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Abstract

A new method of implementing Support Vector learn-
ing algorithms for classification and regression is pre-
sented which deals with problems of over-defined so-
lutions and exzcessive complezxity. Classification prob-
lems are solved with the minimum number of sup-
port vectors, irrespective of over-laping training data.
Support vector regression can be solved as a sparse so-
lution, without requiring an e-insensitive zone. The
optimisation method is generalised to include control
of sparsity for both support vector classification and
TEgression.

1 Introduction

Support Vector Machines (SVMs) are an implemen-
tation of Vapnik’s theory of Structural Risk Minimi-
sation (SRM). SRM is intended to improve gener-
alisation performance for small sample size learning
problems, where Empirical Risk Minimisation (ERM)
is likely to overfit the training data [6]. The idea of
capacity [6] in Vapnik’s learning theory is the corner-
stone of SRM and is used to evaluate the confidence
interval between the empirical risk and the actualrisk
of test errors. Capacity is quantified by VC dimen-
sion [5], which can be estimated for a set of real, or
indicator functions. Appropriate control of a learning
machine’s capacity implements SRM.

SVMs can be constructed for classification and re-
gression purposes based on a similar optimisation
method. Both methods attempt to produce the flat-
est function in feature space under the constraints
of training set errors. This approach approximates
SRM minimisation by minimising the estimated VC
dimension. In the following text, the discussions of
classification SVMs also applies to support vector re-
gression if the idea of non-separable data is associated
with noisy regression data. It is also worth stressing
that the use of the word ‘complexity’ is intended to
mean practical complexity, rather than the theoreti-
cal quantity, capacity.

SVMs are based on dual optimisation techniques
and are a mathematically well defined implementa-
tion of SRM for separable classification problems.
This type of classifier is called an optimal margin
(OM) classifier, because a decision boundary is found
which maximises the margin between the vectors of
each class.

The generalised SVM or soft margin (SM) classi-
fier for non-separable classification problems, deals
with training errors by increasing machine complex-
ity. Complexity is allowed to increase freely, while es-
timated VC dimension is effectively controlled. The

inherent dilemma between complexity minimisation
and training error minimisation is thus difficult to
balance because practical complexity increases with
increasing frequency of training errors, rather than
vice-versa. The soft margin algorithm ideally min-
imises the number of mis-classified data points, but
in practical implementations the magnitude of pro-
jections on the decision boundary from miss-classified
data vectors are minimised. For separable data and
where high cost is assigned to training errors, SM
classifiers closely approximate OM classifiers, but
where training data overlaps, soft margin classifiers
simultaneously attempt to minimise training errors
and gradient of the weights. The practical problem
associated with SVM classifiers based on dual opti-
misation is that decreasing the cost of training errors
often increases the population of support vectors and
therefore increases machine complexity.

In noisy regression applications this problem is
most evident when small e-insensitive zones [6] are
used to maintain accuracy. This results in more out-
lying data points being considered for error minimi-
sation [6], which decreases sparsity in the solution.
In an extreme case where e-insensitivity is reduced
to zero, in order to minise the total error magnitude,
the full set of training examples are included in the
support vector set.

In this paper some alternative methods of solv-
ing support vector and similar sparse approximation
methods are presented which cope with non-separable
classification, or noisy regression data. The cause of
SVM’s uncontrolled complexity problems lies in the
dual optimisation method [6]. The dual method has
the property that every vector inside the error mar-
gin is automatically included in the support vector
set, owing to Kuhn-Tucker boundary conditions. If
the constrained optimisation functions are solved di-
rectly, however, a more flexible basis for the solution
can be obtained. SVMs using direct optimisation can
deal with error magnitude minimisation without un-
necessarily increasing the complexity of the solution.

2 Structural Risk Minimisation

SRM is achieved by minimising the VC dimension
of the set of real, or indicator functions. The VC
dimension of a linear neural network is bounded by
the dimension of the feature space, n, and can be
estimated from a trained network’s weights, 1j, by

min(|@|* R%, n) (1)

where R is the radius of the smallest sphere in fea-
ture space which contains the training vectors. To
minimise VC dimension it is therefore evident that




the magnitude of the weights, W, must be minimised.
Geometrically this is described as the optimal mar-
gin because the decision boundary seperates training
vectors with a maximum separation.

3 Support Vector Classifier Op-
timisation

The generalised optimal margin classifier is called the
soft margin classifier because the constraint of seper-
ating training vectors by a margin is softened. Slack
variables, &;, are incorporated to accommodate vec-
tors in and beyond the optimal margin, which gives
the following cost function.

-

C(w,b) = ||&]|[™ + C||€]|™ (2)
subject to
vi(Wid +0) > 1-§ (3)
& =2 0

W is the weight vector and, b, a bias value.

The cost function, (2) and (3), can be solved ei-
ther as a linear, (n, = ng = 1) or quadtratic
(nw = 2,n¢ € {1,2}) optimisation, usually this is
solved as a quadratic function as this has benefits
when non-linear kernels are used to expand the fea-
ture space [6]. The quadratic form also lends itself to
the dual functional, in parameters of Lagrange mul-
tipliers only, the derivation of which can be found in
[2]. During this derivation it is shown that

I
Wo = Zaiyifi (4)
i=1

which can also be derived in general from linear
feedforward neural networks. It is this property which
allows non-linear decision boundaries to be calcu-
lated by kernel functions. In the quadratic optimisa-
tion function, ||w|? can be written Ei’j:l 01y
< &;,Z; >, the dot product < &;,&; > can then
be substituted by a reproducing kernel Hilbert space
function, Ky (z;,z;), which implicitly calculates the
scalar dot product in a non-linearly expanded Hilbert
space [6].

The dual function has the property that all train-
ing vectors which define the constraint boundaries,
(3), are included in the support vector set because the
associated Lagrange multipliers can only be non-zero
for these vectors owing to Kuhn-Tucker conditions.
This is an unnecessary restriction in achieving an op-
timal margin classifier, but is not detrimental in terms

of estimated VC dimension, because the minimum set
of independant vectors required to construct an op-
timal boundary always includes the vectors defining
the boundary.

By solving the constrained optimisation directly
using equations (2) & (3) and substituting equation
(4) for w0, no such conditions on boundary vectors are
imposed. To guarantee convexity the sum of coeffi-
cients, «;, multiplied by some small constant should
be included, which leads to sparse solutions. The re-
sulting set of support vectors is linearly independent
in feature space and therefore bounded by the maxi-
mum VC dimension of the learning machine and the
number of training vectors. This holds when training
errors are allowed.

By setting n,, = 2 and ng = 1, and including a
sparsity cost term with coefficient D, the cost func-
tional of the direct approach, with weights substi-
tuted by kernel functions, is

1
Z a; oYy K g (T3, £5) (5)
i,j=1
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v
o

aiyg‘i
for t=licessl

Suitable kernel functions,Kp, obeying Mercer’s
condition [3] include polynomial, Gaussian, hyper-
bolic tan and B-splines. The sparseness weighting,
D, is present to avoid multiple solution problems, and
has the property that the minimum number of train-
ing vectors with the largest magnitudes are selected
as support vectors, because this minimise, «, for a
particular solution solution. If D is small, the value
for C is approaches that of dual optimised SVM.

4 Support Vector Regression
Optimisation

SVMs based on dual optimisation are dependent on
boundary vectors to construct a solution which is in-
dependent of a large part of the training set outside
the boundary. This has benefits in some classification
problems, but causes problems for regression. The e-
insensitive zone in support vector regression has the




purpose of defining a space where redundant training
vectors can exist inside a bounded area. It is equiva-
lent to the area outside the optimal margin in SVM
classification.

The purpose of e-insensitivity is to prevent the en-
tire training set meeting boundary conditions, and so
enables the possibilty of sparsity in dual optimisa-
tion of SVM. For unbiased estimation, its size should
be less than or equal to the maximum symmetrical
deviations expected from the true value, but for the
sparsest solution, should be greater than the maxi-
mum deviations.

A result of ¢ > 0 is that the solution for noise
free training data is guaranteed to be biased. How-
ever where amplitude limited noise is present, setting
the value of € equal to the maximum noise amplitude
vields an unbiased estimate. Even under these rare
conditions the solution is prone to error owing to the
small proportion of training vectors contributing to
error minimisation

The direct optimisation method as described for
classification can also be applied to SV regression
and solves the sparsity problem without requiring an
e-insensitive zone. This allows unbiased and sparse
solutions to be found without finding a suitable value
for e. The solution can be found as a quadratic opti-
misation problem implementing either least squares,
or least modulus loss for training errors.

The SV regression cost function is

C(w,b) = ||@|™ + C(|& + &™) (7)

subject to
GE+b > y—e—§ (8)
wE+b < y+e+§.
Ei:é‘: 2 0
for i=1,...,1

Introducing lagrange multipliers and deriving the
dual functional provides a function which gives
weights in terms of input vectors and multipliers as
for SVM classifiers. For regression, two non-negative
multipliers o, @® are associated with each training
vector to cope with both upper and lower accuracy
constraints, the weights are given by Eizl (s —a}) ;.

Regression optimisation can be solved directly from
equations (7)-(9). As for classification the weights
vector can be substitution for kernel functions K.
Again, support vectors can be selected arbitrarily
from the training set by the direct optimisation of
equation (7), and so a sparsity term is included in
the cost function. For generality the e-insensitivity
option is included, and can be set to zero, in which

case the weighting D is singularly responsible for con-
trolling. The direct optimisation cost function with,
ny = 2, and, ng =1, is

I
C,b) = D (oi—of)(ey —al)Ku(Z:,#)9)
ij=1

! 1
+ CY &+DY o
i=1 i=1
subject to
L
Z(aj*a;)KH(fj,fi)“i-b Z y—e—§(10)
j=1
B
z(aj_a;)KH(fjwfi)“i‘b < y+e+
j=1
Cl’i,a;:,fi > 0
for i=1,...,1

5 Sparse Approximation

It is interesting to examine the directly optimised
support vector machine with large values of D, or
ones which simply minimise the multipliers, a;, ig-
noring the quadratic form necessary for SRM. This
approach creates a sparse approximation function but
does not necessarily implement SRM. Regression does
not have the same degree of freedom as classification
and so SRM has a weaker theoretical foundation in
this area, as it does for highly overlapping classifica-
tion problems. SRM still benefits these situations, in
that contribution from redundant Hilbert sub-spaces
are minimised in the solution because feature space
weights are minimised, rather than the hidden layer
weights minimised by sparse sparse approximation
(The multipiers c; can be considered weights in a
neural network’s hidden layer).

SV regression has been shown to be equivalent to
sparse approximation methods under conditions of
zero training errors by Girosi [4]. Sparse approxi-
mation methods [1] are derived in a regularisation
framework and result in a cost function similar to SV
regression, except it attempts to minimise the num-
ber of non-zero multipliers simultaneously with least
squares error cost. The equivelence between direct
optimisation of support vector regression machines
and sparse approximation methods holds for noisy
training problems. The direct optimisation cost can
be seen to be a superset of both SRM and sparse ap-
proximation. Large values of D tend to implement
sparse approximation rather than SRM. If sparse ap-
proximation is all that is required, then minimising




multipliers without quadratic coefficients allows im-
plementation through linear programming.

6 Experiments

To demonstrate the differences and similarities be-
tween direct and dual optimisation, some typical sce-
narios are considered.

6.1 Classification
6.1.1 Separable Data

(a) Dual (b) Direct

Figure 1: Linear classifiers, C = 1000, D = 107°.

The linearly seperable data and the decision bound-
aries from linear SVM shown in figure 1 are seen to
be identical, however different support vectors are se-
lected as the basis of the solution. The weights and
bias are identical for both types of classifier. Dual op-
timisation selects support vectors to be those closest
to the decision boundary, figure 1a, while directly op-
timised networks favor large magnitude vectors, fig-
ure 1b.

Figure 2 shows the same data used to train SVMs
with RBF kernels. The solutions are identical, in-
cluding the support vectors selected, the estimated
VC dimensions, h.st, are also identical. This differs
from the linear case in that identical support vectors
are chosen, which is because the training vectors are
linearly independent in feature space, and so a single
solution exists.

Increasing D, further sparsifies the support vector
set until a minimum structure is achieved (figure 3).
It is of note that in this example of normally dis-
tributed training data that the RBF centres are cho-
sen close the means of the distributions ([2,2] & [3,3])
as can be seen in figure 3b.
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Figure 2: RBF classifiers, C = 1000, D = 10~°, RBF
kernel K (%:,%;) = exp(#: — &;)%, C = 1000, D = 107,
hest = 17 for both types of SVM. #8Vs 24 for both.

6.1.2 Non-Separable Data

Figures 4 &5 show linearly inseperable data and how
both types of SVM find similar decision boundaries.
The RBF SVMs require a low value of C' to prevent
overfitting, which causes all but two training exam-
ples to be included as support vectors for the SVM
optimised with dual formulation (figure 4a). The di-
rectly optimised solution selects a smaller set of sup-
port vectors, both for linear and RBF constructions.

Where RBF kernels are used the direct approach
has also further decreased the estimated VC dimen-
sion, hgs. Increasing D has decreased ,h.q, in this
noisy situation because ERM, is traded for hidden
layer minimisation, which has decreased the magni-
tude of feature space weights. Non-seperable prob-
lems such as this mean that the extent to which
weights can be minimised is not solely determined by
the training vectors, therefore weight optimality for
SRM is not intrinsically bounded by the problem. In
this situation decreasing multipliers, @, may decrease
feature space weight magnitude for a given value of,
C, but this is not the general case. The decrease in
VC dimension is because decreasing |a| decreases |w|
locally, but the global minimisation of |a| and |w|
subject to error constraints is not similar.

The implication of this is that for a value of esti-
mated VC dimensions, there may be several solutions
depending on the weightings of C' and D in the SM
classifier. For the OM classifier, or where C — oo,
there is only one optimal value for h.s, and increas-
ing, D, can only maintain or increase this value.
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Figure 3: Effects of Increasing D, C = 1, RBF kernel
K(Z:,£;) = exp((Z: — T;)?, hest = 11 and 1, for D=1 and
11 respecively.

6.2 Regression
6.2.1 Noise Free Data

Figures 6 and 7 show linear and sinusoidal functions,
respectively, estimated by both direct and dual SVM
with € set to zero. Both approximations are unbiased,
but sparsity is maintained for the direct SVM, while
the estimated VC dimensions remain equal. Both
direct and dual SVM behave similarly for small values
of D.

Figure 8 shows e-insensitivity giving a sparse solu-
tion for both machines, but both also giving biased re-
sults, however, sparsity and accuracy can be obtained
simultaneously by direct SVR by using the sparsity
factor, D, as shown in figure 9. Increasing D effects
the precision of ERM as does e-insensitivity, but in-
cludes all data points in calculating training error. A
large value of D in this infinite dimensional feature
space example results in a further decrease in heg,
because ERM is traded for hidden layer weights, as
is the case for non-seperable classification problems.

6.2.2 Noisy Data

Where noise is present in the training data it can be
seen from figures 10 and 11 that the direct approach
yeilds a more accurate and sparse approximation for
similar estimates of VC dimension. The direct formu-
lation has found a minimum error magnitude solution
including all training vectors, while the dual method
has only considered 10 out of 20 training vectors as
noisey. Sparsity in directly optimised SVR is also su-
perior because the mimimum number of hidden layer
units are slected to achieve a level of ERM and SRM.

(a) Dual SVM (bjDirect SVM

Figure 4: Linear classifiers, C = 10,D = 107°. #SVs=48
for dual SVM and 2 for direct SVM.

7 Conclusions

Direct SVMs differ from SVM in the following ways:

e The number of SVs are less than or equal to the
dimension of feature space.

e SVs are not necessarily training vectors meeting
boundary conditions.

e Sparsity can be increased arbitrarily from a lower
bound, but at the expense of ERM and SRM.

The similarities in the solution are the following:

e Decision boundaries are similar for a similar
training parameter, C.

e Estimated VC dimensions are similar for a given
value of C.

The direct SV method is a flexible method of ap-
proximating SRM which has practical and theoret-
ical advantages. It can allow a better balance be-
tween complexity and ERM, which in the case of re-
gression provides a method of achieving sparsity and
SRM, without e-insensitivity and its associated preci-
sion problems. It has been shown that VC dimension
can be reduced, though not in an optimal sense, by
sparsifying methods, rather than weight space flat-
tening.

Including sparseness in the soft margin cost func-
tion may lead to multiple weight solutions for a
given VC-dimension, which will have different deci-
sion boundaries (or approximating properties, in the
case of regression). This last point has little theoret-
ical foundation at present, but suggests that in some
cases, for a fixed confidence interval, an improvement
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Figure 5: C = 1,D = 107%, RBF kernel K(7;,%;) =
exp(Z; — ©;)%, C = 1000, D = 0.01, #SV =99, 25 ,and
hest = 36,33 for dual and direct classifiers, respectively.

in ERM can be attained by additionally controlling
sparsity.
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Figure 9: Effects of increasing sparsity factor D.
Learning parameters: € = 0, C = 15, K(&i,%;) =
exp (Z; — £;)?,hest = 23, and 2, respectively.

(a) Dusl SYM (b) Direct SVM
e
20t
18}
16 x
X
14+
x
12t
=
10
.
8 x
x
Lls X,
%
st
ol
. ; i . ;
0 5 10 15 20

Figure 10: Generator function y = z+ Gaussian noise
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zero for direct SVR
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Figure 11: Generator function y = sin(z)+ Gaussian
noise (¢ = 01),0 < z < 27, C =10, D = 1, e=0.1

for dual SVM. RBF parameters as for noise free example.
hest = 20 for both SVMs.




