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Summary. This paper addresses the Bayesian parameter estimation of nonlinear, structurally dynamical systems. Specifically, it

is concerned with Markov Chain Monte Carlo (MCMC) methods which, via the evolution of an ergodic Markov chain through the

parameter space, allow one to generate samples from the posterior parameter distribution given by Bayes’ theorem. A version of the

well-known Simulated Annealing algorithm is presented where, to reduce computational cost, the transition from prior to posterior

distributions is controlled via the gradual introduction of data into the likelihood. A method is proposed which allows one to introduce

data in a ‘smooth’ and continuous manner such that, while moving from prior to posterior, a constant change in Shannon entropy can

be maintained. The performance of the algorithm is demonstrated on the parameter estimation of a nonlinear dynamical system.

Introduction

Within the context of this paper, the task of Bayesian inference involves assessing the plausibility of a set of model

structures - as well as the parameters within each model - of structurally dynamical systems using a set of training data. It

is well-established that both levels of inference (parameter estimation and model selection) can be achieved through the

sequential application of Bayes’ theorem:

P (θ|D,M) =
P (D|θ,M)P (θ|M)

P (D|M)
(1)

P (M|D) =
P (D|M)P (M)

P (D)
(2)

where M represents a candidate model, θ is a vector of parameters within that model and D is a set of training data. Suc-

cessful evaluation of equation (1) gives a probability density function describing the plausibility of the parameter vector θ

conditional on the set of training data D and the model M - this is known as posterior parameter distribution. Successful

evaluation of equation (2) gives a probability mass function across the set of competing model structures which, it can be

shown, assigns overly-complex models relatively low probabilities. Owing to the size constraints of this paper, a thorough

description of equations (1) and (2) will not be given here - for more information the reader can consult [1] where, within

a similar context to the current work, a comprehensive description of such a Bayesian framework is given.

In the last 20 years the applicability of Bayesian inference has been substantially improved through the use of Markov

chain Monte Carlo (MCMC) methods. MCMC involves the creation of an ergodic Markov chain whose stationary distri-

bution is equal to P (θ|D,M) such that, once the chain has converged, it can be used to generate samples from posterior

parameter distributions with complex geometries. ‘Classical’ MCMC methods such as the Metropolis algorithm [2] and

Hybrid Monte Carlo [3] can be used to address this first level of inference while, in the present-day, advanced algorithms

such as Reversible Jump MCMC [4], Transitional MCMC [5], Asymptotically Independent Markov Sampling [6] and

Nested Sampling [7] are also capable of addressing Bayesian model selection.

While undoubtedly powerful, MCMC methods tend to be rather expensive and, as such, can only be employed when

computationally cheap models are used. The aim of the current paper is to present the author’s preliminary work into a

new MCMC algorithm which is designed to address this issue.

Before proceeding it is necessary to define some notation: throughout this paper π(θ) is used the denote the ‘target

distribution’ of the MCMC algorithm - this is the posterior parameter distribution from which one wishes to generate

samples. Additionally, an asterisk is used to represent unnormalised target distributions while Z’s are used to represent

normalising constants (such that π(θ) = π∗(θ)/Z). Finally it should be noted that, for convenience, the posterior

parameter distribution has been written in the following form:

P (θ|D,M) ∝ exp(−JL(θ)− JP (θ)) (3)

such that JL is the negative log-likelihood and JP is the negative log-prior.

Simulated Annealing

The algorithm presented here is a variation of the well-known Simulated Annealing algorithm [8]. Originally proposed

as an optimisation algorithm, Simulated Annealing can be applied within a Bayesian framework in such a way that one’s

MCMC algorithm is less likely to become stuck in ‘local traps’ (regions of high probability density which are not in the



ENOC 2014, July 6-11, 2014, Vienna, Austria

globally optimum region of the parameter space). This is achieved by using the Metropolis algorithm to generate samples

sequentially from a set of target distributions:

π∗

j = exp(−βjJL − JP ) j = 1, 2, ... (4)

where β is usually referred to as the ‘temperature’ and, for sake of readability, all dependencies on θ have been dropped.

The general concept is that, while the Markov chain is evolving, the temperature variable is increased from 0 to 1 such

that the target distribution gradually changes from the prior to the posterior parameter distribution. It can be shown that,

through the introduction of this gradual transition, the Markov chain is more likely to converge to the desired region of

the parameter space in a reasonable amount of time.

The strictly increasing sequence of temperature values is usually referred to as the ‘annealing schedule’. Choice of

annealing schedule is critical - annealing too fast increases the risk of becoming stuck in a local trap while annealing

too slow will unnecessarily increase computational cost. In this paper it is hypothesised that an appropriate annealing

schedule is one in which the information content - the Shannon entropy in this case - is varied at a constant rate. This is

discussed more in the following sections.

Data Annealing

Equation (4) shows that, by increasing the temperature from 0 to 1, one is essentially increasing the influence of the like-

lihood on the posterior. In [9] the author proposed that, rather than using the temperature variable, a similar effect could

be realised by gradually increasing the number of data points included in the likelihood. The advantage of this method

(named ‘Data Annealing’) was that it reduced the number of data points that would need to be generated by the model

M every time a MCMC sample was generated, thus decreasing computational cost. The disadvantage is that annealing

through the introduction of data points is a relatively blunt instrument - one has less control over the rate at which infor-

mation is introduced than if one were to use Simulated Annealing.

The purpose of the current work is to address this issue. Specifically, it aims to propose a version of the Data Annealing

algorithm where one is able to have complete control over the rate at which information is introduced into the target

distribution.

Proposed Methodology

Annealing with Constant Entropy Variation

As stated previously, it is hypothesised here that the optimum annealing schedule is one in which the Shannon entropy of

the target distribution is varied at a constant rate. This is similar to the concept of ‘annealing with constant thermodynamic

speed’ that was proposed in [10].

With the aim of deriving a general expression which can be used for future variants of the Simulated Annealing algorithm,

it is supposed here that JL is some function of the temperature β which is yet to be defined. Throughout the following

analysis the derivative of JL with respect to β is simply written as J ′

L.

Recalling that the target distribution is written as π = π∗/Z where Z is the normalising constant, it is convenient at this

point to derive the following properties:

dπ∗

dβ
= −J ′

Lπ
∗,

dZ

dβ
= −ZE[J ′

L],
dπ

dβ
= π (E[J ′

L]− J ′

L) . (5)

The Shannon entropy of the target distribution is given by

S = lnZ + E[JL] + E[JP ] (6)

such that the aim here is to evaluate

dS

dβ
=

d(lnZ)

dβ
+

d(E[JL])

dβ
. (7)

Using the properties in equation (5), the first term of equation (7) is:

d(lnZ)

dβ
= −E[J ′

L] (8)

while the second term can be evaluated as follows:

d(E[JL])

dβ
=

d

dβ

∫

JLπdθ (9)
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=

∫

d(JLπ)

dβ
dθ (10)

=

∫

πJ ′

L + πJL (E[J ′

L]− J ′

L)θ (11)

= E[J ′

L] + E[JL]E[J ′

L]− E[JLJ
′

L]. (12)

Substituting into equation (7) one finds that

dS

dβ
= E[JL]E[J ′

L]− E[JLJ
′

L] (13)

= −Cor(JL, J
′

L). (14)

where Cor(JL, J
′

L) is used to represent the (unnormalised) correlation coefficient between JL and J ′

L.

Using ∆S to represent the desired change in entropy (as defined by the user) and bearing in mind that an increase in β
must induce a reduction in entropy (as one’s parameter uncertainty is reduced), one finds that new values of β should be

selected according to:

βj+1 = βj +
|∆S|

Cor(JL, J ′

L)
(15)

subject to the condition that

βj < βj+1 ≤ 1 ∀j. (16)

It is re-emphasised here that equation (15) is a general expression which holds, regardless of the functional relationship

between JL and β. It is relatively easy to prove that, for ‘traditional’ Simulated Annealing where JL(β) = βJL, equation

(15) shows that new values of β should be selected according to

βj+1 = βj +
|∆S|

βj Var(JL)
. (17)

Data Annealing with Constant Entropy Variation

Having derived equation (15), the final task is to create a version of Data Annealing where, through defining the appropri-

ate relationship between JL and β, an annealing schedule with constant entropy variation can be realised. It is suggested

here that, for the situation where n data points have already been introduced and the user wishes to introduce the next

(N − n) points, JL should be defined as:

JL(β) =

{

n

2
ln(2πσ2) +

1

2σ2

n
∑

i=1

∆x2
i

}

+ β

{

N − n

2
ln(2πσ2) +

1

2σ2

N
∑

i=n+1

∆x2
i

}

(18)

where σ is the likelihood standard deviation and ∆xi represents the difference between the ith point of model output and

the ith point of training data. Combining this expression with equation (15) should allow the new data to be introduced

with a constant variation in the Shannon entropy. Once the new data has been fully introduced then the user can either

terminate the algorithm or choose to add additional data points.

It should be noted that the above definition of JL is specifically for the case where an uncorrelated Gaussian prediction-

error model has been used and where the likelihood standard deviation is treated as an unknown parameter.

Pseudo-Code

At the jth stage in the algorithm where, say, one is ‘annealing in’ the data points indexed from n to N , the algorithm

proceeds as follows:

Input: desired change in Shannon entropy ∆S

• Generate samples from πj using the Metropolis algorithm

• Set βj+1 according to equation (15)

• If βj+1 > 1
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Parameter Magnitude Units

c 0.05 Ns/m

k 50 N/m

k3 1× 105 N/m3

σ 0.01 -

Table 1: Parameters used to generate training data.
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Figure 1: Time history training data.

– Set βj+1 = 1

• Else if βj = 1

– Prompt user to either terminate algorithm or add more training data

• End

Example using Simulated Data

Here the performance of the algorithm is demonstrated using a simple example: the parameter estimation of a SDOF

nonlinear system using simulated time-history training data. The system of interest is a Duffing oscillator which is under

a Gaussian white noise forcing:

ẍ+ cẋ+ kx+ k3x
3 = F (19)

where x is displacement, F is the excitation force, c is viscous damping, k is linear stiffness and k3 is the nonlinear

stiffness - the values of the parameters used are shown in Table 1. The ‘full’ set of training data consisted of 500 points of

displacement measurements which had been artificially corrupted with Gaussian measurement noise of standard deviation

0.01. The resulting time history is shown in Figure 1.

With regards to the algorithm, it was decided that the training data should be introduced 100 points at a time (also shown

in Figure 1). The parameters k, k3 and the likelihood standard deviation σ were treated as being unknown. Gaussian prior

distributions with standard deviation equal to 20, 5× 104 and 0.05 were used for k, k3 and σ respectively. For this simple

example the mean of each prior was set equal to the true parameter values. The desired change in the Shannon entropy

was set equal to -1 and 1000 samples were generated at each iteration.

The resulting values of β are shown in Figure 2. It is interesting to note that, generally speaking, the initial sets of data

have to be introduced in a gradual manner relative to the latter sets of training data. This is to be expected because, as

more training data is used, the relative effect of an additional 100 points should be reduced.

One of the advantages of the proposed algorithm is that it allows the user to monitor various properties as training data is

added such that the algorithm can be terminated when certain criteria are met. As an example, Figures 3 and 4 show how,

in the current case, the mean and standard deviation of the posterior parameter estimates varied as training data was added.

Can the Algorithm Fail ?

The algorithm presented here is based on the hypothesis that additional training data must lead to a reduction in the

Shannon entropy. At first glance this appears to be supported by the well-known property that the expected variance of
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Figure 2: Variation of β against the number of MCMC runs.
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Figure 3: Posterior mean of parameter estimates against the number of MCMC runs. Red circles represent the points where additional
training data was added.
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Figure 4: Posterior standard deviation of parameter estimates against the number of MCMC runs. Red circles represent the points
where additional training data was added.
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the posterior must be less than that of the prior:

E[Var(θ|D)] = Var(θ)−Var(E[θ|D]). (20)

However, this result only states that additional data will reduce parameter uncertainty on average. Recalling equation

(15), a reduction is Shannon entropy can only occur if the correlation between JL and J ′

L is positive. This essentially

means that, if additional data has the effect of increasing parameter uncertainty, then the algorithm will attempt to select

a lower value of β (which is undesirable). While this has not occurred in the example shown here, it is an issue which the

author aims to resolve as part of future work.

Conclusions

This paper presents a novel version of the well-known Simulated Annealing algorithm which can be used to aid the

Bayesian system identification of structurally dynamical systems. It is based on the recently proposed Data Annealing

algorithm, where the transition from prior to posterior is induced through the gradual introduction of training data (thus

reducing computational cost). Presented here is a new version of Data Annealing which allows new training data to be

introduced with a constant variation in the Shannon entropy.
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