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OPTIMAL DAMPING OF A MEMBRANE AND
TOPOLOGICAL SHAPE OPTIMIZATION

TONI LASSILA

ABSTRACT. We consider a shape optimization problem of finding thenaptidamping
set of a two-dimensional membrane such that the energy ehémbrane is minimized at
some fixed end time. Traditional shape optimization is basedensitivities of the cost
functional with respect to small boundary variations of #apes. We use an iterative
shape optimization scheme based on level set methods agdaitient descent algorithm
to solve the problem and present numerical results. Theadsthresented allow for cer-
tain topological changes in the optimized shapes. Thesegelsacan be realized in the
presence of a force term in the level set equation. It is abs®Kved that the gradient
descent algorithm on the manifold of shapes does not reguiexact line search to con-
verge and that it is sufficient to perform heuristic line skas that do not evaluate the cost
functional being minimized.

1. INTRODUCTION

Shape optimization can be seen as part of the field of optiomtal. Typically we have
a system governed by a partial differential equation whosatisn ug depends on some
variable geometric shap®. The problem is to minimize a given cost functioddlg, )
over the set of all admissible geometric shapes with piecewise smootimtary. Such
problems arise for example from the optimal design of stmest such as bridges, where we
attempt to minimize compliance of the structure due to kntmads given certain material
constraints.

By considering the variation of the cost functional undeaBrransformations of the
boundaries of shapes we can define derivatives with respesttape. This allows us to
derive necessary optimality conditions for the shape dpttion problem. The most pop-
ular frameworks are the speed method and the perturbatimeofity method presented
for example inl[i7] and.[22].

Shape optimization problems are typically solved numdyicA widely used approach
in the engineering fields has been to discretize the unaeylproblem and shape using
a finite element mesh, derive the sensitivities of the costtional to small boundary
variations of the shape, and then adjust iteratively thehnpesnts near the boundary of
the shape. Seel[8] ar [[18] for an introduction to practicaEhoptimization methods for
engineering applications using finite element approxiomesti

Recently more interest has been given to methods whichseptthe shap@ globally
as the level set of a continuous functignA smooth transformation of the boundary of the
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shape is then described with a transport equatiokpfarhese are called level set methods
and were made popular by Sethian and Osher. [See [5] for aysafvyevel set methods
applied to shape optimization problems. In this paper weflyrcover the basic framework
for shape optimization using implicit functions and levet methods to represent smooth
transformations of shapes.

To demonstrate numerical methods for shape optimizatiowansider a shape opti-
mization problem of finding the optimal damping set for a mesmle with fixed boundary,
modeled by the two-dimensional wave equation. We add a fixedpihg factor which
affects a subset of the membrane and causes decay in they exfighg vibration. The
objective is to find the shape of the damping set that minisntke energy at some fixed
end time given the initial position of the membrane and thmpiag factor applied. This
problem was previously studied in [14] and solved numelyaading finite differences on
regular grids. In this paper we use instead finite elementsiwegular triangular meshes
that conform to the boundary of the damping set when solMiegwave equations. The
results lead to some insight into shape optimization problehere the correct topological
properties of the shape are not known beforehand.

2. SHAPE OPTIMIZATION

2.1. Basic framework of shapes. LetD C R" be a domain of interest an#’ a family of
open subsets dd with piecewise smooth compact boundaries. Elemeni¥’ afre called
shapes. A shape functionit . — R is invariant with respect to homeomorphisms that
preserve the shapesi.e. for all sha@es . and homeomorphisngsof D we have that

9Q)=Q = J9(Q)=IQ.
The shape optimization problem is to find an optimal sh@pe .& s.t.
J(Q*) — minl.

The existence of solutions for such optimization probleeysahds on the chosen family
of shapes” as well as the properties 8f If the shape functiondlis lower semicontinuous
in theLP topology of the characteristic functiogg then typically a sufficient condition for
the existence of an optimal solution is that the family ofigbs” fulfills the uniform cone
condition or the stronger condition that all shapes havéoumiy Lipschitz boundaries.
We refer the reader to the monograph [7] for in-depth coverddhe theory of of smooth
geometric shapes as well as the classical theory of shajpeingtion.

2.2. Boundary variation formulation. To perform optimization in the family of shapes
we would like to define the concept of derivative with respecshape. The following
approach is called the speed method for shape derivativesid be a one-parameter
family of smooth transformationgs : D — D, for s> 0, s.t. ly = 1. Then for a given
Q € . we define the shape derivative bivith respect to the flowj at the shap® as the
Gateaux-derivative

I(Ps(Q)) —I(Q)

1) d3(Q; ) = fim :

provided that the limit exists. From now on we consider ondyvf { of some Lipschitz
vector fieldv: D — R" s.t. the action off on a pointXy € D is given by

2 X(0) =%, X(s) =V(X(s)), Ps(%)=X(9).

According to the Hadamard-Zolesio structure theorem (ggeJhapter 8, Theorem 3.5)
the shape derivative defined iy (1) has support only on a sob#iee boundaryQ and

3
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thus depends only on the componentaformal to the boundary. In the case where it is
bounded and linear, we can find a unique scalar fundfighc L?(dQ;R) s.t.

3) ds)(Q: ) ='/‘;Q OsJ(V- ) dS

If the shape functional is shape differentiable in the sense [df (3), we have the neces
sary optimality conditioridsJ(Q*) = O for an optimal shap@* without the presence of
constraints.

2.3. Topological variation formulation. As defined above, the speed method of shape
optimization works with diffeomorphic maps €Xy, the initial guess for the damping set.
For shape optimization problems where the optimal shapecoasist of more than one
component it has been thought that in order to find the optiiape it is either necessary
to know beforehand the topological properties of the optisi@pe, or to use a special
class of methods that fall under the so called topologicéihtpation. The topological
derivative of a shape functiond{Q) can be defined as i0.[20] as the limit of

(4) r (@) = lim J@Q U;S((B%‘(’;(QB);J(Q)’

whereB(X, p) is an open ball of radiup centered ak ¢ dQ andu(B(X, p)) its measure.
This derivative, when it exists, gives us an idea whei@ ime should add new components
of Q.

An interesting recent development is the attempt to comtiiaanethods of boundary
variation and topological optimization. A theoretical apgch was given in [21] where a
so-called domain differential was defined as

(5) DI(Q:; ,%)(p,s) = u(B(X,p)) - drI(Q:X°) +5-dsI(Q; ).

In [€] the authors derive topological gradients as a sublssti@pe gradients, but the algo-
rithm given was more akin to the typical bubble method wher@dial guess is obtained
using topological derivatives and then a pure shape opditioiz method is used.

A common method of combining topological and boundary \‘Emmoptimization is
to perform regularly in between boundary variation leveligations a step where small
parts of the shap® are removed in locations given by the topological derivatilhis
introduces the creation of holes into the process, whichantre gives good convergence
properties in the optimal support problem for the lineasttity model. See for example
[2], [], and [24]. A similar step that adds new material avileym the shape can also be
adopted.

In [4] the authors combined boundary variation and topaalgievel set methods. In
practice this gave better topological convergence thanaghgved using pure boundary
variations when the optimal shape contained a hole.

In [3] a method was given where the topological gradientalas used to write a level
set equation, which was then made stable by using an ortladgoojection technique.
This was the method we chose to compare against the traalibonindary variation meth-
ods. To proceed we introduce next the concept of level sehadstfor practical shape
optimization.

3. LEVEL SET METHODS AND IMPLICIT FUNCTIONS

Inherent in the problem of shape optimization is that thgstfanctionall encodes the
representation of the abstract shapes within itself. Feorétical analysis this is sufficient,
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but for more practical methods we need an explicit way of@epnting the shapes under
consideration.

Recently an approach to describe shapes using implicitiumecand their level sets has
gained popularity. Lef) be a given subset &" with piecewiseC boundary fork > 1.
Then there exist continuous functiops R" — R s.t.

Q={X:@(x) <0}, 0Q={X:@(x)=0}.

Such functions are called implicit functions or level setdtions. We can choosggin such

a way that apart from the corners@f it is everywhere Lipschitz and at lea3¥ in some
small neighborhood ofQ (the latter claim follows from the implicit function thears.
An example of such an implicit function is easy to exhibitmey we consider the signed
distance function

[ —dist(X,0Q), XeQ
©) W) _{ +dist(%,0Q), XeQC

From here on we identify every piecewi€¥ shapeQ by some representative implicit
function @ that isCK smooth near the boundadQ. It turns out that the existence of a
locally C¥ implicit function is an equivalent definition of @& smooth shape for sets with
compact boundary. This allows us to consider the shapeifuradtas a function of the
implicit function ¢ and not the actual s€l.

Consider a given piecewisg® shapeQ and its image under the flow af of some
velocity fieldvV with flow . Denote the image of the shape by the flowfa&€) = Qg and
let (X, s) be an implicit function foQs. We get for eacly € 9Qq

<P(¢s(20)75) =0,
and differentiating with respect tgives together with{2)

@(X,s) +V(X) - Op(X,s) = 0.

Using the fact that for smooth shap&sthe boundary outer normal is given lfy=
Og/|0¢| we get the form

(7) @(X8) + (V%) -M[0p(X,5)| = 0

where again only the component of the velocity field normahtoboundary is significant.
Equation[F7) is called a level set equation. It transposdékiel sets ofp advectively along
the flow .

Signed distance functionBl(6) are a subclass of implicitfions that have the special
property thatOg| = 1 almost everywhere. Such functions have nice computdtpna-
erties thanks to the unit scaling of the gradient. Usuaklylével set equatioi7) does not
preserve signed distance functions so possible numessaés might arise as the gradi-
ent (¢ grows during the evolution of the equation. These probleamskee rectified by
regularly rescalingp so that it becomes a signed distance function without motieg
zero-level set. A common idea used for examplée.in [23] istqde the unscaled version
of our implicit function¢ and regularly solve the equation

(8) @5(X,8) +sgn(@ (X)) (|0p(X,9)[ = 1) = 0,  ¢(X,0) = &(X)

for a short interval. This equation quickly rescalggo be closer to a signed distance
function while leaving the zero-level set intact. We shak shat this reinitialization not
only makes things numerically more robust, but has alsoradfiects when dealing with
topology changes in shape optimization.
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W +a(X)u = Au

FIGURE 1. Geometry for the damped membrane.

4. OPTIMAL WAVE DAMPING PROBLEM

The following problem was studied in_[14], where the autheedifinite difference
methods based on rectangular meshes to solve both the waséats and the level set
equation. We refer the reader to that work for some of theildesach as the derivation of
the shape gradient.

Let D C R? be a plane domain with piecewise smooth boundary and cartsieéwo-
dimensional wave equation with Dirichlet boundary coradfi. This equation models the
vibrations of an ideal membrane that is fixed at the edges.si@enadditionally that in
some subse® c D we apply a fixed damping facter> 0. The geometry of the problem
is shown in Figur&ll. The resulting equation for the displaeet of the membrane is then

{ Ut — Au+a(X)u 0, (Xt)eDx(0,T)

(9) u = 0, (%t)edDx[0,T]

U%0) = Uo(®), W(%0)=uX)

with initial data(uo,u;) for the membrane. The damping coefficient is defined here to be
piecewise constant:
a®) = { a XeQ

0, X¢ Q.
We refer toQ as the damping set of the membrane. The energy of the memibriamavn
to be

(10) JQat)= %/D [l (t) 2+ |Du(t) 2] dx

The objective is to minimize the total energy of the membiatreome fixed end time:
min  J(Q,a,T).
Qe

This is a shape optimization problem whose solution depaddgionally on the chosen
constanta andT.

In [15] it was proved that a relaxed formulation replacing tiharacteristic dampirg,
with a function inL* (D, [0, 1]) results in a problem that has a unique solution which corre-
sponds to an optimal solution of the original problem attiéaissmall damping factora.
It was also pointed out that there exists a limit dampingdiaafter which an overdamping
phenomenon occurs and leads to the non-existence of ogtohiions with finitely many
components. The one-dimensional case was analyzed in fi9hid work we choosa
moderate so as to avoid any problems relating to overdamaidj’ large enough so that
observability problems relating to the finite propagatipeed of waves do not occur.
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Without any kind of constraint on the damping set we will abtée trivial solution
Q* =D, so in addition we introduce the area constraint

(11) A(Q) = A (fixed).
This constraint was handled in_[14] by using a penalty caefficA > 0 and augmenting

a quadratic penalty term in the energy. We proceed in the $ashéon. The augmented
shape functional of energy is therefore

(12) J(Q.aT) =3 [AQ) —A)?+} /D [l (T)12+ | 0u(T) 2] dx
The shape optimization problem we consider is
(13) [min J(Q,a,T).

It was shown inl[14] that the shape functiorfall(12) is shajfferdintiable in the sense
@) and has the shape gradient definedén

(14) 1300 = [A@) A + [ w(xypERYL

wheren is the outward pointing unit normal @Q, u(X;t) is the solution of equatiofil9)
andp(X;t) is the solution of the adjoint equation

pe —Ap—aX)pr = 0, (Xt)eDx(0,T)
(15) p = 0, (Xt)edDx]I0,T]
D(X,T) = —LII(X,T),
p(X,T) = —aXw(XT)—AuXT)

In practice, finding an optimal damping et requires numerical methods.

In addition to the boundary variation shape derivative wso &now the topological
derivative [#). For the optimal damping problem is in faasely related to the shape
derivative given by the boundary variation. Similarly teinear elasticity problemi([4]),
the topological derivative differs from the boundary véida derivative only up to the sign
of ¢, i.e. we should add material outsi@ewheresJ < 0 and create a hole inside
wherelsJ > 0.

5. ITERATIVE METHOD FOR SHAPE OPTIMIZATION

The simplest derivative based method for shape optimizatidhe gradient descent
method. LetQq be a given initial guess of the optimal shape gpdts implicit function.
If the shape gradieriis] is known atQq, we can le¥ = —[sJ on the boundary of Q and
extendv smoothly to the rest db. For {I3) with smooth initial data this is straightforward.
Substituting into[{]7) we get the level set equation for geatlidescent

(16) ®(%,8) - OsIX)[09(X,9)| = 0, ¢(X,0) = @(X).
For small enougls we havel(Qp) > J(Qs). Iterated steps of equatidn{16) are equivalent
to gradient descent on an infinite-dimensional manifold.

As previously noted, equatiof{[16) is a hyperbolic advecéquation. Based on this,
numerical methods for its resolution have been devisedyugiwvind discretization schemes.
The most popular discretization methods are those of LéedFchs, and Godunov. We
refer the reader to [11] and [16] for in depth treatment of etioal methods for hyperbolic
conservation laws in general as well as the special caseafdet equations. In this work
the level set equation was solved using the method of Goduwavrefer to this as the
boundary variation level set iteration (or BVLS).
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We also tested the method of [3] where the level set equataswitten with a force
term containing the topological gradient

P(X)
QX 9[>’
whererJ € L?(D,R) is the topological gradient. Thus the updeeén (I3) is simply an
L2-orthogonal projection ofltJ to the orthogonal complement of the implicit functipn
which has the feature thgtremains at all times in the unit ball &?(D). We refer to this
iteration as the topological level set iteration (or TLS).

(17) @(X,s) =Urd—(07J,0(X,9))

6. IMPLEMENTATION

Evaluation of the shape gradiehfl14) requires first thetimsiwof the two wave equa-
tions [9) and[(T5). We performed this using an unstructuraddgular mesh with piecewise
linear elements and the Elmer FEM package (see [12]). Thé mas adapted at each it-
eration to the boundary of the damping set. The time integratas performed using the
Newmark-Bossak scheme. From the solutions of the wave ieqsa first-order approxi-
mation for the shape gradieff]14) was computed. The levelgeation[[IB) for gradient
descent was then solved on a regular rectangular mesh hsihgvel Set Toolkit for Mat-
lab (seel[13]). We will examine the computational cost ofiaiBous stages of the iteration
later.

Optimization methods based on descent directions usuadjyire that we perform a
line search to find a step size> 0 that solves the one-dimensional optimization problem

min J(g(),

where U is the flow in the direction of the negative shape gradiefilsJ. These line
searches can be performed either exactly or approximattyetimes even heuristically.
In the level set based gradient descent method it sufficeadaafistep size such that the
energyJ decreases on each iteration.

In practice it becomes quickly clear that accurate evabnati the energy[{12) requires
a very fine mesh with elements of good quality to be used whisimggfor u. We attribute
this problem to the terniCu|, which is known to converge only lik®(h) for piecewise
linear basis functions on triangular meshes (seke [10]).dbiten, poor quality elements
with malformed simplices can cause the error of the tiim to increase without bound as
was shown inl[19], which sets stringent quality requireradott the mesh generator used.

The aforementioned issues might have been rectified by maarhigher order el-
ements or using methods specifically designed for hypertpsthblems. However, the
former would have increased the computational effort wttike latter methods are usu-
ally restricted to working on structured rectangular mesi@ur objective was to improve
on the computational results in_[14] by using unstructuraidielement meshes, which
capture the shape of the damping set as accurately as @ossid its boundary without
spending too much computational effort away from the bouwnda

The choice of two different types of meshes (irregular fentfave equations vs. regular
for the level set equation) required some interpolatione@érformed when moving back
and forth between the meshes. At each iteration we startbdavdiscrete level set function
¢* defined on the regular mesh. From this data we computed satia¢ iloundary points
by looking at the values at any two adjacent mesh points. df thad different signs,
we performed first order interpolation to find the approxienaosition of the boundary in
between. These interpolated points were used to initiditiegrregular mesh. In addition,
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we added points from a regular mesh with a given paranietprovided that the points
to be added were not closer thhy2 distance from the initial boundary points. Finally,
the mesh was balanced using DISTMESH[17]) while fixing thigal boundary points to
obtain the irregular triangulated mesh for use with the FEMes. After solving the wave
equations we used ready-made library methods of inteiipgléitom a triangular mesh to
a regular rectangular mesh, followed by some correctigusste

When choosing the pseudo-time step length for the levelexettion we used the obser-
vation that for large enough penalty tervhshe area constraifi{lL1) forces the af¢&y)
to oscillate aroundyy. The idea is then to use the area constraint to decide a kugtap
size as follows:

(1) Letu be some default step size and- 0 some tolerance for the area constraint.
(2) Find smallest nonnegative integies.t. the solution ofl{{116) fof2x — Q.1 with
step size .
p=2"u
gives a new damping s€Xy, 1 s.t. the area constraint is violated at most
IAQu 1) — Aol < £.
In practice the gradient descent method is known to be rédingiving with regards to step
size selection rules, and in the cases studied we have meegence of the shapes to (at
least) local optimums. We use an initial step sizg¢iof 10~ and a tolerance of = 0.2.
To prevent numerical instability due to the increasing ocrdasing gradientlp we
regularly solve the reinitialization equatidd (8) to regehto a signed distance function.

7. RESULTS

7.1. Boundary variation level set iteration. We verified our solver by first comparing
it to the results obtained in_[14] by solving a simple problemthe unit squar® =
(0,1) x (0,1) with smooth initial data:

(18) { u(X,0) = 100sir(7x;)sin(1xz)
w(x0 = 0

The problem parameters were fixedTa 1 anda = 10 to obtain a well-posed problem.
The results for the initial guess of one disc that is sligloffiycenter are shown in Figure
B. We verify that the solution is the same as found and supgddiy theoretical analysis
in [14]. Due to the different approaches taken to discmetjzhe wave equations (finite
elements vs. finite differences), our solver used only themparametelnys = 0.05 for
the unstructured triangular mesh used to solve the wavetieqeandhsg = 0.01 for the
structured rectangular mesh used for the level set iterattonpared to Munchs =~ 0.006
used for both methods, but obtained the same accuracy dfmsulu

To demonstrate that the BVLS iteration allows topology dem we studied equation
@) in an L-shaped domain

D=[(0,1) x (0,1)]\ [[3,1) x [3,1)].
The initial position of the membrane corresponds to the sgagigenmode of the un-
damped problem
u(x,0) = 100sir(27mx1)sin(27Xy)
{w@m =0
and the membrane is initially motionless.

Physical intuition says that the optimal damping set cassifthree separate compo-
nents located around the extremal points of the initialfisbf the membrane(X,0). To
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Iteration O Iteration 10 Iteration 80

1
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FIGURE 2. Evolution of the damping set in a unit square with the ahiti
data [IB) for the membrane using the BVLS iteration. As_in],[iHe
damping set converges to a symmetric optimal solution.

test this hypothesis we solved the problem numericallygisivo distinct initial guesses
for the damping se®:

e CASE A: BVLS when initial guesfy is two discs.
e CASE B: BVLS when initial gues€ is one disc.

Neither initial guess for the damping set possesses theatarumber of connected com-
ponents that we would expect from the true solution. Theegfany numerical shape op-
timization method must be able to handle changes in topdlogyder to find the optimal
damping set.

It is known that even with BVLS we can observe certain typetpblogical changes
in the deformed shapes. Consider CASE A, where the initiakgus two discs located
roughly symmetrically. FigurEl4 shows the evolution of thenghing set. We observe
that the flow given by the negative shape gradient tears ther alisc into two, and the
resulting three components converge towards the extreomatspof the initial position of
the membrane. In this case the initial guess was close erfoudjine level set method to
find the correct solution. The final energy of the solution Was2179.

Details of the convergence of the iteration are present@die1. We measured the to-
tal time spent on each iteration for solving the two wave ¢qua ("Wave time”), solving
the level set equation ("LS time”), performing the intergiddn between the two meshes
("Interp time”) plus the number of pseudo-time step halgirigat were needed to find
a good pseudo-time step. Every pseudo-time step consistefmore of several shorter
pseudo-time steps, the lengths of which are dictated by BhecBndition of the discretized
equation. There is also a certain computational cost ietatperforming the actual mesh-
ing.

Closer study of CASE A reveals that the gradient descergtiter stalls near iteration
15. One component is near bifurcation, but the shape gradrishes at the bifurcation
pointand thus no progress or change in topology is made r8é&é&ration 20 we performed
the reinitialization process given by equatiéh (8). Imnag¢ely afterwards the component
underwent bifurcation, changing the topology, and allantime iteration proceeded. This
effect can be explained and is not related to the reiniaéitm as such, but rather the
specific equation used to perform the reinitialization. Téieitialization equation can be
written as

®(X,s) +sgn@(X))|[De(X,s)| = sgn@n (X))

so that in addition to the advection term we have a force tdrmagnitude sgfg). Near
the bifurcation point at iteration 20 (middle panel in Figl#t) the gradienfg| is very
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TABLE 1. Iteration convergence and computational cost of CASE A
with the boundary-evolution level set method.

Iter Final energy Wave LS Interp  P-time
time (s) time(s) time(s) steps

1 38728 18.3 24.2 4.1 2

5 17430 17.5 5.2 3.9 3

10 3735 16.7 2.0 4.1 4

15 4971 16.5 5.2 3.9 14
20 5001 16.4 7.7 4.1 23
25 2713 18.4 1.3 3.9 1

30 2169 20.1 1.0 3.9 1

35 2296 17.4 15 4.0 1

40 2179 18.5 11 4.1 1

small, so that the reinitialization equation is locally

(19) @(X,8) = sgn@(X))-

In the vicinity of the bifurcation point we hawg > 0 and so equatiofi{]L9) tends to increase
the values ofp, causing the component to finally bifurcate into two. Theaideshown in
Figurel3. In fact, any positive force term would suffice tolptise boundary of the shape
over the threshold so that the change of topology is realized

@ = sgn)

>0

FIGURE 3. Bifurcation of a shape under equatifnl(19).

In CASE B, we had only one disc in the initial guess. The résglévolution is given
in Figure[®. This time the disc is elongated to cover two erakpoints but remains as
one piece. No new component is created near the third extqgoina. This solution is
only a local optimum, which we observe by noting that the ferargy of the solution was

J=20267.
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Iteration 0
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FIGURE 4. Evolution of the damping set for CASE A with an initial
guess of two discs using the BVLS iteration. One disc undesgobi-
furcation into two and the correct optimal damping set isu

It should be again stated that in the case of Lipschitz-cootiis velocity field§ acting
on a given shap®, the deformation€(0) — Q(s) given by equation{7) are diffeomor-
phisms. This means that the speed method of shape optiarizidies not allow for topo-
logical changes of the shape such as bifurcation of one coerganto two or the merging
of two components into one. Furthermore, the advectiveraatfiequation[{]7) prevents
new components alQ from emerging away from the existing boundary. As we have see
the first limitation is not present in the BVLS iteration, ithé second limitation remains.

7.2. Topological level set iteration. By using the observation that for the optimal damp-
ing problem the shape and topological gradients are eauivalp to sign, we also at-
tempted to solve the problem using the method proposed bywimesnd Andra and equa-
tion (I4). We used again an initial guess of one disc. This lvélreferred to as CASE
C.

The resulting evolution is shown in Figute 6 and the convecgeand computational
cost in TabldR. The iteration converges much better in wgppland finds the correct
topology after only a few steps even when the initial topglsgfar from correct. In addi-
tion, the topological level set iteration{17) is much sieb perform as it has no spatial
derivatives to approximate and in fact has been reducedriplsipseudo-time stepping.
Since the implicit function no longer approximates a sigdistance function we also don't
need the reinitialization equatidd (8).

As mentioned previously we used a coarser mesh thanlin [ purpose of choosing
a fine mesh inl[14] was likely related to using initial guessessisting of a large number
of small discs to accelerate convergence to the correctdgpf the shape. However,
since we have seen that properly constructed topological =t methods are able to to
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FIGURE 5. Evolution of the damping set for CASE B with an initial
guess of only one disc using the BVLS iteration. The methath&ble
to discover the correct topological properties of the optidamping set
and gets stuck in a local optimum.

TABLE 2. Iteration convergence and computational cost of CASE C
with the topological level set method of Amstutz and Andra.

Iter Final energy Wave LS Interp  P-time
time (s) time(s) time(s) steps
1 60547 21.7 1.19 4.2 4
2 31570 19.7 0.22 3.8 2
3 27426 21.6 0.31 4.3 3
4 22785 18.5 0.19 4.2 2
5 18136 22.6 0.41 4.2 4
6 5507 20.9 0.37 4.2 4
7 4523 18.9 0.44 4.1 5
8 4153 24.9 0.14 4.0 1
9 5662 17.2 0.26 4.0 3
10 3649 16.7 0.21 4.0 2

discover the correct solution even when the initial gues®islose to the actual topology,
it seems unnecessary to use extremely complicated initiedgps. A practical way would
be to first use a coarse mesh with the TLS iteration to find theecbtopology of the shape,
and then switch to BVLS with a fine mesh to find the accurate bagnof the shape.
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FIGURE 6. Evolution of the damping set for CASE C with an initial
guess of only one disc using the TLS iteration. This metharhach
better topological convergence properties.

8. CONCLUSIONS

We have studied a problem in numerical shape optimizatitate® to finding the op-
timal damping set for a two-dimensional membrane. The mambwas L-shaped and
the initial data was chosen such that the optimal dampin@%ebnsists of three separate
components. Two level set iteration based methods for shigirmization were presented.
Depending on the initial guess of the damping set and thatiter method chosen, the
method either converged or got stuck in a local optimum.

Using unstructured triangular meshes that are refined hedydundaries of the damp-
ing setQ we were able to obtain similar results to those presentetdihjith fewer mesh
points. The problem with unstructured meshes is relateddg@tcurate evaluation of the
energy functional(Q,a, T). We discovered a lack of monotonicity of the discrete energy
during the course of the gradient descent iteration. Sulesgty, we chose to use a heuris-
tic step size selection rule for the descent step that didinettly evaluate the value of the
energy functional being minimized. The results were godthécases studied.

Boundary variation level set methods are known to allowaierthanges of topology
in the shapes being optimized. However, in our problem it maticed that the boundary
variation level set iteration stalled near a bifurcationnpantil an otherwise unrelated
reinitialization procedure was able to effect the changtpology due to the presence
of an implicit force term. The requirement for a force ternb®present in the level set
equation in order to obtain efficient topology discoverihge optimization methods has
been previously documented in literature.

We have also tested a topological level set iteration sugden [3], which achieved
much better convergence for the optimal damping problem aieen the initial topology
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was far from correct. For problems where the topologicalvdéve is closely related
with the boundary variation shape derivative and thusikelgteasy to compute, it seems
preferred to use one of the suggested topological optiiizatethods.

Despite the theoretical differences between boundaratian and topological deriva-
tives, in practice there are great similarities in the riésglmethods. It remains to refine
the theory in such a way as to unify the concepts of shape gudictgical derivatives and
explain entirely satisfactorily the results obtained gsiumerical level set methods.
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