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Abstract

Nonlinear system identification and analysis methods are employed to study the low
frequency oscillations present in time series data obtained from reflectance imagery of
microvasculature. Using the method of surrogate data testing the analysis reveals the
deterministic nature of these oscillations which initially are believed to be chaotic.
Further investigations by means of nonlinear system identification techniques indicate
however that the underlying dynamics is described very well by a periodically driven
nonlinear dynamical model exhibiting quasiperiodic oscillations.

1. Introduction

Numerous studies attest to the fact that low frequency oscillations are present in
measurements of blood flow, volume and diameter changes in the microvasculature.
The presence of these oscillations has been known and studied for nearly a century
(Bayliss 1902 ; Wiedeman 1957). While several low frequency oscillations have been
detected, the most frequently reported and studied has a frequency of ~0.1 Hz, or 6
cycles/minute, i.e., a period of about 10 seconds. The commonly accepted explanation
of the ~0.1Hz oscillations is by mechanisms either myogenic (Folkow 1964;
Gustafsson 1993) and/or neurogenic (Golanov, Yamamoto et al. 1994, Golanov and
Reis 1995) in origin acting on resistance vessels (arteries and arterioles) to change their
diameter with the effect that the modulation of flow rate produces oscillatory changes
in saturation and volume. The mechanisms and dynamics underlying these changes in
flow rate are complex, and as yet not well understood, and it is uncertain if they have
a functional role.

Recently, it has been demonstrated that reflectance changes in video image sequences
contained the ~0.1Hz oscillation in areas of brain parenchyma as well as the visible
microvasculature (Mayhew, Askew et al. 1996). In a study to be reported elsewhere
(Berwick, Askew et al. 1997) image data sequences were collected under 570nm
(green) and 660nm (red) wavelength illumination over long durations (up to 40
minutes) from 2mm square regions of cortex and from testes in rat. The genlock of the
video camera was used to synchronise the LEDs to capture alternate fields of the
video signal at 25Hz which allowed the nearly simultaneous capture of the data under
the different illumination conditions. 4000 samples of data recorded under green and
red illumination with a sampling frequency of 25Hz are plotted in Figure (la,b). The
raw data was subsequently smoothed to reduce the measurement noise (Figure la,b).




Frequency and coherence analysis of the time series of the mean image intensity
revealed that the V-signal contained frequency components at ~0.03Hz and ~0.1Hz,
and there was a reliable phase difference (red leading green by ~1.5 secs) in the ~0.1Hz
frequency band, but in the frequency band around 0.03Hz the signal under red and
green illumination showed no such phase differences. Further analysis revealed a
correlation between MABP (Mean Arterial Blood Pressure) and the image time series
data in the 0.03Hz frequency band, but no correlation in the ~0.1Hz region of the
spectrum.

The finding of the low frequency ~0.03Hz oscillations in our data was to be expected
as such low frequencies are known to be present in measurements of cerebral
circulation intracranial pressure and arterial blood pressure as well as in vasomotion
(Hundley, Renalado et al. 1988; Schmidt, P.Borgstrom et al. 1993; Janssen, Oosting et
al. 1995) and also in NAD-NADH redox states (Dora and Kovach 1981).

The results we report here concern the application of nonlinear system identification
and analysis techniques to the time series data obtained from reflectance imagery.
Several studies have indicated that the vasomotion oscillations have characteristics
typical of nonlinear deterministic systems: (Griffith and Edwards 1993; Griffith and
Edwards 1994), in vitro; Eke LDF in rat cortex; (Tsuda, Tahara et al. 1992) in human
pulse; (Cavalcanti and Ursino 1996) arteriolar network models.

The method we describe differs in that we entertain the hypothesis that the ~0.03 Hz
component of the V-signal signal reflects the variation in blood pressure which
modulates flow rate in the local microvasculature and it is the dynamics of these and
the underlying capillary beds that gives rise to the ~0.1Hz oscillations present in the V-
signal.

To summarise, using nonlinear system identification techniques to analyse the above
data we have been able to derive nonlinear models that, when driven by a 0.03Hz
periodic input, are able to generate an oscillatory signal qualitatively identical to the V-
signal data we measure in vivo.r The underlying microvasculature can therefore be
regarded as a nonlinear oscillator forced with a 0.03Hz peniodic input. This model
could describe the mechanism behind the rhythmic volume changes in oxygenated and
deoxygenated blood in the microvasculature.

We suggest that further exploration along these directions may elucidate further the
issues between the myogenic and neurogenic hypotheses of vasomotion.

2. Nonlinear Analysis

It is now well understood that apparent randomness in measured data can be the result
of a complex but deterministic underlying mechanism which generate unpredictable or
chaotic motion.

In practice it is important to diagnose and characterise such random-like behaviour in
order to distinguish between deterministic chaos and stochastic 'noise'. This problem
can be reduced to that of performing a number of tests which would indicate that the
data are deterministic and possibly chaotic. For example, sensitivity to changes in initial
conditions, the fractal properties of the motion in the phase-space, or the existence of
unstable periodic orbits, all of which characterise a strange or chaotic attractor, can be
investigated by means of computing dynamical invariants such as phase-plots, fractal
dimension, Lyapunov exponents or close return maps. In many cases these invariants
can be retrieved directly from the experimental observations.




Another important step in characterising the dynamics is extracting from data the
mathematical model that describe the observed behaviour. The model which normally
reveals the underlying mechanism that generated the data can be used to explain and
predict the behaviour of the system under different operating conditions.

2.1 Correlation Dimension Estimation

The correlation dimension (Grassberger 1983) is a quantitative measure which has
been successfully used to characterise the fractal dimension of an attracting set.
Essentially, the fractal dimension reflects the fact that the trajectory of a chaotic system
in the phase space fills up less than an integer subspace. It follows that a non-integer
dimension is the hallmark of a strange attractor.

To compute the correlation dimension the experimental data was used to create the
pseudo-phase-space variable x, =[x(?,) x(, —7)...x(t, —mT)] where 7 is a suitably
chosen value of time delay (Rosenstein, J.J. et al. 1993) and m is the embedding
dimension. By calculating the distances between pair of points [x, —x,| using the

Euclidean measure of distance for example, the following correlation function can be
defined
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where N is the number of data points, H(s)=1 for s>0 and H(s)=0 for s<0 and r 1s the
radius of neighbourhood. For a chaotic attractor this function should in principle
exhibit a power law dependence C(r)=ar" as r—0 so the correlation dimension of
the attractor D, can be defined as the slope of the log(C) versus log(r) curve
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Practically D, is estimated as the slope of the log-log graph of the correlation function

C(r) by fitting a straight line to the linear part of the graph known as the scaling region.
The scaling region is a critical choice since the dimension estimate can vary
significantly by choosing different scaling regions. In practice by computing the
correlation function for different embedding dimensions a common scaling region can
be identified and used to estimate the dimension.

The correlation dimension was computed using 8000 experimental data samples for
five different embedding dimensions. The local slope of the log(C) vs log(r) is plotted
in Figure (2a) for the experimental signal and in Figure (2b) for a surrogate signal (a
random signal with an identical Fourier power-spectrum to the observational signal
(Theiler, Eubank et al. 1992)).

While Figure (2a) shows a common plateau for all choices of embedding dimension
which corresponds to a correlation dimension D, =183 (this is consistent with the
fact that the correlation dimension should be independent of the dimension of the
embedding space) the local slope for the surrogate data in Figure (2b) does not exhibit
such a plateau for any of the embeddings considered.




The results provide a first indication that the experimental signal is a deterministic
possibly chaotic signal.

2.2 Lyapunov Exponent Estimation

Chaotic dynamics can be associated with extreme sensitivity of the outcome of the
dynamical process to changes in initial conditions. A chaotic system will map at time ¢
a set of initial conditions within a sphere of radius r at time ¢, into an ellipsoid whose

major axis grows exponentially d = re*“™ The largest positive Lyapunov exponent
A >0 accounts for the rate of divergence between two nearby trajectories and can be
used to establish the chaotic nature of the system under investigation. Normally this
exponent can be computed analytically using the equation of motion when known.
However, relatively robust strategies for calculating this exponent directly from data
are available (Rosenstein, J.J. et al. 1993; Kantz 1994). This involves essentially
tracing the exponential divergence of nearby trajectories. Assuming that the
observations have been embedded in a space of dimension m, the estimation of A
involves computing the distance function
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where U! is a r neighbourhood of x, and {U!| is the number of points in U’. The
largest Lyapunov exponent is defined as the slope of the curve In(d) versus k. The
Lyapunov exponents were computed using 8000 experimental data samples and also
the surrogate data set. For the experimental signal the slope of the curve was found to
converge towards a common plateau for all choices of embedding dimensions and
provided a value of A'=0103 for the largest Lyapunov exponent. For the surrogate
data set the local slope of the curve In(d) versus » was found to be oscillating taking
negative as well as positive values.

2.3 Close return maps

Close return maps provide a topological approach to analyse chaotic motion (Mindlin
and Gilmore 1992; Gilmore 1993). The basic principle is to search for evidence of
unstable periodic orbits which are normally embedded in a chaotic attractor.

Considering {x(#,)},., y to be the time series under investigation, where N is the data

length, the possible unstable orbits can be revealed by monitoring the points along the
trajectory which are very close (&-close) in space.
The close return map can be obtained by computing the following matrix
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where ¢ s a small positive constant normally ~1% of the signal range. The close return
map 1s obtained by plotting a black dot for every C(i,j)=1.




By checking the close returns different types of motion can be identified (Gilmore
1993). In particular for a chaotic signal a specific pattern containing a number of
fragmented horizontal lines will appear in the graphics.

The close return map of the experimental signal shown in Figure (3a) displays a regular
pattern where such lines are clearly visible. In contrast, the close return map (Figure
(3b)) for the random surrogate data set shows no such regularity of pattern. This
illustrates the deterministic, possibly chaotic nature of the experimental signal.

Unlike the first two tests which involve quantitative analysis of the data, the method of
close returns is a qualitative test which provide only graphical evidence of deterministic
behaviour by exposing periodic orbits embedded within the attractor.

All the tests considered so far clearly indicate the deterministic character of the
experimental signal as opposed to the surrogate random data. Although the correlation
dimension and the largest positive Lyapunov exponent estimated directly from discrete
observations are often not very accurate, the results obtained in this study provide
strong evidence of complex dynamical behaviour at the microvasculature level.

3. System Identification

A further step in understanding the nature of the oscillatory vasomotion activity
revealed by the experimental measurements is to recover the mathematical equations
that model the underlying dynamics. This is a typical nonlinear system identification
problem. We have identified both discrete- and continuous-time models from the data.
Here only the discrete-time model is discussed.

3.1 Discrete-Time System Identification

In discrete-time, giving the set of input/output measurements the task is to recover the
difference input/output equation (INARMA model)

(&)= FO( =Dy, Yt =1, ) u(t = D)oot = )

which can be augmented to account for the measurement noise in the data (NARMAX
model)

y(O)=fE=1),. ., yt-n)u=-1),.  u(t-n,)e(t-1),.,e(t-n,))

(Leontaritis and Billings 1985; Leontaritis and Billings 1985)where y, u, e are the
input, output and noise respectively, #,,n,,n, are the maximum input, output and

noise lags and f{) is an unknown nonlinear function. In practice it is convenient to
represent f{-) as a polynomial function in y, , and e. Polynomial models have a simple
structure, provide a closed-form for the model and can be used to represent a wide
class of nonlinear systems (Chen and Billings 1989). Moreover, the polynomial
representation is linear-in-the-parameters so that the unknown parameters can be
estimated easily using least-squares algorithms.

However, a model that contains all possible polynomial terms is normally too complex
for a given identification problem. A major task therefore is to select the correct terms
with which to implement the model. An effective solution is to use an orthogonal




ff.* forward regression algorithm to perform model structure selection and parameter
| estimation. For a complete description of the algorithm see Billings(1989).

3.2 The Discrete-Time Model

A number of physiological studies have suggested the existence of a pacemaker
(periodic forcing input) as a possible cause of the random-like fluctuations observed in
the blood flow in the microvasculature.

In our study we have found that autonomous models (with no external forcing)
estimated from data could not adequately capture the observed behaviour. The
structure selection and parameter estimation algorithms, have produced in this case
only models which exhibit a limit cycle behaviour similar to that displayed in Figure
(4). The power spectral density of the periodic output in this case is mainly
concentrated at ~0.1Hz frequency. In contrast, although the power spectral density of
experimental data has also revealed the presence of a low frequency component ~0.03
Hz with the same phase in the experimental time series under green and red
illumination, this frequency component was absent from the output of all estimated
autonomous models.

Motivated by these observations and by the fact that the experimental data was found
to be strongly correlated with the arterial blood pressure at this particular frequency a
periodic signal with ~0.03Hz frequency, assumed to act as an external forcing input for
the system, was used to estimate discrete-time models from the data. The amplitude
and phase information of the input signal were obtained by least-square fitting a sine
and cosine function with the frequency ~0.03Hz to the experimental 'red' data after the
mean was removed. The data sets used for estimation consisted of 2 x 1000 data points
recorded under green and red illumination with a sampling period d#=0.16s.

A number of discrete-time models driven by the periodic perturbation extracted from
data were estimated using experimental measurements from different experiments. In
each case the discrete-time models, represented as a system of two nonlinear difference
equations, could reproduce very well the observed behaviour. An example of such
model estimated from the data plotted in Figure (1a,b) is given below

g(t) =-1.768485668 -107 g(¢-1)+5.622859414 -107%r(t-1)°
-1.553273185 107" g(¢-1)r(t-1)* +1.467159577 -10°
+5.948968435 -1072 g(¢-1)*u(t-1) +6.068632954 -10g(t-1)*r(t-1)
-1.228501546 -10%r(t -Du(r-1)-7.093971541 -107' g(¢ -1)?
+33.26112571 g(¢t -1)r(t -1)-2.019333975 -10%7(¢-1)-14.78316977 g(r - Du(t -1)
+7.705688293 -10%u(r-1) +5.558352824 -107'r(r-1)*u(t-1)

r(t) =7.997723476 r(t-1)-1.13256518 -10° g(r -1)-2.736708735 - 107 g(¢ - 1)°
+4.273082457 -10° +1.041728814 -107 7 g(¢r-1)*r(r-1)
-8.297871391 107 g(¢t-1)r(t-1)* +8.911030068 10" g(r -1)*
+4.620629966 -107 g(t-Du(t-1)* +1.155881205 - 107 g(t - 1) u(t - 1)
+1.45511184 1077 r(t-1)?u(r -1)-2.567488992 1072 g(r - )r(t - Du(r - 1)
-2.993158072 107 g(¢ - Du(r -1)-5.281090196 u(t - 1)*




where g and r are the signals under green and red illumination and u is a ~0.036 Hz
periodic input with amplitude A~0.15.

4. Model Validation

The ability of the estimated model to reproduce the observed dynamical behaviour can
be judged by comparing the phase-space portraits plotted in Figures (5a,b) using the
experimental signals and the model simulated outputs. The one-step-ahead predicted
outputs and the model simulated outputs are also compared with the estimation data
in Figures (6a,b) and (7a,b) respectively.

The correlation dimension and the largest Lyapunov exponent of this model were
computed using 8000 data samples generated by the model. The values found
D, =203 andA =0098 are similar to those estimated directly from the data.

Moreover, the close return map computed for the ‘green’ model simulated output
(Figure 9) is very similar to the return map obtained for the experimental ‘green’ signal
(Figure 3a).

At this stage, following long term simulation, it was apparent that the behaviour of the
model is aperiodic but stable. This is normally associated with either chaos or
quasiperiodicity.

A simple way to expose the underlying structure of the aperiodic attracting set and
distinguish between chaotic and quasiperiodic motion 1s to compute a Poincaré map
for the system. In this case, the Poincaré map computed for the estimated model
(Figure 10) reveals a smooth, closed curve which proves the quasiperiodic nature of
the attractor. Observe in this case the similarity between this Poincaré map and the
limit cycle plotted in Figure (4). This illustrates the fact that the observed irregular
oscillations are caused by the interaction between an intrinsic periodic behaviour
(probably characteristic to the microvasculature) and an external perturbation at ~0.03
Hz (probably caused by blood pressure fluctuations).

5. Discussion and Conclusions

The major findings of the present study relate to the nature and cause of the irregular
oscillations exhibited by the V-signal. Using nonlinear mathematical techniques we
were able to quantify the complexity of irregular time series (V-signal) through
computation of quantitative and qualitative dynamical invariants such as correlation
(fractal) dimension, the maximal Lyapunov exponent and by plotting the close return
maps. The results obtained for the experimental measurements, which clearly contrast
with the results obtained for surrogate random data, strongly indicate the deterministic
character of the oscillations. These initial findings confirmed previous investigations in
this area that suggested that the oscillations are deterministic, possibly chaotic.
Establishing the chaotic nature of a signal based only on numerical computation of
dynamical invariants it is often not very convincing. For this reason, system
identification techniques were employed in an attempt to extract from the data a
mathematical model that could provide further insight into the nature of the
oscillations.

In a first stage nonlinear discrete-time models with no exogenous inputs were fitted to
the data. These models however could not reproduce adequately the observed
behaviour. In particular, all these models exhibited a limit cycle behaviour which
suggested the need of an external input.



This hypothesis proved to be fruitful since the discrete-time models derived from the
V-signal using as an input a ~0.03Hz periodic input could reproduce remarkably well
the qualitative and quantitative features of the experimental signals.

The choice of the external input was motivated by the fact that the 0.03Hz oscillation
in the data correlate strongly with the mean arterial blood pressure (MABP) and has
the same phase for both signals obtained under green and red illumination. Moreover
the 0.03 Hz oscillation could not be detected in the simulated output of the
autonomous models estimated from data which indicate that it is an exogenous signal.
In general a nonlinear oscillator when forced with an external periodic input can exhibit
aperiodic oscillations which in principle could be chaotic or quasiperiodic. For a long
time it was believed that the observed irregular behaviour is chaotic. The analysis
presented in this paper however, provides strong evidence that the oscillations are in
fact quasiperiodic. This points out the shortcomings of relying only on dynamical
invariants computed directly from data to detect or classify chaotic dynamics. The
computation of these invariants however was clearly useful in establishing the
deterministic nature of the experimental data. The correlation dimension in particular
clearly indicated the nontrivial character of the dynamics in the state-space. It is worth
noting that both quasiperiodic and chaotic attractors have dimensions greater than that
of a simple limit cycle.

Based on the results presented in this study it is possible to speculate that the
vasomotion oscillations in the absence of the 0.03 Hz input are described by an
autonomous dynamical system with a periodic limit cycle. This natural limit cycle seem
to interact with an exogenous 0.03Hz excitation, which probably is related to the
fluctuations of the blood pressure, resulting in the observed quasiperiodic oscillations.
The physical interpretation of the nonlinear model however is not that trivial. By using
naive oximetry for example the green and red signals could be transformed easily into
blood volume and saturation (the ratio of oxygenated and deoxygenated haemoglobin)
oscillations. In such case a similar nonlinear model was found to describe the volume
and saturation oscillations. Again, the quasiperiodic nature of the model suggests that
in the absence of the periodic perturbation at 0.03Hz the volume and saturation
oscillations would have a limit cycle behaviour which seems to be intrinsic to the
microvasculature. An interesting question is whether the 0.03Hz oscillation has a
functional role at the microvasculature level or is just an accidental perturbation.
Multi-wavelength spectrographic analysis however, (Berwick, Askew et al. 1997)
shows that at wavelengths below 590nm, by far the major component of the changes in
absorption contributing to the V-signal is wavelength independent and due to changes
in scattering (See Figure (11)). In the case of the data under the red illumination
(~660nm) we believe that it confounds both the wavelength independent scattering and
changes in absorption derived from changes in the oxygenation of haemoglobin (and
possibly from changes in the state of oxidation of the cytochromes involved in the
metabolic electron transport chain). If so, subtracting the green from the red V-signal
would produce a signal derived predominantly from saturation and metabolic changes
whilst the green signal oscillations will represent mainly changes in scattering.

Figure (11a) shows the spectral variation in the V-signal over time from a different
study. Figure (11b) shows time series of the absorption at 570nm and 650nm and, for
comparison, the absorption changes due to the oscillation in the tissue scattering
obtained using Nonlinear Multi-Component Analysis (NLMCA ) (Heinrich, Hoffman
et al. 1987, Mayhew, Zhao et al. 1997). Figure (11c) shows the changes in cytochrome




oxidation and in oxygenated haemoglobin from the same analysis superimposed on the
difference between the red and green V-signal measurements.

Under either of these interpretations, physically meaningful variables could be derived
from the green and red signals by an appropriate transformation. This however would
not change the intrinsic nature of the dynamics.

A fuller interpretation of the implications of this analysis is impossible at this state of
knowledge not least given the uncertainty concerning the origins of the intrinsic signal
sources and the physiological meaning of the optical V-signal time series data used in
the modelling process. However the results concerning the nature of the system and its
nonlinear characteristics should hold under different transformations of the
measurement data. Thus the conclusions concerning the quasiperiodic nature of the
oscillations are maintained whether we use naive oximetry to transform the time series
data into estimates of volume and saturation or scattering and saturation.
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Figure 3: Close Return Map of the (a) experimental signal and (b) surrogate data
Figure 4: Limit Cycle behaviour of the autonomous model.

Figure 5: Phase-space portrait plotted using (a) experimental data and (b) the model
simulated outputs

Figure 6: One-step-ahead model predicted outputs (dash-dot) superimposed on the
estimation data (a) under green illumination and (b) under red illumination

Figure 7: Model simulated outputs (dash-dot) superimposed on the estimation data (a)
under green illumination and (b) under red illumination

Figure 8: Correlation Dimension vs. log(r) plot for the estimated model

Figure 9: Close Return Map computed using the model predicted output

Figure 10: Poincaré Map plot for the estimated model

Figure 11: (a) spectral variation in the V-signal over time, (b) time series of the
absorption at 570nm and 650nm and (c) the absorption changes due to the oscillation
in the tissue scattering obtained using Nonlinear Multi-Component Analysis

(NLMCA)). In (c) changes in cytochrome oxidation and in oxygenated haemoglobin are
superimposed on the difference between the red and green V-signal measurements.
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