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Summary: This paper investigates Local Time Stepping (LTS) with the RKDG2 (second-order 9 

Runge-Kutta Discontinuous Galerkin) non-uniform solutions of the inhomogeneous SWEs (Shallow 10 

Water Equations) with source terms. A LTS algorithm � recently designed for homogenous 11 

hyperbolic PDE(s) � is herein reconsidered and improved in combination with the RKDG2 shallow-12 

flow solver (LTS-RKDG2) including topography and friction source terms as well as wetting and 13 

drying. Two LTS-RKDG2 schemes that adapt 3 and 4 levels of LTSs are configured on 1D and/or 2D 14 

(quadrilateral) non-uniform meshes that, respectively, adopt 3 and 4 scales of spatial discretization. 15 

Selected shallow water benchmark tests are used to verify, assess and compare the LTS-RKDG2 16 

schemes relative to their conventional Global Time Step RKDG2 alternatives (GTS-RKDG2) 17 

considering several issues of practical relevance to hydraulic modelling. Results show that the LTS-18 

RKDG2 models could offer (depending on both the mesh setting and the features of the flow) 19 

comparable accuracy to the associated GTS-RKDG2 models with a savings in runtime of up to a 20 

factor of 2.5 in 1D simulations and 1.6 in 2D simulations. 21 

 22 

Key-words: Shallow water equations; RKDG2 schemes; temporal adaptivity, non-uniform grids; 23 

conservative scheme; friction terms, computational efficiency, 1D and 2D hydraulic modelling. 24 
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1. Introduction	26 

Explicit finite volume (FV) Godunov-type methods solving the shallow water equations 27 

(SWEs) are relevant to simulate hydraulic problems because they excel in a distinctive 28 

numerical formulation that incorporates widest range of spatial flow transients including 29 

discontinuities [1, 2]. These models have received numerous developments [3, 4] and some 30 

robust Godunov-type shallow water solvers have been successfully applied to support 31 

practical applications [5, 6], From an applied perspective, it is well-accepted that a robust 32 

Godunov-type numerical solver should be able to maintain its stability and consistency when 33 

a flow discontinuity develops, steep terrain gradients are present, a wet/dry front occurs, and 34 

high roughness values are combined with very small water depths. In spite of all these 35 

advances, it is still desirable to reduce the runtime of these explicit FV models. Parallelization 36 

has alleviated this issue using extrinsic parallel computers [7, 8] as well as the intrinsic 37 

shared-memory architecture of GPUs [9, 10]. However, the expanding power of parallelism 38 

remains rather stagnant and is not without problems as such [11]. For example, the small 39 

memory size of GPU computing cannot yet afford refined uniform-mesh simulations over 40 

large spatial domain coverage. Thus, the size of the system in terms of the number of cells 41 

remains a problem and, generally, to the interest of computational cost, allowing coarser cell 42 

size in a form of a non-uniform mesh is certainly a benefit. 43 

 In this context, it is expected that the efficiency of an explicit numerical scheme may 44 

suffer as the size of their time steps is restricted by the Courant-Friedrich-Lewy (CFL) 45 

stability condition [12]. This criterion provides the maximum allowable Global Time Step 46 

(GTS) permitted, which reduces proportional to a local increase in the velocity magnitude or 47 

a local decrease in the cell size. Few refined cells may dictate a restrictive time step on the 48 

whole non-uniform mesh, which may compromise by significantly longer runtimes. 49 

Temporal adaptivity, or a local time step method (LTS), whereby the solutions on different 50 
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cell sizes are advanced by different time steps, may thus be beneficial to increase the 51 

computational efficiency. In so doing, in the FV context, a local first-order Godunov-type 52 

numerical formulation operating on a small calculation stencil appeared to be the most 53 

accommodating setup to favour temporal data exchange between those heterogeneous cells of 54 

the mesh [2]. However, first-order models are well-known to be diffusive � namely on coarse 55 

potions of the mesh. Thus, the design of a higher-order accurate Godunov-type shallow water 56 

model with a LTS algorithm could be beneficial and is the aim of this paper. 57 

 One convenient choice to do this is the use of a local spatial Discontinuous Galerkin 58 

(DG) approximations paired with an explicit multi-stage Runge-Kutta (RK) time mechanism 59 

(RKDG). RKDG schemes are reported to be convenient for (spatial) adaptive meshing 60 

techniques and demonstrated to deliver converged solutions on coarse meshes better than 61 

equally-accurate FV alternatives [13, 14]. An RKDG formulation can be regarded as an 62 

extension to the original FV Godunov philosophy in the sense that inter-elemental flux 63 

exchange evolves a finite series of local coefficients (spanning a polynomial solution) on 64 

each mesh element; thus allows keeping the calculation stencil small despite the desired 65 

order of accuracy. Practically speaking, the level of complexity, robustness and operational 66 

efficiency of an RKDG formulation drastically increase with the desired formal accuracy-67 

order and the choice of the 2D mesh. A second-order accurate RKDG formulation (RKDG2) 68 

is therefore sensible to deliver a shallow water model that handles flow simulations involving 69 

topographic and friction effects, and flooding and drying processes [15-17]. Worth also 70 

mentioning the work of Wirasaet et al. [18] that identified the suitability �in both accuracy 71 

and efficiency� of quadrilateral meshes for low-order RKDG schemes over triangular 72 

meshes. 73 

 Quite few published papers dealt with the design, implementation and verification of 74 

LTS algorithms with Godunov-type shallow water solvers. Crossley and Wright [19] first 75 
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probed LTS algorithms in 1D hydrodynamic modelling using uniform meshes and based on 76 

hypothetical test cases. Their findings revealed that LTS not only adds value in reducing 77 

runtimes but also in augmenting the quality of the numerical solution. Later, Sanders [20] 78 

explored a LTS method with a robust Godunov-type shallow water solver on 2D unstructured 79 

triangular meshes and considering more challenging test cases, i.e. with frictional flow over 80 

irregular topographies with wetting and drying. His conclusions reported a potential conflict 81 

between the implicit friction term discretization (IFTD) �commonly used practice to stabilize 82 

water flow simulations� and the LTS algorithm. Both of these investigations considered first-83 

order FV Godunov-type models recommended using a maximum level of four LTSs to avoid 84 

introducing significant loss in accuracy or conservation relative to a conventional GTS 85 

formulation. More recently, second-order accurate LTS methods have been integrated with 86 

RKDG2 shallow water models following the multirate approach of Constantinescu and Sandu 87 

[21]. Seny et al. [22] explored one LTS-RKDG2 approach on unstructured triangular meshes; 88 

their approach considered flux monitoring to ensure conservation across interface cells but 89 

was concluded to be not entirely stable and did not include source terms. Their findings also 90 

point out that the multirate model is non-conservative for higher than second-order LTS-91 

RKDG formulation. Taran and Dawson [23] modified the multirate model to produce a 92 

triangular mesh LTS-RKDG2 shallow water model that accommodates complex topography 93 

domains and wetting and drying � albeit at introducing theoretical loss of accuracy. In both of 94 

these papers, second-order mesh convergence was observed in ideal conditions (i.e. 95 

frictionless and flat topography without wetting and drying) and speed up efficiency was 96 

reported to be highly dependent on the mesh (with indications that it can accelerate efficiency 97 

up to 2X). 98 

 In this work, a different LTS-RKDG2 shallow water solver is proposed and tested 99 

with a particular focus on the applied aspects of hydraulic modelling and considering the case 100 
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of uniform but structured meshes in 1D and 2D (i.e. quadrilateral). The LTS algorithm of 101 

Krivodonova [24] � particularly designed for RKDG2 schemes solving homogenous 102 

conservation laws � is newly extended to the case of the (nonhomogeneous) SWEs, i.e. with 103 

source terms and including wetting and drying [15, 17]. In Krivodonova [24], no information 104 

was provided on the gain of efficiency owed to such an LTS-RKDG2 model and flux 105 

conservation (in time) was enforced by a correction step adjusting the solution coefficients 106 

(i.e. at large interface cells). Here, the extended LTS-RKDG2 algorithm is newly 107 

reformulated so that: (i) it includes latest features relevant to applied hydraulic modelling 108 

(e.g., local slope control [25], well-balanced property [26] and depth-positivity preserving 109 

condition [27, 28]), (ii) flux conservation enforcement (in time) is dealt with by acting upon 110 

the fluxes and (iii)  new measures to minimize certain knock-on effects of the IFTD are 111 

introduced. Another novel character of this paper is to systematically explore the ability of 112 

the proposed LTS-RKDG2 shallow water solver relating to applied hydraulic modelling 113 

including the issues of runtime efficiency and conservation on 1D vs. 2D mesh settings, 114 

convergence of accuracy-order and towards a steady state, frictional flows and shock 115 

capturing. In so doing, 1D and 2D implementations the proposed LTS-RKDG2 flow model 116 

are verified and explored according to two different non-uniform meshes comprising 117 

respectively three and four LTSs, and jointly with the conventional GTS-RKDG2 118 

counterpart. 119 

2. DepthǦaveraged	Shallow	Water	Equations	(SWEs)	120 

From the principles of mass and momentum conservation, the mathematical model of SWEs 121 

can be cast in a 2D conservative matrix form that involve as the main flow variables the free-122 

surface elevation (i.e. Ș = h + z) and the x-direction and y-direction components of unit-width 123 

discharge, which are denoted, respectively, by hu and hv. Where h is the water depth, u and v 124 
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are, respectively, the velocity components in the x-direction and y-direction, and z the bed 125 

topography. 126 

( ) ( ) ( )t x y     U F U G U S U      (1) 127 

Where, (x , y) represent the Cartesian coordinates and t is the time. [ , , ]hu hv U  is the 128 

vector of the conserved quantities or of flow variables, 2 2[ , 0.5 ( 2 ), ]hu hu g z huv    F  129 

and 2 2[ , , 0.5 ( 2 )]hv huv hv g z    G  are flux vectors relative to x- and y- directions, and 130 

S  is a vector containing the source terms. The source term vector S  can be further 131 

partitioned into 
b fS S S  where [0,  ,  ]x yg z g z      bS  and 0, ,fx fyS S


   f

S , 132 

where 
2 2

fx fS C u u v    and 
2 2

fy fS C v u v   , with 
2 1/3/f MC gn h  (

Mn  is the 133 

Manning coefficient and g the constant gravitational acceleration). 134 

In practical computation of flow hydrodynamics, the incorporation of the free-surface 135 

elevation variable Ș in the numerical discretization has proved useful to properly treat steep 136 

topographic slope (especially with the presence of a slope-limiter in the context of the 137 

RKDG2 framework [29]) and to implement a wetting and drying condition [30]. Therefore, 138 

recasting the SWEs so that [31] are the main the flow variables � whereas {h, u, v} are the 139 

secondary variables obtained from the main variables � ensures better stability and 140 

convenience to integrate a wetting and drying condition [27]. 141 

3. NonǦuniform	structured	mesh	142 

Firstly, a problem domain is discretized using a coarse baseline mesh consisting of M × N 143 

cells of size ǻx × ǻy, which consists of coarsest cells, i.e. assigned a level of spatial 144 

refinement equal to �0�. Secondly, the baseline mesh is locally refined to enable higher level 145 

of spatial refinement varying from �1� up to a maximum of �levmax� (where levmax is a positive 146 

natural number). The refinement is performed in a fractal manner, i.e. the cell size reduces by 147 
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a factor of two whenever the refinement level increases �1�. Finally, the mesh is regularized 148 

so that it does not contain adjacent cells with sizes differing by more than a factor of two. 149 

 After these steps, a mesh embraces cells with different levels of refinement varying 150 

between �0� and �levmax�, where those with level �0� are the largest and those with level 151 

�levmax� are the smallest. Thus a cell Ii with a level of refinement �lev(i)� (0 ≤ lev(i) ≤ levmax)  152 

can be expressed as: 1/ 2 1/ 2 1/ 2 1/ 2[ ;  ] [ ;  ]i i i i iI x x y y     , where 1/ 2  / 2i i ix x x    and 153 

1/ 2  / 2i i iy y y   , in which  ,i ix y  represents the cell centre and    ( ) ( )2 2
, ,lev i lev i

yx
i ix y     is 154 

its size, which is level-dependent. 155 

4. Review	of	the	Global	Time	Stepping	RKDG2	scheme	(GTSǦRKDG2)	156 

Over a cell �Ii�, the GTS-RKDG2 method solves for a local planar solution to (1), denoted by 157 

Uh = [Șh, (hu)h, (hv)h]
T
 that is engendered by three local coefficients, one cell-averaged data 158 

and two 1
st
-order-slope data (spanning the x- and y- directions). For consistency, these 159 

coefficients are denoted by 0( )i tU , 1 ( )x
i tU  and 1 ( )y

i tU , respectively [32, 33]. Using these 160 

coefficients, the local planar solution is expanded, i.e.    , , ( )
i

K
iI

x y t thU U  ( 0,1 ,1K x y ), 161 

where it may be written as: 162 

   0 1 1, , ( ) ( ) ( ) ( , )
/ 2 / 2i

x yi i
i i i iI

i i

x x y y
x y t t t t x y I

x y

    
          

hU U U +U           (2) 163 

With given initial conditions, i.e. U0(x,y) = U(x,y,0), the local expansion coefficients can be 164 

initialized (i.e. at t = 0s) as 165 

       
   
   

0

1/ 2 1/ 2 1/ 2 1/ 2

1

1/ 2 1/ 2

1

1/ 2 1/ 2

(0) , , , , / 4

(0) , , / 2

(0) , , / 2

i i i i i i i i i

x
i i i i i

y
i i i i i

x y x y x y x y

x y x y

x y x y

   

 

 

    
   
   

0 0 0 0

0 0

0 0

U U U +U U

U U U

U U U

 (3) 166 

 The topography function must be similarly approximated (in space), within a local 167 

planar approximation, denoted here by ( , ) |
ih Iz x y , to balance numerically flux gradients with 168 
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the topographic gradients (the well-balanced property) [26]. In the context of an RKDG2 169 

scheme, the local topography-associated expansion coefficients  K
iz  ( 0,1 ,1K x y ) can be 170 

found in a similar way as described in (2) and (3) [29]. With this setting, the local bed slope 171 

gradient (within Sb) writes    1 1( , ) , ( , ) 2 / ,2 /
i i

x y
x h y h i i i iI I

z x y z x y z x z y     . 172 

 173 

4.1 Two-stage Runge-Kutta (RK) time stepping routine 174 

On each local cell Ii, time evolution of the expansion coefficients, { ( )K
i tU }, from �t� to �t + 175 

GTSt � is performed by two-stage RK time stepping [34]. That is, denoting { K
iU }

n
 and { K

iU176 

}
n+1

 the discrete coefficients at �t�, and �t + GTSt � (respectively) local RK update write: 177 

     1/ 2n n nK K K
i i GTS it


  U U L      (4) 178 

       1 1/ 2 1/ 21

2

n n n nK K K K
i i i GTS it

        
U U U L    (5) 179 

To ease technical presentation (coming next), the RK stages in (4) and (5), respectively, are 180 

hereafter referred to RK1 and RK2, which are recalled below: 181 

 RK1 uses the coefficients { K
iU }

n
 (at time �t�) to produce coefficients, { K

iU }
n+1/2

, after 182 

halfway step of time (at �
* / 2GTSt t t  �). 183 

 RK2 further uses the coefficients of { K
iU }

n+1/2
 to produce coefficients, { K

iU }
n+1

, after 184 

one time step (at �t + GTSt �). 185 

In (4) and (5), { K
iL } are locally-conservative DG2 (Discontinuous Galerkin 2

nd
-order) spatial 186 

operators (details in Subsection 4.2) that are evaluated from the expansion coefficients; 187 

whereas GTSt  denotes the Global Time Step (GTS) that is restricted by the Courant-188 

Friedrichs-Lewy condition (CFL) stability condition with a CFL number equal to 0.3 [33]. In 189 
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this work, GTSt  is evaluated according to the coefficients of the cell-averaged data as 190 

described Eq. (6) below: 191 

       0 0 0 0

CFL min ,i i
GTS n n n ni

i i i i

x y
t

u g h v g h

 
  

    
  
 

   (6) 192 

Obviously, from (6), on a non-uniform mesh, GTSt  is governed by the smallest cells (i.e. 193 

those with the highest refinement level) and tends to decrease when more depth in refinement 194 

level is allowed ( 0t   when 
maxlev   ). 195 

 196 

4.2 Local DG2 space operators 197 

After application of the finite element weak formulation, to (1), and the particular adoption of 198 

Legendre basis as local basis functions [32, 33], a decoupled set of ODEs is obtained for the 199 

spatial update of the time-derivative of each local coefficients, namely: 200 

   ( ) ( 0,1 ,1 )K K
t i it K x y  U L             (7) 201 

where, { K
iL } are nonlinear vectors of space-functions representing the flux derivatives and 202 

the source terms in (1), which can be manipulated to: 203 

     0 E W N S 0 1 11 1
, ,x y

i i i i i i i i

i i

z z
x y

     
 

L F F G G S U       (8) 204 

   
   

1 1 1 1

1 1

� �1 E W 0 0 0 0

3 3 3 3

� �0 1 0 1

3 3

3
, ,

3
, ,

6

x x x x
i i i i

x x
i i

z zx
i i i i i i i

i

x xi
i i i i

z z
x

x
z z

        


        

U U

U U

L F F F U F U

                S U S U

 

   (9) 205 

   
   

1 1 1 1

1 1

� �1 N S 0 0 0 0

3 3 3 3

� �0 1 0 1

3 3

3
, ,

3
, ,

6

y y y y
i i i i

y y
i i

z zy
i i i i i i i

i

y yi
i i i i

z z
y

y
z z

        


        

U U

U U

L G G G U G U

                S U S U

 

   (10) 206 
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 When evaluating the DG2 operators (8)-(10), a number of essential (spatial) 207 

treatments must be considered to maintain stability and robustness for realistic flow 208 

modelling applications. These treatments are summarized here (to save space) as their details 209 

can be found in Kesserwani and Liang [17]. First, local slope coefficients (i.e. 1x
iU  and 1y

iU ) 210 

that could cause numerical instability at sharp solution�s gradient are identified and limited 211 

[25]; after slope coefficients control, they are appended with a �hat� (i.e. 1� x
iU and 1� y

iU ). 212 

Second, the discontinuous nature of the local approximate solution U
h
, at the faces separating 213 

two adjacent cells, is incorporated via the HLLC approximate Riemann solver. The HLLC 214 

evaluations recall information from direct neighbour cells to then produce the numerical flux 215 

estimates E

iF , W

iF , 
N

iG  and 
S

iG  at, respectively, the eastern, western, northern and southern 216 

faces of each cell Ii [2]. Third, conservative spatial flux computation of these fluxes needed to 217 

ensured when cell Ii shares an edge (or more) with two finer cells (on a 2D mesh) [17]. Last, 218 

it is important to ensure the positivity of the flow variables with time evolution, which is here 219 

done based on the wetting and drying condition described in [35] (applied to revise the 220 

coefficients prior to evaluating any of the components in Eqs. (8)-(10)). 221 

 222 

4.3 Implicit Friction Term Discretization (IFTD) 223 

When modelling water flow over dry zone with high roughness, the water depth close to the 224 

wet/dry front can be very small and may lead to numerical instabilities if the friction source 225 

term f
S  is explicitly discretized, within (8)-(10) [36]. Separate implicit discretization is 226 

largely recommended for handling the friction terms in order to avoid numerical instabilities. 227 

By denoting the local approximate friction term by ( )hfS , the update due to the friction term 228 

is done by the following splitting implicit scheme: 229 

1( )n
t h h

  fU S       (11) 230 
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Since the friction increment is zero for the continuity equation, only the momentum 231 

components are actually considered, i.e. 232 

1( ) ( )n
t h fx hhu S         (12) 233 

1( ) ( )n
t h fy hhv S         (13) 234 

Eqs (12) and (13) may be respectively approximated by 235 

       
1

1( )
( )

( )

n n n
n nfx hnh h

fx h h h
GTS

hu hu S
S hu hu

t hu


       

   (14) 236 

       
1

1( )
( )

( )

n n n
n nfy hnh h

fy h h h
GTS

hv hv S
S hv hv

t hv


       

   (15) 237 

From Eqs (14) and (15), the friction update formulae for the discharges components (hu)h and 238 

(hv)h may be produced 239 

   
 

1 ( )n
n n fx h

GTS nh h

h

S
hu hu t

Du

        (16) 240 

   
 

1 ( )n
n n fy h

GTS nh h

h

S
hv hv t

Dv

        (17) 241 

in which Du and Dv are implicit coefficients that respectively given by 242 

 
2 2

2 2

2
1

n

n f
GTSh

h

C u v
Du t

h u v

 
   

 
     (18) 243 

 
2 2

2 2

2
1

n

n f
GTSh

h

C u v
Dv t

h u v

 
   

 
     (19) 244 

This IFTD automatically ensures    1
0

n n

h h
hu hu

    and    1
0

n n

h h
hv hv

   , and will not 245 

predict reversed flow. In the current GTS-RKDG2 model, the splitting implicit scheme (16) 246 

and (17) are applied to each wet cell Ii to add the contribution of friction into the average 247 



12 

 

coefficients  0

i
hu  and  0

i
hv , respectively, in a pointwise manner, prior to the RK1 stage and 248 

the RK2 stage. In order to add the friction contribution to the slope coefficients, i.e.  K

i
hu  249 

and  K

i
hv  (K ≠ 0), one simple way is to first perform a pointwise friction update at 250 

corresponding local Gaussian points and then deduce the slopes coefficients by a local planar 251 

P1
-projection [29, 33]. For instance, the friction increment within the slope coefficients 252 

 K

i
hu , (K ≠ 0), can be added as follows 253 

     1 1 1

1 2

3

2

x n n

i G G
hu hu hu

          (20) 254 

     1 1 1

1 2

3

2

y n n

i P P
hu hu hu

         (21) 255 

  1

1, 2

n

G G
hu


 and   1

1, 2

n

P P
hu


 are pointwise output of the friction update (16) evaluated for 256 

     0 1

1, 2
/ 3

nn x

G G i i
hu hu hu     and      0 1

1, 2
/ 3

nn y

P P i i
hu hu hu    , respectively. By 257 

analogy, the friction contribution can be added to  K

i
hv , (K ≠ 0). 258 

 Despite ensuring stability, the IFTD may lead to a loss in the discrete balance among 259 

fluxes and topographic source terms (i.e. well-balanced property [26, 28]), particularly when 260 

modelling steady flow problems over uneven topographies with non-zero velocities (refer to 261 

the detailed analysis in [37]). Furthermore, the IFTD relationships (16) and (17), which does 262 

not pose a problem with the GTS-RKDG2 scheme, may conflict with a LTS scheme (will be 263 

discussed in Subsection 5.3.1 and illustrated in Subsection 6.1). 264 

 265 

4.4 Reduced 1D GTS-RKDG2 formulation 266 

Neglecting the y-direction components, the vector G vanishes in (1) and the system reduces 267 

to two equations with two unknowns; now [ , ]hu U , 2 2[ , 0.5 ( 2 )]hu hu g z    F , 268 
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[0 ,  ]xg z   bS  and [0, ]f fxS S . The 1D version of the GTS-RKDG2 scheme uses 269 

local linear solutions and topography approximations engendered by two coefficients (one 270 

cell-averaged and one for the monodirectional slope), i.e. { ( )K
i tU } and {

K
iz } ( 0,1K x ). 271 

That is, over a 1D local cell 1/ 2 1/ 2[ ; ]i i iI x x    the flow solution (and similarly the topography 272 

apart from being static-in-time) expands as: 273 

  0 1, ( ) ( )
/ 2i

x i
i iI

i

x x
x t t t

x

 
   

hU =U U      (22) 274 

The DG2 spatial derivative operators reduce to two 275 

   
   

    

1 1 1 1

1 1

0 E W 0 11

� �1 E W 0 0 0 03

3 3 3 3

� �3 0 1 0 1

6 3 3

,

, ,

, ,

i

x x x x
i i i i

i

x x
i i i

i i i i ix

z zx
i i i i i i ix

x
i i i i

z

z z

z z







   

        

      

U U

U U

L F F S U

L F F F U F U

                S U S U

 

    (23) 276 

The RK1 and RK2 stages (4) and (5), together with the IFTD, apply straightforwardly to 277 

locally advance coefficients { ( )K
i tU } in time [35]. It is worth commenting that, relative to the 278 

2D GTS-RKDG2 model, its 1D version is expected to be more efficient in that: first, it 279 

involves twice less inter-cell flux calculations; second, it needs twice less the number of 280 

operations to achieve the RK updates and has four times less operations in each call to the 281 

IFTD. Above all, the 1D version is not subjected to (extrinsic) inter-scales flux conservation 282 

reinforcement (in space) at heterogeneous cells [17]; thus could be also more conservative. 283 
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Fig. 1: LTS-RKDG2 calculation(s) to the coefficients from �t� to �t + ǻt� on a mesh with 

levels of refinement �0�, ...., �levmax�, where a �thick arrow� = one LTS-RKDG2 calculation. 

The LTS-RKDG2 update is first achieved at cells with the level �0�. Then, the calculation 

moves to those cells with level �1�, and so on until those cells with the highest level �levmax� 

are reached after 2 maxlev
 LTS-RKDG2 calculations. 

 284 

5. New	LocalǦTimeǦStepping	RKDG2	flow	model	(LTSǦRKDG2)	285 

In this section, the second-order LTS approach of Krivodonova [24] is integrated with the 286 

RKDG2 model [15] to form the so-called LTS-RKDG2 formulation. Their combination is 287 

here redesigned in order to accommodate the applied features of shallow flow simulations. 288 

For convenience of presentation, the LTS-RKGD2 method is described for the 1D version (as 289 

the description of the 2D version reads by analogy). 290 

 291 

5.1 Basic concept 292 

Assuming (for simplicity) that the maximum wave speed does not significantly influence the 293 

local CFL number, the LTS (Local Time Step) relative to cell Ii is solely dependent on its 294 

level of refinement lev(i), or cell size ǻxi = ǻx/2
lev(i)

. Here, ǻt denotes the maximum time step 295 

allowed that is yet relative to the coarsest resolution (cells with level �0� of refinement), i.e. 296 

max2
lev

GTSt t         (24) 297 
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 As illustrates in Fig. 1, LTS-RKDG2 calculation(s) are locally performed with the 298 

LTS ǻt, ǻt/2, ǻt/22
, ..., ǻt/ 2 maxlev

, orderly, on the cells with level �0�, �1�, �2�, ..., �levmax� to 299 

progressively advance their coefficients 2
0
 LTS, 2

1
 LTSs, 2

2
 LTSs, ..., 2 maxlev

LTSs, 300 

respectively. At the first iteration, the LTS-RKDG2 calculation operates at cells with level �0� 301 

to directly lift their coefficients to time �t + ǻt� (i.e. in one round). At the second iteration, 302 

LTS-RKDG2 calculations are undertaken at cells with level �1� (i.e. in two rounds), and so 303 

on, until the finest cells with level �levmax� are fully updated after 2 maxlev
 rounds. Therefore, 304 

cells are crossed according to their level of refinement on a mesh that comprises �inner cells� 305 

and �interface cells�. When cell Ii has all of its neighbours of equal size, it will be an inner 306 

cell; otherwise, if at least one of its neighbours has different size, cell Ii will be an interface 307 

cell (so will the neighbour be). When Ii is an inner cell, LTS-RKDG2 calculation(s) are 308 

straightforward and actually stem from a series of GTS-RKDG2 calculation(s) using the LTS 309 

time step 
( )/ 2lev it  (instead of ǻtGTS) across 2

lev(i)
 rounds. 310 

 However, when Ii is an interface cell at least one of its adjacent neighbours has a 311 

different refinement level. In what follows, to ease the details, we assume the eastern 312 

neighbour cell Iin is such a neighbour, which is also an interface cell. In this scenario, the 313 

LTS-RKDG2 calculation at interface cells {Ii, Iin} faces different temporal resolutions on 314 

cells Ii and Iin. To accommodate this difference, synchronized �ghost� coefficients must be 315 

produced to complete the LTS-RKDG2 calculation(s) across first the inner RK1 and RK2 316 

stages, and then the LTSs (as described in Section 5.2). 317 
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(a) 

 

(b) 

Fig. 2. LTS-RKDG2 calculation at the LIC Ii (neighboured by a SIC Iin) to advance its 

coefficients from time �t� to time �t + ǻtL�, where a ‘thin arrow’  = one RK stage, ‘thick 
arrow’ = one-time-step, ‘straight line’  = �actual� advancement and ‘dashed line’ = �ghost� 
advancement. 

 318 

5.2 LTS-RKDG2 calculation(s) at the interface cells {I i, I in} 319 

Since the mesh is regularized (see Section 3) and the calculation is recursive, it suffices to 320 

explain the LTS-RKDG2 calculation(s) when cells Ii and Iin are one refinement level 321 

different. Without loss of generality, assume cells Ii and Iin have, respectively, �0� and �1� as a 322 

refinement levels. Cells Ii and Iin can, respectively, be viewed as �Large Interface Cell� (LIC) 323 

and �Small Interface Cell� (SIC); consistently, their associated LTS, coefficients and fluxes 324 

will be appended with the subscripts �L� and S�, respectively. Firstly, one LTS-RKDG2 325 

calculation is applied to update the �actual� coefficients at the LIC (Ii) while employing 326 

�ghost� synchronized coefficients from the SIC (Iin) [Subsection 5.2.1]. Next, two LTS-327 

RKDG2 calculations are applied to update the �actual� coefficients are at the SIC (Iin) while 328 

using �ghost� coefficients from the LIC (Ii) [Subsection 5.2.2]. 329 

 330 

5.2.1 Coefficients update at the LIC (I i) 331 

At the LIC Ii, LTS-RKDG2 calculation starts from the coefficients at time �t�, i.e. {
K
iU }

n
L , 332 

with the LTS ǻtL = ǻt/20
. At �t�, the coefficients at the SIC Iin, i.e. {

K
inU }

n
S , are also available. 333 
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DG2 space operators on Ii, i.e. {
K
iL }

n
L , can be obtained leading to (after RK1) the �actual� 334 

coefficients on Ii at �t* = t + ǻtL/2�, i.e. {
K
iU }

1/ 2n
L


, (Fig. 2a � �straight thin arrow� in the 335 

left-hand-side). Equally, RK1 is applied on on Iin but with the LTS ǻtL leading to time-336 

matching �ghost� coefficients, i.e. {
K
inU }

1/ 2

,

n
S Ghost


 (Fig. 2a � �dashed thin arrow� in the right-337 

hand-side), namely: 338 

     1/ 2

,

n n nK K K
in in L inS Ghost S S

t


  U U L     (25) 339 

Again, DG2 space operators on Ii, i.e. {
K
iL }

1/ 2n
L


, can be now obtained for evaluation in RK2 340 

advancing thereby to produce the �actual� coefficients to time �t + ǻtL�, i.e. {
K
iU }

1n
L


 (Fig. 2b 341 

� second �straight thin arrow� and the �thick arrow� in the left-hand-side). 342 

 343 

5.2.2 Coefficients update at the SIC (I in) 344 

Calculation restarts (time �t�) at the SIC Iin with the LTS ǻtS = ǻtL/2; thus two LTS-RKDG2 345 

calculations are needed to move its �actual� coefficients to �t + ǻtL� (i.e. across two rounds). 346 

Before detailing these calculations, it should be noted that any past �ghost� information on Iin 347 

must be ignored; whereas some past �actual� information on Ii are needed (i.e. the DG2 space 348 

operator records across inner time stages) to define the following quadratic function: 349 

         1/ 2

2( ) ( ) ( )
2

n nK K
n n i iK K K L L

i i iL L
L

t t
t

   



    



L L
U L   (26) 350 

that is needed to interpolate �ghost� coefficients on Ii at a fractional time-step  ; Lt t t    351 

and an associated intermediate time-stage at  * ; Lt t   , i.e. 352 

   
,

( ) ( )
nK K

i iL Ghost
  U       (27) 353 

     1/2
*

, ,
( ) ( ) ( )

n nK K K
i i S iL Ghost L Ghost

d
t

d
   




 U U    (28) 354 
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 In the first LTS-RKDG2 calculation, coefficients over Iin are advanced one LTS to �t2 = t 355 

+ ǻtS�. Calculation starts from the coefficients available at �t�, i.e. {
K
inU }

n
S  and {

K
iU }

n
L , 356 

that give the DG2 operators on Iin, i.e. {
K
inL }

n
S , which in turn (via RK1) yield the �actual� 357 

coefficients at �t1
*
 = t + ǻtS/2�, i.e. {

K
inU }

1/ 2n
S


 (Fig. 3a � �straight thin arrow� at the 358 

right-hand-side). Meanwhile, on Ii, synchronized �ghost� coefficients, i.e. {
K
iU }

1/ 2

,

n
L Ghost


, are 359 

reconstructed (Fig. 3a � �dashed thin arrow� at the left-hand-side) by [(27) and (28) 360 

evaluated at Ĳ = t1
*
]: 361 

     1/ 2

,

n n nK K K
i i S iL Ghost L L

t


  U U L     (29) 362 

Local DG2 space operators {
K
inL }

1/ 2n
S


 on Iin can be now evaluated to (via RK2) yield the 363 

�actual� coefficients at �t2�, i.e. {
K
inU }

1n
S


 (Fig. 3c � second �straight thin arrow� and the 364 

�thick arrow� at the right-hand-side). Meanwhile, again, synchronized (at �t2�) �ghost� 365 

coefficients, on Ii, i.e. {
K
iU }

1

,

n
L Ghost


, are reconstructed (Fig. 3b � second �dashed thin 366 

arrow� and the overall �thick dashed arrow� at the left-hand-side) [via (26) and (27) 367 

evaluated at Ĳ = t2] by: 368 

         
   1/ 2

1 2

2,
( )

2

n nK K
n n n i iK K K K L L

i i i S i SL Ghost L L
L

t t t
t




 
    



L L
U U L  (30) 369 

 Prior to the second LTS-RKDG2 calculation, both �actual� and �ghost� coefficients (at Iin 370 

and Ii) are reinitialized at �t2� (see Fig. 3d): {
K
inU }

n
S {

K
inU }

1n
S


 & {
K
iU }

n
L{

K
iU }

1

,

n
L Ghost


 371 

(all variable relevant to intermediate time-stage {ǜ} 1/ 2n can be now reused). Calculation 372 

starts from the initial coefficients at �t2�, i.e. {
K
inU }

n
S  and {

K
iU }

n
L , leading to (after 373 

calculation of {
K
inL }

n
S  on Iin and then via and RK1) the �actual� coefficients at �t2

*
 = t2 + 374 

ǻtS/2�, i.e. {
K
inU }

1/ 2n
S


 (Fig. 3e�right part along the third �straight thin arrow�). 375 
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Meanwhile, once again, on Ii, synchronized (at t2
*
) �ghost� coefficients are reconstructed 376 

[using (26)-(28) evaluated at Ĳ = t2
*
], i.e. {

K
iU }

1/ 2

,

n
L Ghost


, by (Fig. 3f�left part along the 377 

third �dashed thin arrow�): 378 

         
 

1/ 2

1/ 2

,

n nK K
n n n i iK K K L L

i i S i SL Ghost L L
L

t t
t




 
     
 
 

L L
U U L   (31) 379 

Finally, DG2 operators, on Iin, i.e. {
K
inL }

1/ 2n
S


, can be found and evaluated in RK2 to 380 

yield the �actual� coefficients at time �t + ǻtL�, i.e. {
K
inU }

1n
S


. 381 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

 
(f) 
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                                             (g) 

 

Fig. 3. LTS-RKDG2 calculation at the SIC Ii (neighboured by the LIC Iin) to advance its 

coefficients from time �t� to time �t + ǻtL� in two consecutive rounds. A ‘thin arrow’  = one-

time-stage, ‘thick arrow’  = one-time-step, ‘straight line’  = �actual� advancement and 

‘dashed line’ = �ghost� advancement. 

 382 

5.3 Specific issues relevant to applied hydraulic modelling 383 

During the LTS-RKDG2 calculation(s), slope-limiting and wetting and drying do not appear 384 

to pose any specific technical problems. In contrast, more computational work is found 385 

necessary to properly handle the IFTD (Subsection 5.3.1) and conserve the fluxes in time 386 

(Subsection 5.3.2) at interface cells. 387 

 388 

5.3.1 Hybrid explicit-implicit discretization of the friction term 389 

When using the implicit friction source term discretization (IFTD) [see Subsection 4.3] 390 

across the LTS-RKDG2 calculations, its aforementioned side effect of disturbing the well-391 

balanced property may magnify at inner cells proportional to an increase in the refinement 392 

level (see also numerical experiments in Subsection 6.1). On the other hand, the different 393 

LTSs within the IFTD complicate its integration during the LTS-RKDG2 calculations at 394 

interface cells (i.e. to avoid duplicate use of the IFTD at the same interface cell with two 395 

different LTSs). This complication stems from the need to produce extra phases of �ghost� 396 

friction advancement, and removal, in line with the �ghost� coefficients advancement 397 

(outlined before in Subsections 5.2.1 and Subsection 5.2.2). 398 
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 One convenient way to avoid this complication is to restrict the usability of the IFTD 399 

to those cells where the water height may potentially become infinitesimal; whereas 400 

elsewhere (at wet cells) use explicit friction source term discretization in the DG2 operators 401 

(23) [free from any time-step dependence]. In this work, the IFTD is only applied locally at a 402 

cell Ii when a small water level occurs in the calculation stencil containing cell Ii and its direct 403 

neighbours, e.g. in the 1D when: 404 

 0 0 0 max

1 1min , 3% ( )i i ih h h h t         (32) 405 

where hmax
(t) represents the maximum water level spanning the wet domain at time �t�. The 406 

3% is a user-selected threshold, which means that the IFTD will be active at, or around, those 407 

cell where the RKDG2 calculation involves, at least, a depth that is smaller than 3% of the 408 

maximum depth. 409 

Now the IFTD implementation with LTS-RKDG2 calculation(s) is described, which 410 

could occur at either inner cells or interface cells. At inner cells the IFTD applies 411 

(recursively) a similar way as with the GTS-RKDG2 scheme. In contrast, at interface cells 412 

the IFTD needs a careful treatment across RK1 and RK2 stages where �Ghost� data change 413 

for the different LTSs (Subsections 5.2.1 and 5.2.2). Here, we detail the application of the 414 

IFTD within the LTS-RKDG2 calculation(s) consistent with interface cell {Ii, Iin}. 415 

 During the LTS-RKDG2 calculation at the LIC, the IFTD step (16) applies at Ii (resp. at 416 

Iin) to amend the �actual� (resp. �ghost�) discharge coefficients within {
K
iU }

n
L  and {

K
inU }417 

n
S . Then, once coefficients {

K
iU }

1/ 2n
L


 and {
K
inU }

1/ 2

,

n
S Ghost


 are in place (Subsection 5.2.1), the 418 

IFTD step (16) is again applied at Ii (resp. at Iin) to amend their �actual� (resp. �ghost�) 419 

discharge coefficients. However, once �actual� coefficients at Ii are lifted to �t + ǻtL�, it is 420 

necessary to restore their initial (frictionless discharge) relative to time �t�. 421 
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 During the LTS-calculations at the SIC Iin, no further treatment is here needed. In effect, 422 

after the LTS-RKDG2 calculation at the LIS Ii: (a) its initial discharge coefficients in {423 

K
iU }

n
L  have been reset to frictionless; (b) the (saved) DG2 operators {

K
iL }

n
L  and {

K
iL }424 

1/ 2n
L


 already include the �actual� effects due to friction. Thus, �ghost� coefficients at Ii, 425 

reconstructed by (29)-(31), are expected to include the contribution of friction. 426 

 

Fig. 4: History of the �actual� inner RK stages of the LTS-RKDG2 calculations at the LIC Ii 

and the SIC Iin in terms of Riemann flux evaluations. Particular case (when ǻtL = ǻt) where 

flux conservation reinforcement is needed and take action at the SIC within the RK2 stage of 

the last of LTS-RKDG2 calculation, using (25). 

 427 

5.3.2 Flux conservation at interface cells 428 

After achieving the LTS-RKDG2 calculations at the LIC Ii (Subsection 5.2.1) and the SIC Iin 429 

(Subsection 5.2.2), the sum of Riemann flux quantities cumulated between times �t� and �t + 430 

ǻtL� at the edge xi+1/2 may not be equal. For instance, following the notations in Fig. 4, it may 431 

happen that 432 

           
2

2

1/1 1/1 1/ 2 1/ 2 2/ 2 2/ 2
1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

L Lt t t t t
n n n n n n
i i i i i iL L S S S St t t

 
  

     
                   

F F F F F F         (33) 433 
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where 1/1 1/ 2 1/1

1/ 2 1/ 2( ) ( )n n
i L i L


 F F   is the sum of Riemann fluxes accumulated from the sole LTS-434 

RKDG2 calculation at the LIC Ii (superscript �1/1�); whereas, 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2( ) ( )n n
i S i S


 F F  and 435 

2/ 2 1/ 2 2/ 2

1/ 2 1/ 2( ) ( )n n
i S i S


 F F   are the sum of Riemann fluxes accumulated during the first (superscript 436 

�1/2�) and the second (superscript �2/2�) LTS-RKDG2 calculations at the SIC Iin. 437 

To alleviate this effect, flux conservation (in time) is reinforced at the SIC Iin and 438 

during the final of LTS-RKDG2 calculation and, more particularly, at the RK2 stage (when 439 

the coefficients are pending one last step before reaching �t + ǻt�) [Fig. 4�right highlighted 440 

portion of the thick arrow). This can be done by exceptionally choosing the flux 1/ 2 2 / 2

1/ 2( )n
i S

F  so 441 

as to ensure that the two sides of Eq. (33) remain equal, i.e. 442 
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2 2
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2 2
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 
  
     

                         
F F F F F F         (34) 443 

and then proceed with the conventional evaluation for the DG2 space operators to complete 444 

the RK2 stage. 445 

 446 

5.4 LTS-RKDG2 algorithm on a mesh with multiple refinement levels 447 

5.4.1 Computational and memory demands 448 

In the GTS-RKDG2 calculation, coefficients are moved from �t� to �t + ǻt� in one round. 449 

Computational storage associated with this calculation (at cell Ii and for all K coefficients) are 450 

three matrices {
K
iU } n , {

K
iU } 1/ 2n  and {

K
iU } 1n  for storing coefficients at times �t�, �t*

� and 451 

�t + ǻtGTS�; whereas any other variables/operations are local and/or momentary. 452 

 Calculations of the LTS-RKDG2 are recursive and occur across 2
k
 rounds for cells 453 

with level �k� of refinement (1 ≤ k ≤ levmax). Nevertheless, the same allocated matrices can be 454 

used subject to re-initialization at the beginning of each round, i.e. {
K
iU } n {

K
iU } 1n . 455 

Nonetheless, extra local storage is required to facilitate the calculations at interface cells, 456 



24 

 

namely for recording the DG2 operators at LICs, evolving sums of Riemann fluxes at 457 

interface cells and restoring frictionless discharge coefficients interface cells. Moreover, 458 

these storage demands become higher for the 2D version given the presence of an additional 459 

slope component and DG2 operator, and two more direct neighbours.  460 

 461 

5.4.2 LTS-RKDG2 calculations at interface cells {Ii, I in} 462 

Here, all the steps of LTS-RKDG2 calculations at {Ii, Iin} are combined including the specific 463 

features relevant to hydrodynamic modelling. At time �t�, coefficients over Ii and Iin are 464 

available and Table 1 summarises the steps of the LTS-RKDG2 calculations for lifting 465 

coefficients of cells Ii and Iin to time �t + ǻtL� (in which subscripts �L� and �S� are overlooked 466 

for the coefficients and the DG2 operators). 467 

 468 

Table 1: List of steps for the LTS-RKDG2 calculations at Ii (resp. Iin) with the LTS ǻtL (resp. ǻtS = 469 
ǻtL/2) to move its coefficients from time �t� to time �t + ǻtL� in one round (resp. in two rounds). 470 

1. Start with the one round over the LIC I i with the time step ǻtL. 

A. Detect if an IFTD is needed. If so, save the initial frictionless discharge coefficients at Ii 

and Iin; using (16) with ǻtL, do an �actual� (reps. a �ghost�) IFTD step at Ii (resp. Iin) to 

add friction effects to the discharge coefficients in { K
iU }

n
 (resp. { K

inU }
n
). Otherwise, 

omit Step 1-A. 

B. Evaluate and save the Riemann flux at xi+1/2. Then, evaluate, via (23), and save the DG2 

space operators { K
iL }

n
. 

C. Advance the coefficients at Ii one time stage, using (4) with the time step ǻtL, to produce 

{ K
iU }

n+1/2
 (i.e., �actual� coefficients). 

D. In a similar way, i.e. via (25), advance the coefficients over Iin one time stage, to produce 

�ghost� coefficients 1/ 2

,}K n
in S Ghost


{U . Set 1/ 2 1/ 2

,{ } { }K n K n
in in S Ghost

 U U . 

E. If an IFTD is needed. Using (16) with ǻtL, do an �actual� (reps. a �ghost�) IFTD step at Ii 

(resp. Iin) to add increment of friction in the discharge coefficients of { K
iU }

n+1/2
 (resp. {

K
inU }

n+1/2
). Otherwise, omit Step 1-E. 

F. Evaluate and save the Riemann flux at xi+1/2. Then, evaluate, via (23), and save the DG2 

space operators { K
iL }

n+1/2
. 

G. Advance the coefficients over Ii another time stage, using (5) with the time step ǻtL, to 

produce { K
iU }

n+1
. 

H. Restore the (original) frictionless state for the coefficients { K
iU }

n
 and { K

inU }
n
 using the 

saved frictionless discharge coefficients in Step 1-A. 

2. Then, two rounds over the SIC I in with the time step ǻtS = ǻtL/2. 
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A. Detect if an IFTD is needed. If so, using (16) with ǻtS, do an �actual� IFTD step at Iin to 

add increment due to the friction effects to the discharge coefficients in { K
inU }

n
. 

Otherwise, omit Step 2-A. 

B. Evaluate and save the Riemann flux at xi+1/2. Then, evaluate, via (23) the DG2 space 

operators { K
inL }

n
. 

C. Advance the coefficients over Iin one time stage, using (4) with the time step ǻtS, to 

produce the �actual� coefficients { K
inU }

n+1/2
; if an IFTD is needed, using (16) with ǻtS, do 

another �actual� IFTD step for { K
inU }

n+1/2
. 

D. Produce �ghost� coefficients 1/ 2

,{ }K n
i L Ghost


U  over Ii [i.e., using (29) with { K

iU }
n
 from Step 1-

H and the previously saved { K
iL }

n
 from Step 1-B]. Set 1/ 2 1/ 2

,} { }K n K n
i i L Ghost

 {U U . 

E. Evaluate and save the Riemann flux at xi+1/2. Then, evaluate, via (23), the DG2 space 

operators { K
inL }

n+1/2
. 

F. Advance the coefficients over Iin another time stage, using (5) with the time step ǻtS, to 

produce { K
iU }

n+1
. 

G. Produce time-matching �ghost� coefficients 1

,{ }K n
i L Ghost


U  over Ii (i.e., using (30) with the 

same parameters used in (29) and by further involving { K
iL }

n+1/2
 saved in Step 1-F). 

H. Re-initialize the coefficients at Ii and Iin: 
1{ } { }K n K n

in in
U U  and 1

,{ } { }K n K n
i i L Ghost

U U . 

I. Do similar as Steps 2-A, 2-B and 2-C to reproduce the �actual� coefficients { K
inU }

n+1/2
. 

J. Produce, via (31), �ghost� coefficients 1/ 2

,{ }K n
i L Ghost


U  and reset 1/ 2 1/ 2

,{ } { }K n K n
i i L Ghost

 U U . 

K. Do similar as Step 2-E and Step 2-F to finally obtain the �actual� coefficients { K
inU }

n+1
. 

Remark (exceptional flux conservation Step 2-L) 

L. In the case where Step 2-I � Step 2-K take action at the very last round, which is lifting 

the coefficients over Iin to �t+ǻt�, Step 2-J should be removed and the flux in Step 2-K is 

directly estimated by the relationship (34). 
 471 

5.4.3 Generalized LTS-RKDG2 model 472 

Following Krivodonova [24], the generalization of the LTS-RKDG2 scheme on a mesh with 473 

arbitrary depth of refinement stems from a recursive repetition of the steps in Table 1, so that 474 

to keep a �staircase� in time after each iteration. For simplicity, it is described for levmax = 3 475 

in Table 2 and correspondingly in Fig. 5. Here, a total of four iterations is needed to lift the 476 

coefficients over all cells from time �t� to time �t + ǻt�. Evidently, after round #k (k = 1, 2, 3 477 

and 4), the coefficients over cells with level k reaches �t + ǻt�. 478 

 479 
Table 2: List of steps for LTS-RKDG2 calculations at a mesh with four refinement levels of �0�, �1�, 480 
�2� and �3� using respectively the LTS ǻt, ǻt/2, ǻt/22 and ǻt/23. 481 

Round #1: advance the coefficients one LTS over all cells using Steps (1-A)�(1-H) or Steps 

(2-A)�(2-F). As seen in Fig. 5a, the calculation starts orderly with the cells of level �3�, �2�, 
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�1� and then �0� (i.e., using respectively the LTS ǻt/23
, ǻt/22

, ǻt/2 and ǻt). 
Round #2: first, advance the coefficients over cells with level �3� one LTS using Steps (2-

G)�(2-K); (i.e., Fig. 5b). Second, advance the coefficients over cells with level �2� one LTS 

using Steps (1-A)�(1-H); (i.e., Fig. 5c) and revisit the cells with level �3� to further advance 

their coefficients another LTS using Steps (2-G)�(2-K); (i.e., Fig. 5c). Fourth, advance the 

coefficients over cells with level �1� one LTS using Steps (2-G)�(2-K) while enforcing flux 
conservation via (34); (i.e., Fig. 5d). Fifth, revisit the cells with level �3� and further advance 

their coefficients one more LTS using Steps (2-G)�(2-K); (i.e., Fig. 5d). Sixth, revisit the 

cells with level �2� and further advance their coefficients one more LTS Steps (2-G)�(2-K); 

(i.e., Fig. 5d). Finally, revisit the cells with level �3� and again advance their coefficients one 

more LTS using Steps (2-A)�(2-F); (i.e., Fig. 5d). 

Round #3: first, advance the coefficients over cells with level �3� one LTS using Steps (2-

G)�(2-K); (i.e., Fig. 5e). Second, advance the coefficients over cells with level �2� one LTS 

using Steps (2-G)�(2-K) while reinforcing flux conservation via (34). Finally, revisit the 

cells with level �3� and again advance their coefficients one more LTS using Steps (2-A)�(-

F); (i.e., Fig. 5e). 

Round #4: now, the remaining step is to advance the coefficients over cells of level �3� one 

LTS using Steps (2-G)�(2-K) while enforcing flux conservation via (34); (i.e., Fig. 5f). 

 482 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 

Fig. 5: Schematic description of the LTS-RKDG2 calculations over the interface cells 

relative to mesh with four levels of refinement; �Gray arrow� = previous step(s) and �Blank 
numbered arrow� = present step(s) in successive order. 

 483 

6. LTSǦRKDG2	model's	verification	relative	to	the	GTSǦRKDG2	model	484 

The 1D and 2D formulations of the LTS-RKDG2 scheme are verified for two non-uniform 485 

mesh configurations, refereed hereafter to as �mesh-3LTSs� and �mesh-4LTSs�, which 486 

respectively involve �3� and �4� levels of local spatial-temporal discretization-scales (i.e., 487 

levmax = 2 and levmax = 3, respectively). On the former mesh the LTS-RKDG2 framework 488 

coordinates the LTSs {ǻt, ǻt/2, ǻt/4} while it coordinates the LTSs {ǻt, ǻt/2, ǻt/4, ǻt/8} on 489 

the latter mesh. Selected benchmark tests are employed to investigate the performance of the 490 

LTS-RKDG2 scheme (i.e., 1D and/or 2D versions on both �mesh-3LTSs� and �mesh-4LTSs�) 491 

with respect to the traditional GTS-RKDG2 scheme, while discussing/identifying several 492 

issues pertaining to computational hydraulics and quantifying the runtime saving (i.e., the 493 

ratio �runtime GTS�/�runtime LTS�). By default, transmissive (numerical) boundary 494 

conditions are used in the both RKDG2 models unless otherwise mentioned for specific test 495 

cases. 496 
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(a) 

 
(b) 

Fig. 6: Transcritical flow over a hump with shock. 2D domains and meshes with local 

refinement around the point of transcritical flow and the local of the water jump; (a) levmax = 

2 and (b) levmax = 3. 

 497 

6.1 Steady transcritical flow over topography with shock 498 

This test investigates moving steady transcritical flow over non-flat topography with a shock. 499 

It is usually employed to demonstrate the capability of a numerical method to converge 500 

towards a steady state, accurately balance the flux gradient with the topography gradient, and 501 

capture transcritical flow transitions and water jumps. The channel is 1000m long with a 502 

hump-shape topography located between x = 125m and x = 875m [38]. Inflow (physical) 503 

boundary condition is imposed through a unit discharge of 20m
2
/s and the (physical) outflow 504 

boundary is a water level of 7m. Under these conditions, a steady transitional flow takes 505 

place where the flow changes from subcritical to supercritical at x = 500m. Downstream of 506 

the topography, a hydraulic jump occurs as the flow regime restores to subcritical. A 507 

simulation starts from an initial water height of 9.7m and is desired to stop after a relatively 508 

long time evolution (i.e., t = 2000s). Simulations are done using the 1D and 2D versions of 509 

the GTS-RKDG2 and LTS-RKDG2 schemes. The 1D and 2D mesh characteristics are listed 510 

in Table 3; the 2D domains and associated mesh-refinement are described in Fig. 6, while the 511 

level of refinement used for the 1D meshes are marked in Fig. 7 (the grey diamond marker 512 

within the upper panel). 513 



29 

 

 

(a) (b)

Fig. 7: Transcritical flow over a hump with shock. LTS-RKDG2 calculations vs. GTS-

RKDG2 calculations compared with the analytical solution; (a) levmax = 2 and (b) levmax = 3. 

 514 

 At first, the channel�s bed is assumed frictionless. Fig. 7a and Fig. 7b display the 515 

corresponding steady state profiles acquired by the 1D and 2D versions of the RKDG2 516 

solvers on mesh-3LTSs and mesh-4LTSs, respectively. It can be seen that the numerical water 517 

depths predictions match very well the analytical solution. For the momentum conservation 518 

predictions, in terms of steady discharge, the expected conservative state is reached by all the 519 

1D-RKDG2 variants (GTS- and LTS-, and on both meshes) and the 2D-GTS-RKDG2 variant 520 

relative to mesh-3LTSs. In contrast, the 2D-LTS-RKDG2 variant shows deficit in achieving 521 

an fully conservative steady discharge profile; notable also, both 2D-RKDG2 (GTS- and 522 

LTS-) models on mesh-4LTSs shows the localized discharge spike (Fig. 7b) at the jump�s 523 

location, which is suspected to occur as a result of a redundant call to the slope-limiter 524 

function [39]. However, these side effects remain rather localized and do not appear to affect 525 
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the whole simulations. These findings indicate that the current LTS-RKDG2 model can 526 

maintain the well-balanced property [29] in the 1D formulation but tend to locally disturb 527 

momentum conservation in the 2D formulation increasingly with more refinement levels. 528 

 

(a) (b)

 

Fig. 8: Transcritical flow over a hump with shock. LTS-RKDG2 calculations vs. GTS-

RKDG2 convergence rates; (a) levmax = 2 and (b) levmax = 3. 

 529 

 Up to t = 2000s, the LTS-RKDG2 model is spotted to reduce the GTS-RKDG2 530 

runtime up to roughly 2X in 1D and 1.5X in 2D (see Table 3). In terms of convergence rates, 531 

the L2
-errors defined by the �variations of the water depth between two successive iterations� 532 

were monitored and are illustrated in Fig. 8 (i.e., relative to the output time when the L2
-error 533 

of the 2D-GTS-RKDG2 variant became ≤ 10
-8

). As shown in Fig. 8a, the convergence error 534 

produced by 2D-LTS-RKDG2 variant on mesh-3LTSs is seen to alternate steadily; whereas 535 

the errors acquired by the other variants appear to follow the expected exponential decay (see 536 

the zoom-in portion within the upper-right in Fig. 8a). However, on mesh-4LTSs (i.e., Fig. 537 

8b) the 1D-LTS-RKDG2 variant�s error appear to stagnate after a certain time while the 2D-538 

LTS-RKDG2 variant�s error produces again an alternating pattern (see the zoom-in portion 539 

within the upper-right in Fig. 8b). With these results, it appears that the RKDG2 framework 540 

risk losing its ability to delivering exponential convergence rates. It can be therefore argued 541 

that the present LTS-RKDG2 framework may compromise with either a delay or stagnation 542 
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in reaching convergence for steady flow simulations (also depending on the dimensionality of 543 

the formulation and/or the depth of refinement levels [Fig. 8]). 544 

 545 

Table 3: Mesh configurations and runtime ratios after 2000s for test-case 6.1 546 

Simulation case 1D 2D 

Level of refinement 2 3 2 3 

Baseline mesh 62 40 62×3 64×4 

Domain [0;1000] [0;1000] [0;1000]×[0;12] [0;1000]×[0;32]

Runtime ratio (GTS/ LTS) 1.9X 2.3X 1.6X 1.5X 

 547 

 Secondly, this test case is used to further point out the inconvenience of the IFTD 548 

when solely implemented in conjunction with the LTS-RKDG2 scheme. Therefore, the 1D-549 

LTS-RKDG2 method is reconsidered with a Manning factor of 0.033 s/m
1/3

; the simulations 550 

are remade on the same non-uniform meshes (in Table 3) but now with a focus on comparing 551 

the IFTD discretization (i.e., time-dependent) vs. the explicit friction term discretization (i.e., 552 

independent of the time-step). The solution to the momentum equation, in terms of steady 553 

discharge numerical result, is appended within the discharge plots of Fig. 7a and 7b. As 554 

outlined before (Subsection 5.3.1), the use of the IFTD with the LTS-RKDG2 tends to 555 

magnify the impact of the IFTD by increasing the amount of numerical diffusion manifesting 556 

itself in form of disturbance in the well-balanced property of the RKDG2 scheme. Further, 557 

this side-effect is observed to increase in line with either an increase in the Manning factor 558 

(herein, zoom-in of discharge illustrations within Figs. 7a and 7b contains the results relative 559 

to the highest value of nM that was tested, i.e., nM = 0.033 s/m
1/3

) or in the level of LTS (in 560 

that, the LTS-RKDG2-IFTD�s discharge prediction in Fig. 7a is less diffusive than the one in 561 

Fig. 7b). As anticipated, the discharge solution reproduced by the LTS-RKDG2 scheme with 562 

the explicit friction discretization remain comparatively unaffected � despite an insignificant 563 

drop that is believed to occur as a results of coarsening the mesh at the boundary and also, 564 

perhaps, due to the heuristic nature of Manning�s formula. These results justify the 565 
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motivation to use the proposed hybrid explicit-implicit friction term discretisation (employed 566 

from now on for the test cases 6.2-6.5). 567 

 
(a) 

 
(b) 

Fig. 9: Wet/dry front advancing and recessing over a rough topography. 2D domains and 

mesh configurations with local refinement around the steepest topogprahy gradient and at 

inflow boundary; (a) levmax = 2 and (b) levmax = 3. 

 568 

6.2 Wet/dry front advancing and recessing over a rough topography 569 

This synthetic tidal wave case was initiated by Heniche et al. [40] and is a commonly used 570 

test case to verify the stability and robustness of a numerical model when reproducing the 571 

movement of a wet/dry front over an uneven and rough topography. It can be regarded as a 572 

tidal wave running up and down over sloping beach in a 1D domain [0m; 500m] with a slope 573 

of -0.001 over [0m; 100m], -0.01 over ]100m; 200m] and -0.001 over ]200m ;500m]. The 574 

friction effects are quite significant as they associate to a Manning coefficient of Mn = 0.03. 575 

The flow is initially still with a constant surface elevation of 1.75m. The eastern end of the 576 

domain ( x  = 500m) is assumed to be the inlet where the varying water depth reads 577 

2
(500, ) 1 0.75cos

t
h t

T

    
 

      (35) 578 

which mimics a tidal wave with T  = 60min representing the period of a tidal cycle. The 579 

western end of the domain is a standing solid wall. 580 

Table 4: Mesh configurations and runtime ratios after 60 min for test-case 6.2 581 

Simulation case 1D 2D 

Level of refinement 2 3 2 3 
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Baseline mesh 62 50 124×3 62×4 

Domain [0;500] [0;500] [0;500]×[0;12] [0;500]×[0;32] 

Runtime ratio (GTS/ LTS) 1.4X 2.5X 1.18X 1.23X 

 582 

 
(a) 

 
(b) 

Fig. 10: Wet/dry front advancing and recessing over a rough topography. LTS-RKDG2 

calculations vs. GTS-RKDG2 calculations (a) levmax = 2 and (b) levmax = 3. 

 583 

1D and 2D, LTS- and GTS-, RKDG2 runs on the meshes configurations described in 584 

Table 4 are performed. The employed meshes, of type mesh-3LTSs and mesh-4LTSs, are 585 

displayed in Fig. 9 for the 2D case whereas for 1D case the meshes properties are marked 586 

within Fig. 10 (for convenience, the marker�s plots in Fig. 10b are shrank by a factor of 0.5). 587 

The simulations output time is 60min (i.e., one tidal cycle). The LTS- and GTS- RKDG2 588 

solutions of the advancing and recessing shoreline, at t  = 0, 12, 24, 36, 48 and 54min are 589 

presented in Fig. 10a and Fig. 10b, respectively, on mesh-3LTSs and mesh-4LTSs. 590 

Apparently, here, the LTS-RKDG2 and GTS-RKDG2 predictions agree very closely and also 591 
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match those presented in literature (e.g., in [27]). Nevertheless, for this test, as summarizes 592 

Table 4, the LTS-RKDG2 is found less costly than the GTS-RKDG2; namely the relative 593 

saving in runtime is about 1.2X in 2D and reached 2.5X for the 1D case on mesh-4LTSs. 594 

 
(a) 

 
(b) 

Fig. 11: Dam-break flow interacting with a triangular obstacle. 2D domains and mesh 

configurations with refinement at the local of the initial dam and around the triangular 

obstacle; (a) levmax = 2 and (b) levmax = 3. 

 595 

6.3 Dam-break wave interacting with a triangular obstacle 596 

The RKDG2 schemes are here assessed by replicating an experimental test case from the 597 

CADAM project [41]. It consist of a violent breaching wave propagating over an initially dry 598 

and rough floodplain, overtopping a triangular obstacle and then interacting with it. The 599 

length of the domain is 38m; the initial condition is a still water state of 0.75 m held by an 600 

imaginary dam (located at x = 15.5m) and a dry floodplain downstream of the dam (see Fig. 601 

12). For this problem, measured time histories of the water depth are available at point G10, 602 

G11, G13 and G20 that are respectively located 10 m, 11 m, 13 m and 20 m downstream of 603 

the dam�s location. The friction effects are associated to a Manning factor of 0.0125.  604 
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(a) (c)
  

 

(b) (d) 

Fig. 12: Dam-break flow interacting with a triangular obstacle at t = 10s. LTS-RKDG2 

calculations vs. GTS-RKDG2 water-surface profiles; (a) levmax = 2 and (b) levmax = 3, (c) 

zoom in around the shock wave levmax = 2, and (d) zoom in around the shock wave levmax = 3. 

 605 

The upstream boundary is a solid wall while free outflow condition is permitted at the 606 

downstream boundary. Simulations are executed using the LTS- and GTS- RKDG2 variants 607 

with the mesh setups described in Table 5; mesh-3LTSs and mesh-4LTSs used for the 2D case 608 

are viewed in Fig. 11; for the 1D case, the meshes are described within Fig. 12 (i.e. the 609 

markers). The output simulation time is t = 35s. A view of the free-surface elevation 610 

longitudinal profiles predicted by the all RKDG2 versions is available in Fig. 12 at time t = 611 

10s. Moreover, Fig. 13 contains the predicted time histories that are seen to favourably track 612 

with the measured profiles. As previews Fig. 12, the generated wave front propagates to the 613 

obstacle, climbs up and overtops the obstacle, creates a shock-wave moving to the upstream 614 
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wall. A magnified view on the shock-capturing ability of the RKDG2 models (in Fig. 12c and 615 

Fig. 12d) shows a remarkable agreement between the 2D models (GTS- and LTS) and the 616 

1D-GTS models for the simulations involving �3� refinement levels. However, this agreement 617 

appears to slightly decline when �4� levels were considered in the simulations; namely for the 618 

2D-LTS-RKDG2 variant that predicted a delay in the capture of the shock as compared to the 619 

GTS versions (in 1D and 2D). As to the 1D-LTS-RKDG2, here, it displays a tendency to 620 

accelerate shock-capturing in all simulations. These implications thus favour the use of the 621 

2D-LTS-RKDG2 model on mesh-3LTSs over any other LTS variant for this test. Taken as 622 

whole, all LTS- and GTS- RKDG2 variants successfully survived this benchmark showing 623 

slight differences throughout the whole simulations (see Fig. 13), which seem to have 624 

inconsequential effects on the stability of the LTS-RKDG2 models. The over-predictive 625 

aspect delivered by the RKDG2 predictions at G20 has no concern with the numerical 626 

algorithms; it is usually credited to the fact that the wave pattern downstream of the obstacle 627 

becomes highly complex and unstable and so the hydrostatic assumption of the shallow water 628 

equations is no longer valid. In terms of runtime saving, as shows Table 5, the use of LTS-629 

RKDG2 scheme is on average 1.3X and 1.18X for the 1D and the 2D versions, respectively.  630 

Table 5: Mesh configurations and runtime ratios after 35s for test-case 6.3 631 

Simulation case 1D 2D 

Level of refinement 2 3 2 3 

Baseline mesh 63 35 62×3 31×4 

Domain [0;38] [0;38] [0;38]×[0;12] [0;38]×[0;32] 

Runtime ratio (GTS/ LTS) 1.32X 1.36X 1.16X 1.21X 

 632 

 633 
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(a) (b)

 

Fig. 13: Dam-break flow interacting with a triangular obstacle. Time histories produced by 

the RKDG2 calculations compared with measured data; (a) levmax = 2 and (b) levmax = 3. 
 634 
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6.4 2D smooth oscillatory flow in a parabolic bowl with friction 635 

Sampson�s 2D analytical test [42] is employed to study second-order mesh convergence for 636 

the RKDG2 schemes on the non-uniform mesh configuration (both LTS- and GTS- versions 637 

in 2D) and further assess their performance in handling frictional flow with wetting and 638 

drying over irregular topography. This test is featured by a constantly-moving wet/dry 639 

(circular) shoreline inside the 2D parabolic terrain 2 2 2

0( , ) ( ) /z x y h x y a  , where h0 and a 640 

are constants. The energy dissipation, due to friction, is assumed proportional to the 641 

magnitude of the discharge and can be integrated by altering Cf to 2 2/fC h u v  , where 642 

  represents a bed-friction parameter. A 2D analytical solution can be obtainable when 643 

p  , where 
2

08 /p gh a  represents the peak amplitude. With this setting, the exact 644 

solution follows 645 
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      (36) 646 

Where B is a velocity constant and 
2 2 / 2w p   . Herein, the 2D domain is chosen to be [-647 

5000; 5000]
2
 and the constants are set to h0 = 10m, B = 5m/s, a = 3000m and   0.009 s

-1
, 648 

which is a relatively high friction factor (as   0.009 < 0.0093 = p). For the frictionless case 649 

(i.e.,    0), the flow would oscillates indefinitely with a period cycle of 2 /T w 650 

1345.7104s. But with the inclusion of friction effects the oscillatory flow is expected to cease 651 

into the state 0( , , )x y h   , ( ) 0u    and ( ) 0v   . 652 

The initial conditions for the flow variables are obtained from (36), evaluated at t = 653 

0s, and the output time is t = 2Ts. Since the flow does not reach the 2D domain�s boundaries, 654 

any boundary condition can be specified. To undergo the mesh convergence study, two series 655 

of simulations are run on meshes of type mesh-3LTSs and mesh-4LTSs. The baseline mesh 656 
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details for the first and second series of simulations are, respectively, listed in Table 6 and 657 

Table 7. Qualitatively, however, to save space, we only show the mesh patterns associated to 658 

the coarsest baseline mesh (i.e., Fig. 14) used in each series of simulations; the corresponding 659 

initial contour map of the water depth is also illustrated in Fig. 14.  660 

(a) (b)

 

Fig. 14: Oscillatory flow in a parabolic bowl with friction. Initial water-depth condition, 2D 

domain and mesh configurations with a refined portion; (a) baseline mesh 40×40 with levmax 

= 2 and (b) baseline mesh 20×20 with levmax = 3. 

 661 

The outputs of the 2D-LTS-RKDG2 and 2D-GTS-RKDG2 versions, at the time T/2s, are 662 

used to calculate the L2
-errors (and associated and L2-orders) along the x-direction centreline. 663 

The quantitative results are summarized in Table 6 and Table 7, which also list the runtime 664 

ratios respective to the output time t = 2Ts. As indicates Tables 6, both GTS- and LTS- 665 

models are noted to acquire second-order mesh-convergence on the mesh of type mesh-666 

3LTSs. But for these runs, the 2D-LTS-RKDG2 variant is noted to be more expensive than 667 

the 2D-GTS-RKDG2 variant. In contrast, as point out Table 7, the 2D-LTS-RKDG2 scheme 668 

provide relative reduction in the runtime cost by a mean factor of 1.2X for the case involving 669 

a mesh of type mesh-4LTSs. However, on the latter setting, the RKDG2 schemes (both LTS- 670 

and GTS-) do not seem to achieve second-order convergence one the latter mesh patterns. 671 

Remarkably, these results suggest that increasing the deepness of spatial refinement levels � 672 
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although works in the favour of efficiency � pays off accuracy as such [17]; despite the 673 

complementary effects (e.g., flux reinforcement in time) associated with the LTS algorithms. 674 

Thus, the question of how to comprehensively ensure conservative data (and fluxes) transfer 675 

and recovery across the heterogeneous spatial and/or temporal scales on-uniform meshes is 676 

yet to be resolved (note that, on uniform meshes, the RKDG2 delivers second-order 677 

convergence rates for this test case [16, 35]). 678 

 679 
Table 6: Case of Levmax = 2. L2

-errors and -orders evaluated at T/2s and runtime ratios at 2Ts. 680 
Baseline 
Mesh 
 

2D-GTS-RKDG2 2D-LTS-RKDG2 Runtime ratio 

(GTS/ LTS) Error(h) Order(h) Error(hu) Order(hu) Error(h) Order(h) Error(hu) Order(hu) 

40 × 40 4.50e-03 -- 6.26e-04 -- 3.91e-03 -- 3.91e-04 -- 0.18X 

80 × 80 3.41e-04 1.89 1.25e-04 2.31 3.03e-04 1.87 9.77e-05 2.00 0.60X 

160 × 160 2.09e-05 2.16 1.69e-05 2.88 2.03e-05 2.12 1.40e-05 2.80 0.86X 

 681 

Table 7: Case of Levmax = 3. L2
-errors and -orders evaluated at T/2s and runtime ratios at 2Ts. 682 

Baseline 
Mesh 
 

2D-GTS-RKDG2 2D-LTS-RKDG2 Runtime ratio 

(GTS/ LTS) Error(h) Order(h) Error(hu) Order(hu) Error(h) Order(h) Error(hu) Order(hu) 

20 × 20 1.19e-04 -- 5.76e-04 -- 1.74e-04 -- 1.59e-03 -- 1.3X 

40 × 40 5.01e-05 1.25 2.50e-04 1.20 8.51e-05 1.03 7.67e-04 0.97 1.21X 

80 × 80 2.08e-05 1.26 4.47e-05 2.50 4.01e-05 1.08 3.72e-04 1.04 1.25X 

 683 

Fig. 15 compares the numerical predictions with the analytical solution along the x-direction 684 

centreline for the water depth variable at T/2s (upper panel) and the discharge variable at T/2s 685 

and 3T/2s (lower panel). Fig. 15 supports the aforementioned argument (revealed in Table 6 686 

and Table 7); the predictions delivered by the all RKDG2 schemes (LTS- and GTS-) using 687 

less level of refinement (in space for the GTS and further in time for the LTS version) match 688 

much better the exact solution. Remarkable also, the 2D-LTS-RKDG2 discharge prediction is 689 

much more deviated from the 2D-GTS-RKDG2 on the mesh with the more refinement levels; 690 

thus suggestive of a cumulative effect occurring further from the temporal transfer of 691 

information (in the 2D-LTS-RKDG2) across the levels of resolution. In terms of modelling 692 

the moving wet/dry shoreline, all RKDG2 schemes successful tracked the constantly-693 
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vanishing velocity zone (see discharge plots at 3T/2s in Fig. 15 [lower panel]) with no signs 694 

of a conflict between LTS and wetting and drying. 695 

 
(a) 

 
(b) 

Fig. 15: Oscillatory flow in a parabolic bowl with friction. LTS-RKDG2 calculations vs. 
GTS-RKDG2 calculations across the x-direction centreline (a) baseline mesh 40×40 with 

levmax = 2 and (b) baseline mesh 20×20 with levmax = 3. 
 696 

(a) (b)

 

Fig. 16: 2D breaking wave over dry floodplain with friction. Initial free-surface elevation 

condition, 2D domain and mesh configuration with refined portions; (a) levmax = 2 and (b) 

levmax = 3. 
 697 
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6.5 2D breaking wave over dry floodplain with friction 698 

This test may be regarded as the 2D version of the test investigated in Subsection 6.3. It is 699 

widely used as a 2D standard benchmark to assess the adequacy of computational flood 700 

models for realistic applications [17]. The 2D domain is [0; 75m]×[0; 30m] that is assumed to 701 

be enclosed by solid-walls and to initially hold a tranquil water body of 1.875m upstream of a 702 

dam located at x = 16m. Downstream of the dam, the floodplain is dry with three topographic 703 

hills (see Fig. 16) and is characterized by a roughness Manning coefficient of 0.0185. 2D-704 

LTS-RKDG2 and 2D-GTS-RKDG2 simulations are executed on a mesh of type mesh-3LTSs 705 

and mesh-4LTSs, respectively, which are described in Table 8 and illustrated in Fig. 16. The 706 

2D contour maps of the free-surface elevation produced by the RKDG2 models at t = 6s, 12s, 707 

and 24s are presented in Fig. 17 (mesh-3LTSs) and Fig. 18 (mesh-4LTSs). On both meshes, 708 

the LTS- and GTS-RKDG2 versions predicted nearly similar local of flow features (of shock, 709 

smooth and wet/dry character). However, the contour patterns among the LTS-RKDG2 and 710 

GTS-RKDG2 schemes correlate much better on mesh-3LTSs where the LTS-RKDG2 711 

coordinate less LTSs (contrast Fig. 17 vs. Fig. 18). Whereas, on mesh-4LTSs the LTS-712 

RKDG2 predictions are more deviated and thus again indicate of a cumulative effect 713 

associated with the depth of refinement levels. 714 

 715 

Table 8: Mesh and runtime ratios after 24s for test-case 6.5 716 

Simulation case 2D 

Level of refinement 2 3 

Baseline mesh 40×20 20×10 

Domain [0;75]×[0;30] [0;75]×[0;30] 

Runtime ratio (GTS/ LTS) 0.5X 0.98X 

 717 

In terms of runtime cost (Table 8) no runtime saving are here noted in the LTS-RKDG2 718 

models performance, over the traditional GTS version. Possibly, such inefficiency is 719 

associated with the relatively high number of fine-cells and the presence of very high 720 

velocities. This suggests that the LTS-RKDG2 model would be able to speed-up simulation 721 
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times, in 2D, when the percentage of fine cells represents a very small portion of the 2D mesh 722 

and for low flow speed. 723 

(a)  (b) (c) 

 

 
Fig. 17: 2D breaking wave over dry floodplain with friction. Contrasting the free-surface 

elevation contours obtained by the LTS-RKDG2 (lower panel) and the GTS-RKDG2 (upper 

panel) for levmax = 2; (a) t = 6s, (b) t = 12s and (c) t = 24s. 

 724 

(a)  (b) (c) 

 

 
Fig. 18: 2D breaking wave over dry floodplain with friction. Contrasting the free-surface 

elevation contours obtained by the LTS-RKDG2 (lower panel) and the GTS-RKDG2 (upper 

panel) for levmax = 3; (a) t = 6s, (b) t = 12s and (c) t = 24s. 

 725 
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7. Conclusions	726 

A LTS algorithm [24], which involves a small calculation stencil, has been integrated with a 727 

robust RKDG2 shallow water model on structured non-uniform meshes (LTS-RKDG2). Most 728 

advanced stabilizing features that enable the practical use of shallow water numerical models 729 

� previously available within the traditional GTS-RKDG2 version, i.e. for controlling slope 730 

coefficients, handling complex domain topography and wetting and drying [17] � were 731 

retained within the LTS-RKDG2 design. However further considerations were given to 732 

maintain the flux conservation (in time) across cells of different sizes, and to diminish the 733 

adverse effects of the IFTD (Implicit Friction Term Discretisation). 1D and 2D versions of 734 

the LTS-RKDG2 model were setup and ran on non-uniform meshes of type �mesh-3LTSs� 735 

and �mesh-4LTSs� that, respectively, comprised �3� and �4� levels of local spatial 736 

discretization (e.g., {ǻx, ǻx/2, ǻx/4} and {ǻx, ǻx/2, ǻx/4, ǻx/8} for the 1D meshes). On 737 

these meshes, the LTS-RKDG2 model adapted correspondingly LTSs of {ǻt, ǻt/2, ǻt/4} and 738 

{ǻt, ǻt/2, ǻt/4, ǻt/8}, whereas the GTS-RKDG2 model used the smallest GTS allowable. 739 

Selected test cases were employed to verify the LTS-RKDG2 models� implementation with 740 

respect to the associated GTS-RKDG2 schemes considering realistic aspects of hydraulic 741 

modelling. 742 

In all tests, the LTS-RKDG2 schemes were able to generically produce very close 743 

prediction as the GTS-RKDG2 despite the presence of water jumps, irregular topographies 744 

and wetting and drying. A closer analysis of the results, however, suggest that the LTS-745 

RKDG2 model might lose its exponential convergence property for steady state simulations, 746 

its overall second-order mesh-convergence for the case involving more depth in the spatio-747 

temporal refinement increasingly with the dimensionality of the formulation and the deepness 748 

of refinement levels.  749 

 750 
Table 9: Range of the relative runtime savings. 751 
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Runtime ratio (GTS /GLS) 
 

1D simulations 2D simulations 

Mesh of type �mesh-3LTSs� 1.3�2.0X 0.18�1.6X 

Mesh of type �mesh-4LTSs� 1.36�2.5X 0.98�1.5X 

 752 

In terms of runtime saving relative to the GTS-RKDG2 simulations, for the test cases 753 

investigated in this study (Table 9), the 1D LTS-RKDG2 formulation has speeded up 754 

efficiency by an average factor of 2; whereas, the 2D formulation relatively offered saving of 755 

around average factor of 1.6. The maximum efficiency speed up has been observed in the 756 

tests involving a relatively small proportion of fine cells (Subsection 6.1) and/or a low 757 

velocity flows (Subsection 6.2), and when more levels of spatio-temporal adaptation have 758 

been employed (mesh-4LTSs). For violent flows and/or cases where the mesh involves a 759 

significant portion of fine cells, LTS-RKDG2 models have been found to be much less 760 

effective. Most notably, its 2D formulation has provided very little saving for on meshes of 761 

type mesh-4LTSs and no saving at all for meshes of type mesh-3LTSs. 762 

Based on the present findings, we essentially recommend the use of LTS-RKDG2 763 

model on non-uniform meshes in which the refined portion constitutes a very small 764 

percentage of the global domain, namely in 2D simulations. Otherwise, the saving in runtime 765 

gained by the integration of the LTS algorithm would be eliminated by extra operational cost 766 

entailed at those cells that are smaller than the coarsest cells. Moreover, in the interest of 767 

accuracy, conservation and economy, it would be further beneficial to tailor a LTS-RKDG2 768 

version with the least levels of LTSs. The improvement and/or extension of proposed LTS 769 

approach to higher than second-order RKDG formulation is hindered by the need of more 770 

comprehensive space-time interpolation formula and the need to cope with more inner stages 771 

within the RK mechanism. 772 
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