

Coleman-Liau: (5.89*letperwd) — (0.3*sentper100wds) — 15.8

Flesch: 206.835 - (84.6*sylperwd) — (1.015*wdpersent)
The relative merits of these grades, and the details behind the other
measures of style shown in the example above, are discussed in
Cherry and Vesterman (1981). Users of STYLE can additionally ask
for any or all of the following to be appended to the summary STYLE
report:

1. a printout of the fength and readability index of each individual
sentence;

2. a printout of the text with each word on a separate line, with the
part of speech assigned by PARTS next to it;

3. a list of all sentences that begin with an ‘expletive’, i.e. There is,
It is (these sentence-openers tend to be overused in technical
documents);

4. a list of sentences containing a passive verb;

a list of all sentences longer than a specified maximum:

6. a list of all sentences whose Automated Readability Index is
greater than a specified limit.

Note that some of the above lists are lable to errors, since the

linguistic analysis routines of STYLE and PARTS are necessarily

crude and oversimplistic. Nevertheless, STYLE clearly has great
potential for the English language teacher or researcher!

wn

gl

! i ! I ¢
_ - - L : .Cwu...ax\m tacmikere o

The Writer's Workbench

This is a user-friendly package of English language text analysis
programs , including SPELL, DICTION, SEXIST, and STYLF as
well as several others. The package is not available as standard on
UNIX systems; it is an ‘add-on extra’ for commercial word-processing
applications, but obviously it would also be useful in English language
teaching and research. More details of The Writer's Workbench are
included in Cherry and Macdonald (1983); Cherry et al. (1983); and
Macdonald e af. {1982).

Programming languages

Most English language teachers and researchers who have some
experience of programming have tended to stick to BASIC, probably
because for them this is the most readily accessible language. Home
micros come with some version of BASIC built in, and nearly all
university computing services offer BASIC on their mainframes, so
there may seem little point in attempting to program in another
language. However, this may well be a rather short-sighted attitude
for any linguist who aims to eventually progress beyond toy programs.
The short-term overheads of having to learn a new programming
language may be more than made up for by the time saved by program-
ming short cuts available in the new language but not in BASIC; and
besides, linguists may well relish the challenge of learning a new
language! This section outlines some of the alternatives to BASIC
currently available on mainframes, concentrating on what they have
to offer the English language teacher and researcher. Horowitz
(1984) gives a fuller overview of programming languages currently
available.

Note that most of the software discussed so far is specific to UNIX,
but the languages and subsystems mentioned in the rest of this
chapter are available on a wide variety of machines and operating
systems (including some personal computers and micros).

Old favourites: COBOL, FORTRAN, PASCAL

The three alternatives to BASIC most widely available on mainframes
are COBOL, FORTRAN, and PASCAL. COBOL (see, e.g. Parkin
1982; McCracken 1976) has sophisticated facilities to deal with the
complex structured files and databases used in business environments;
furthermore, the language was designed to have an ‘English-like’

55

L R T e e

=8 Erio®ell 1 s Lo e —
syntax. A program consists of a sequence of sentences, grouped into
paragraphs, and each sentence must start with a verd (as all sentences
are imperatives) and end in a full stop. FORTRAN (see, e.g.
McCracken 1974) is well-suited to highly-efficient numerical compu-
tations, as required, for instance, in advanced computer graphics, or
speech understanding or production systems. PASCAL (see, e.g.
Cooper and Clancy 1982; Jensen and Wirth 1975) is the youngest
of the three languages, and it has been adopted by most computer
studies departments as the first programming language to teach
students, as it encourages the design of efficient, well-structured
programs.

These languages all have the advantage that there is usually plenty
of available expertise to help with software design and debugging
problems. Also, existing software can be incorporated into any new
programs. For example, if a PASCAL or FORTRAN program
involves statistical calculations, then it can use the standard sub-
routines or procedures provided in the system /library, such as the
NAG library of mathematical routines.

The main disadvantage of these languages from the linguist’s point
of view is the very poor facilities these languages have for manipu-
lating strings or tree-structures. Although the users of COBOL,
FORTRAN and PASCAL may sometimes look down on BASIC as
a beginner’s language, the advanced features offered by these
alternatives may well prove poor compensation for the linguist.

ADA

ADA is a comparatively new language, so not all operating systems
will have an ADA compiler — yet! ADA was designed to combine the
best features of a number of other languages, including COBOL,
FORTRAN, and PASCAL,; it is backed by the US Defence Depart-
ment (and also by other NATO partners) as an eventual replacement
for all other programming languages on their computers, so it is bound
to catch on! As shown, e.g. in Price (1984) or Pyle (1981), ADA has
better string-handling facilities than the three previous languages,
and programs can access packages of additional functions (such as
string-handling functions) which effectively extend the language in
any desired direction. Another innovation is that ADA programs can
include subprograms called tasks which will run concurrently. In facr,
ADA’s chief drawback is that, as it has so many advanced features
that have no straightforward equivalent in BASIC, COBOL, etc., it
takes a great deal longer to learn to use the language to its full

1 NN Ui B S vyond.. . _avicro’ 19

potentiall This initial learning effort is clearly 29.925_@.4:@5
engineering complex systems involving thousands (or even millions)
of instructions, but it is offputting to the casual computer user.

LISP

LISP was the original language designed specifically for Jist processing.
An array in BASIC or other languages is a structure containing a
number of more basic elements; the number of elements must be fixed
at the outset by a DIMENSION statement (or its equivalent), .m:&
all elements must be of the same type. A fist is a much less constrained
structure: the number of elements can change during the program run,
and the elements can be of differing types — numbers, strings, or even
other lists. This makes lists ideal for representing tree-structures, e.g.

(Sent (Subj the cat) (V ate) (Obj the mouse)) .
In LISP, everything is treated as a list; even the program itself is
a list of function calls, each of which is a list of ?:nm.ow names and
arguments or parameters. The following ?no.mo: definition is a short
example of this funetional style of programming:
(define (printdouble x (print {plus x x)})

LISP has been described as ‘the machine code of mﬁ..mmowm_ 5.8_-
ligence’. Some beginners are put off by its strange notation @maam:l
larly the proliferation of brackets), but it is extremely wnnmmm_nw
Winston and Horn (1981) and Siklossy (1976) give fuller introduc-
tions aimed specifically at the non-mathematician.

PROLOG

PROLOG is an acronym for PROgramming in FOﬂmn. A PROLOG
program is not a series of instructions to be cv@.& in sequence, but
rather a set of facts and inference rules stated in a notation based
on Predicate Logic. As an example, the following denote z.:w facts
that Tom is the father of Harry and Harry is the father of Jim, and
a rule defining what a grandfather is:

father(tom,harry).

father(harry,jim}. ‘

grandfather(X,Z) :- father(X,Y), father(Y,Z).
When using the PROLOG language, the user starts by n.a;m:m:m a
number of facts and rules, which are added to a database. u.::w user
can then ask ‘questions’, which the PROLOG system will try to

e -l

e

UL LA S e N m U

preipre

&

8 180 Eric Avied ¥ i . . i

answer by making inferences based on the facts and rules in the
database; for example, to the question:
. ?—father(tom,harry).
the PROLOG system will reply ‘ves’; and to the question:
?—grandfather(X,jim).
the PROLOG system will reply ‘X=tom’,

PROLOG is widely used in artificial intelligence research, as it
is particularly well-suited for encapsulating ‘knowledge’ that can be
stated as a formal rule-system, such as a grammar of English. Clocksin
and Mellish (1984) is the definitive introduction to PROLOG; and
a version of PROLOG available under CP/M for micros, called
micro-PROLOG, is described in Clark and McCabe (1984),

POP-11

Much is made of the distinction between interpreted and compiled
languages. Programs in interpreted languages such as BASIC run
comparatively slowly because each BASIC instruction must be trans-
lated to machine code before it can be obeyed during a program run;
however, programs can be developed interactively in small steps, with
frequent test runs between changes. POP-11 achieves the best of
both worlds with an incremental compiler: programs can be developed
interactively, but every new procedure or function is automatically
compiled as soon as its definition is complete, so that all subsequent
procedure calls actually activate fast, compiled machine code. POP-
11 programs are thus a series of procedure and function definitions,
each one using previously-defined procedures as ‘building blocks’.
The language syntax itself is also incremental: not only can new
procedures and functions be defined, but even new syntax words, e.g.
infix operators. In general, the language is very powerful, with exten-
sive facilities for string and list processing, pattern matching, database
querying, etc.

A third ‘incremental’ feature of the language is that it is very easy
for the beginner to learn the basics, and later develop his or her skills
in more advanced features as and when they prove useful. POP-11
is embedded in the POPLOG teaching and research environment
{see p. 182}, which includes a powerful screen editor and numerous
library packages. Most of the reference material on POP-11 is only
available with this POPLOG system, but an overview is included in
'Shea and Eisensradt (1984).

P i T e

¥ |

. F H 3 F _amd t___ 10 r

Packages and subsystems

Some pieces of software available on an operating system such as
VMS or UNIX cannot really be classified as general-purpose
programming languages, but they are more sophisticated than most
tools. For example, Heidorn et al. (1982) arc developing an experi-
mental text analysis system called EPISTLE which will include
spelling, grammatical, and stylistic analysis all in one program; this
program is so complex that currently it only runs on a large IBM
mainframe. This section looks at some currently available examples of
packages or subsystems.

MINITAB

Several packages are available to help linguists and others with little
computing background te use the computer without having to learn
a programming language. MINITAB is a good example; it helps users
to analyse statistical data, but users do not have to learn a complicated
command language. In MINITAB, the user issues commands in
pseudo-English, such as

READ THE FOLLOWING DATA INTO COLUMNS Cl

AND C2

816

84 7

90 10

752

89 11

PLOT C1 AGAINST C2
and the MINITAB program responds by displaying graphs, plots,
etc., to order. The syntax of MINITAB has very few restrictions:
each command line must start with a verb like READ, PLOT, or
ADD, and include the relevant column numbers C1, C2, etc.; but
all other words are simply ignored, leaving users free to issue
commands in almost any format they choose. Ryan, Joiner and Ryan
(1982) give more details of MINITAB.

Programming environments

Many older programming languages are catered for by an operating
system simply with the addition of a compiler. For example, a PASCAL
programmer uses the standard operating system editor to create a file
containing the text of a PASCAL program, and then runs the

s a S I N TN N . -

.___ [} m»d.._él.l &&N | _w —a e i 2 -

PASCAL compiler, which takes as input his PASCAL program file
(the source program), and outputs a machine code equivalent program
(the object program). BASIC and some other languages require some-
thing more, so that programs can be built up interactively. On most
operating systems, typing the command BASIC will invoke a BASIC

1 B L B B R

. . ;L Lo L tyond\.... Ricro =3

enough to support at least some of it. In particular, UNIX (or
scaled-down versions of it) is available on a growing range 3,. personal
computers and workstations, allowing linguists to access a wide range
of tools and programming languages, and so to develop advanced soft-
ware for English language teaching and research.

‘subsystem’ — a mini-operating system including most of the file-hand-
ling and other commands found in a home micro BASIC system, such
as NEW, SAVE, etc. There is a trend to develop similar programming
support environments for other languages, including many more sophis-
ticated aids to program development. For example, an Ada Program-]
ming Support Environment (APSE) will be available soon with
facilities for keeping track of the numerous subprograms which may
be written by different individuals collaborating on a large software
engineering project.

Bt i s 4 o]] R i s

The POPLOG teaching and research environment

POPLOG is one such environment, built around the powerful
programming language POP-11 (see above). It was originally devel-
oped at Sussex University, for teaching Arts undergraduates on the
Cognitive Science programme, and it is particularly user-friendly for
beginners. Users can ask for HELP on any command, and in addition
there is an extensive TEACH facility. For example, if a student types
TEACIHI GRAMMAR, a tutorial text on English grammar is
displayed on the screen, interspersed with invitations to the student
to try out some example programs which demonstrate phrase structure
rules, sentence generation, parsing, etc. For the more advanced user,
the POP 11 code of any of the demonstration programs can be exam-
ined using the SHOWLIB command; and detailed documentation and
references can be examined using the DOC or REF commands. An
overview of the POPLOG system is included in O’Shea and Eisen-
stadt (1984); although originally developed for teaching and research
in cognitive science and artificial intelligence, the general POPLOG
framework could readily be adapted for English and linguistics
research and teaching.

Conclusions

e
T

Most of the software discussed in this chapter is currently only avail-
i able on university mainframe computers, but with the rapid increases
in hardware technology, personal computers will soon be powerful

