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Abstract  31 

 The snowpack acts as a sink for atmospheric reactive nitrogen, but several post-32 

depositional pathways have been reported to alter the concentration and isotopic composition of 33 

snow nitrate with implications for atmospheric boundary layer chemistry, ice core records and 34 

terrestrial ecology following snow-melt. Careful daily sampling of surface snow during winter 35 

(11 – 15 February, 2010) and spring-time (April 9 – εay 5, 2010) near Ny-Ålesund, Svalbard 36 

reveals a complex pattern of processes within the snowpack. Dry deposition was found to 37 

dominate over post-depositional losses, with a net nitrate deposition rate of (0.6±0.2) µmol m-2 d-38 

1 to homogeneous surface snow. At Ny-Ålesund, such surface dry deposition can either solely 39 

result from long-range atmospheric transport of NOx,y or include the re-deposition of 40 

photolytic/bacterial emission originating from deeper snow layers. Our data further confirm that 41 

polar basin air masses bring 15N-depleted nitrate to Svalbard, while high nitrate į(18O) values 42 

only occur in connection with ozone-depleted air, and show that these signatures are reflected in 43 

the deposited nitrate. Such ozone-depleted air is attributed to active halogen chemistry in the air-44 

masses advected to the site. However, here the Ny-Ålesund surface snow was shown to have an 45 
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active role in the halogen dynamics for this region, as indicated by declining bromide 46 

concentrations and increasing nitrate į(18O), during high BrO (low ozone) events. The data also 47 

indicates that the snow-pack BrO-NOx cycling continued in post-event periods, when ambient 48 

ozone and BrO levels recovered.  49 

1. Introduction 50 

1.1 Overview 51 

Snowpack nitrate (NO3
-) can influence the chemical composition of the lower atmospheric 52 

boundary layer through photochemical release of nitrogen oxides (e.g. Honrath et al., 1999, 53 

Domine and Shepson, 2002; Grannas et al., 2007; εorin et al., 2009; Thomas et al., 2012). Even 54 

though snow is a highly reflective material, the shape and small size of snow grains favours a 55 

forward scattering of the light into the snowpack (Domine et al., 2008), creating a photo-active 56 

zone in the surface region of the snow cover (e.g. Qiu et al., 2002; Simpson et al., 2002; Galbavy 57 

et al., 2007). Following polar sunrise, photolysis of surface snow NO3
- and the concomitant 58 

emission of nitric oxide (NO) and nitrogen dioxide (NO2) can alter the isotopic composition and 59 

concentration of NO3
- in snow and ice (Jarvis et al., 2008; Frey et al., 2009; Erbland et al., 2013). 60 

Furthermore, the removal of NO3
- through HNO3 evaporation from snow can also contribute to 61 

NO3
- isotopic and concentration changes (Frey et al., 2009; Erbland et al., 2013). In addition to 62 

these post-depositional processes, dry deposition of pollutants and further accumulation of snow 63 

will influence the isotopic composition and budget of NO3
-, where the snow accumulation buries 64 

older layers and prevents further photolytic reactions (Jarvis et al., 2009; Erbland et al., 2013). 65 

Since several pathways have been described for the NOx (NOx = NO + NO2) oxidation to nitric 66 

acid (HNO3) in polar regions, e.g. involving ozone (O3), hydroxyl (OH) and bromine monoxide 67 

(BrO) species (Russell et al., 1985; Evans et al., 2003; Seinfeld and Pandis, 2006; εorin et al., 68 
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2007b), atmospheric boundary layer chemistry is of key importance for the isotopic NO3
- 69 

signature found in snow. 70 

Here we present a detailed investigation of the processes governing the concentration and 71 

isotopic composition of NO3
- (15N/14N and 18O/16O) in the most photo-active zone (upper 5 cm) 72 

of the snowpack at Ny-Ålesund, Svalbard (Fig. 1). In order to highlight the effects of photolysis, 73 

the sampling period covered both the polar night and springtime during 2010. The data was 74 

analyzed in conjunction with atmospheric flux measurements of oxidized nitrogen; NO, NO2, 75 

HNO3 and particulate NO3
- (p-NO3

-), that were conducted directly above the snowpack, and O3 76 

concentrations monitored both at Gruvebadet and at the nearby Zeppelin Station (Fig. 1). This 77 

study is used to infer the influence of BrO chemistry upon the snowpack nitrogen cycle for the 78 

first time in Svalbard. 79 

1.2 Background 80 

1.2.1 δong-range transport and deposition of oxidized nitrogen 81 

Through long-range atmospheric transport (Fig. 2) oxidized nitrogen that is emitted at mid-82 

latitude regions can reach pristine Arctic environments (Rahn et al., 1980; Rahn, 1981; 83 

Dickerson, 1985; Stohl, 2006; Hirdman et al., 2010; Kühnel et al., 2011; Kühnel, 2013), often in 84 

the form of molecules with longer atmospheric residence time such as peroxyacyl nitrates 85 

(PANs) or p-NO3
- (Beine et al., 1997; Seinfeld and Pandis, 2006). However, occasional rapid 86 

long-range transport events also occur, as recently identifed for Ny-Ålesund in the European 87 

high Arctic (e.g. Hodson et al., 2010, Kühnel 2013), which can transport pollutants with shorter 88 

life-times, such as NOx, (or its oxidation product HNO3) into the Arctic (Zien et al., 2014). The 89 

original isotopic composition of each NOx source (e.g. forest fires or fossil fuel combustion, 90 

among other) depends on the oxidation process and origin of the nitrogen (N) and oxygen (O) 91 
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(e.g. Kendall et al., 2007). In the Arctic spring, the long-range transported oxidized nitrogen 92 

pollutants, such as PANs, decompose and undergo local boundary layer NOx-cycling, involving 93 

O3, BrO or hydroperoxyl radicals (HO2) and solar radiation (hv, Fig. 2). This cycling is followed 94 

by a NOx-removal, where both a day time (through OH or HO2) and a night time (through NO3 95 

and dinitrogen pentoxide (N2O5)) conversion of NO2 to HNO3 occurs (Fig. 2, Russell et al., 96 

1985; Dentener and Crutzen, 1993; Hanson and Ravishankara, 1995; Hanson et al., 1996; Evans 97 

et al., 2003; εorin et al., 2007b; εorin et al., 2008; Thomas et al., 2011; Thomas et al., 2012), 98 

where the N2O5 also can be directly deposited to the snow (e.g. Huff et al., 2011). For Arctic 99 

sites, HNO3 production via the BrO-pathway, involving BrONO2 (Fig. 2), is particularly 100 

important during episodes of BrO chemistry, which also causes low O3 levels (e.g. Evans et al., 101 

2003; εorin et al., 2007b). Nitric acid and p-NO3
- will then be removed from the atmosphere by 102 

snow, rain or dry deposition (Cadle, 1991; Bergin et al., 1995; Kuhn, 2001), and be deposited to 103 

the snow as NO3
- (Diehl et al., 1995; Abbatt, 1997). The snowpack therefore acts as an important 104 

sink and reservoir for atmospheric reactive nitrogen, with a unique isotopic NO3
- composition 105 

and concentration for each snow layer. For the N-isotopic composition, the initial snow signature 106 

typically resemble the original source of NOx, this since the fractionation during NOx-cycling 107 

and removal is considered to be low (Freyer, 1991). For the O-isotopes, the interaction and O-108 

exchange with O3, BrO, and OH during the NOx-cycling and NOx-removal will strongly 109 

influence the initial snow O-signature, typically masking any other processes or original source 110 

signatures (e.g. εichalski et al., 2003; Jarvis et al., 2009; εorin et al., 2009). Thus the initial O-111 

signature provides insights into the oxidation processes that have occurred prior to deposition. 112 

These initial concentrations and isotopic imprints may, however, be altered by post-depositional 113 

snow processes as will be further outlined below (1.2.2.). 114 
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In Svalbard, the NO3
- deposition and thereby the snow concentration is governed by wet 115 

deposition, where a few sporadic “strong” events dominate the total annual deposition (Kühnel et 116 

al., 2011). These “strong” deposition events are due to rapid transport of polluted European air 117 

masses (e.g. Hodson et al., 2010), which are occasionally channelled northward between a 118 

blocking anticyclone, situated over Scandinavia and Central Europe, and an incoming cyclone 119 

over the Atlantic (Kühnel, 2013). The typical transport time for such events are about 2 to 5 days 120 

and where the air-masses picks up in speed and humidity just prior to the arrival to Svalbard 121 

(Kühnel 2013). The estimated winter dry deposition of NO3
- in this region is modest (approx. 14 122 

%, Björkman et al., 2013), but nevertheless, of importance for the isotopic composition of NO3
- 123 

in snow when studying short term daily variations (Hastings et al., 2004). 124 

1.2.2 Snowpack NO3
- photolysis and evaporation 125 

Due to NOx release from the photo-active zone of the snowpack, the deposited NO3
- can play 126 

an important role in atmospheric boundary layer chemistry after the initial deposition (e.g. 127 

Thomas et al., 2012). The snowpack is therefore an active player in atmospheric chemical 128 

processes and not just a NO3
- sink (Honrath et al., 1999). Snowpack NO3

- photolysis, of 129 

relevance for the NO3
- budget, is believed to occur at the very surface of snow crystals (Boxe and 130 

Saiz-δopez, 2008), with reaction rates and quantum yields for photolytic processes similar to 131 

those in aqueous solutions (Bartels-Rausch et al., 2014). This region of the ice crystal has 132 

previously been referred to as a quasi-liquid layer (Qδδ, Kvlividz et al., 1970), but has lately 133 

been re-described as a disordered interface (DI, Bartels-Rausch et al., 2014). This new term 134 

emphasizes the disordered molecular structure that occurs at the surface of any crystal, created 135 

by the absence of molecular bonds towards its surface (Bartels-Rausch et al., 2014), instead of 136 

involving a liquid state analogy. The photolysis of NO3
- within the DI and subsequent reactions 137 
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(Fig. 2) lead to the production of NO2 and to a lesser extent NO (see Jacobi and Hilker, 2007; 138 

Boxe and Saiz-δopez, 2008 for an overview of reaction pathways). The produced NO2 and NO 139 

can then diffuse out of the DI into firn air and thereafter into the atmospheric boundary layer 140 

(e.g. Honrath et al., 1999; Jones et al., 2000; Beine et al., 2003). This photolytic initiated loss 141 

also alters the isotopic composition of snowpack NO3
-, with an enrichment of 15N in the residual 142 

NO3
- due to photolytic fractionation (Frey et al., 2009; εorin et al., 2009; Erbland et al., 2013). 143 

On the other hand the O-composition of the remaining NO3
- will be strongly influenced by the 144 

isotopic exchange between the photolytic products and OH-radical or H2O within the DI 145 

(εcCabe et al., 2005; Frey et al., 2009). There is also evidence for nitrous acid (HONO) 146 

production from irradiated snow (Fig. 2, Zhou et al., 2001; Beine et al., 2002a), due to the 147 

interaction between nitrite (NO2
-) and a hydrogen ion (H+, e.g. Dominé and Shepson, 2002). 148 

However, several other pathways have also been described; i.e. involving humic acids (e.g. 149 

Beine et al., 2008, Villena et al., 2001) or heterogeneous reactions in the firn (e.g. Jacobi and 150 

Hilker, 2007), although the reaction steps in these pathways are not fully understood (Grannas et 151 

al., 2007; Jacobi and Hilker, 2007; Beine et al., 2008; Boxe and Saiz-δopez, 2008, Jacobi et al., 152 

2014) and therefore not included in Fig. 2. Nitrate loss from the snow has also been found to be 153 

due to evaporation (Fig. 2) of HNO3, a process also favouring the loss of isotopically light NO3
- 154 

(e.g. Frey et al., 2009). A recent study by Erbland et al. (2013) confirms that evaporation is an 155 

active player in post-depositional processes in areas with low snow accumulation rates and high 156 

firn air ventilation, such as central Antarctic sites. However, the process has been shown to be 157 

quantitatively modest compared to the loss through photolysis for these Antarctic sites (Erbland 158 

et al., 2013). Interestingly, laboratory studies of snow and ice have found no evidence for this 159 

evaporative pathway (Chu and Anastasio, 2003; Sato et al., 2008). 160 
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Snowpack NOx emissions, according to the above post-depositional processes, have been 161 

estimated for Arctic, Antarctic and mid-latitude snow (Dibb et al., 1998; Honrath et al., 1999; 162 

Honrath et al., 2000; Jones et al., 2000; Jones et al., 2001; Beine et al., 2002a). However, these 163 

studies are not necessarily directly applicable to the snowpack in Ny-Ålesund, Svalbard 164 

(European high Arctic), where substantially lower snowpack NOx, HNO3, p-NO3
- and HONO 165 

emissions have been reported in comparison to the other investigated regions (Beine et al., 2003; 166 

Amoroso et al., 2006; Amoroso et al., 2010). 167 

1.2.3 δocal biogeochemical contribution to snowpack NO3
- 168 

The DI reactions described above mostly involve NO3
- of non-local origin, deposited 169 

following long-range atmospheric transport. However, a more locally produced source of 170 

oxidized nitrogen has been suggested through microbial activity (Brooks et al., 1997; εa et al., 171 

2007; εiteva, 2008; Siciliano et al., 2009, Roberts et al., 2010). Svalbard snow is known to 172 

contain a diverse community of microorganisms (Amato et al., 2007; δarose et al., 2010), and 173 

the microbial assimilation of ammonium (NH4
+) might result in the production of gas phase NO, 174 

HNO3 and HONO, even during winter (Fig. 2, Amoroso et al., 2010). Isotopic fractionation is 175 

expected through microbial assimilation of nitrogen compounds (e.g. Kendall, 1998), although 176 

during the nutrient limited conditions in a snowpack such nitrogen isotopic fractionation might 177 

not necessarily be expressed in the produced reactive nitrogen emissions (Amoroso et al., 2010). 178 

The resulting snowpack emission, under these conditions, would have an N-isotopic composition 179 

related to the N source (in this case, organic or mineral bound NH4
+) and an O-isotopic 180 

composition influenced by the surrounding water (Amoroso et al., 2010). 181 

1.2.4 Re-cycling of NOx snowpack emissions 182 
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The gas phase products of post-depositional and biogeochemical processes are emitted 183 

into the firn air and onwards to the lower atmospheric boundary layer, where further reactions 184 

may lead to a re-deposition of HNO3 to the snow (Fig. 2, Hastings et al., 2004; εorin et al., 185 

2007b; Jarvis et al., 2009). During spring and summer conditions, these reactions can have a 186 

diurnal pattern governed by day-time emissions and night-time deposition (Hastings et al., 2004). 187 

The isotopic composition of this re-deposited HNO3 would then be influenced by the oxidation 188 

pathways undertaken, see Fig. 2 (e.g. Jarvis et al., 2009). Additionally, snow is a highly porous 189 

medium that undergoes a steady exchange of air with the surrounding atmosphere (Sturm and 190 

Johnson, 1991; Albert and Hardy, 1995; Colbeck, 1997; Albert et al., 2002; Frey et al., 2005). 191 

This exchange allows the boundary layer processes in Fig. 2 to occur also within the snowpack 192 

interstitial air pockets. 193 

2. εethods 194 

2.1 Field sampling 195 

The top 5 cm of the snowpack was sampled close to Gruvebadet, 1 km outside the Ny-196 

Ålesund International Arctic Research and Monitoring Facility in Svalbard (78º55' N, 11º55' E, 197 

Fig. 1). Samples were collected between February 11 and 15 (dark campaign) and between April 198 

9 and εay 5 (spring campaign) during 2010. The sampling was undertaken at mid-day (11:00-199 

13:00) during the dark campaign, and every morning (09:00 – 10:00) during the spring 200 

campaign. All snow samples were collected by inserting a pre-cleaned acrylic collars (height: 201 

5cm, inner diameter: 10.4 cm, volume: 425 cm-3) vertically into the snowpack, and using pre-202 

cleaned plastic shovels, clean overalls, face masks and powder-free gloves. Triplicate samples 203 

were collected approximately 10 m apart, resulting in a total of 96 samples. To account for 204 

variations in surface snow density throughout the campaign, several collars were filled next to 205 
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each other at each of the three triplicate sample locations, yielding a total sampled snow volume 206 

between 1.3 δ and 3.8 δ. The snow was transferred directly into clean black plastic zipper 207 

storage bags to prevent further photolysis, brought into the laboratory in Ny-Ålesund and melted 208 

at room temperature. Each melted snow sample was vacuum filtered (pore size 0.45 µm, 209 

according to Hodson et al., 2005), bottled in 50 ml-tubes, refrozen and shipped for analysis of 210 

major ions and NO3
- stable isotopes. To minimize contamination between samples, vacuum units 211 

and sample tubes were rinsed three times with sample water or, in the case of low sample 212 

volume, ultra-pure water (>18 εȍ). Field-blanks were collected along with the samples to check 213 

for contamination. Blank bags were opened and closed during sampling (without any snow 214 

addition), filled with 100 mδ ultra-pure water, and then treated and analysed like the rest of the 215 

samples. Furthermore, during the spring campaign, an extra 50 ml sterile sampling tube was 216 

filled with the top 5 cm surface snow next to each sampling point for an opportunistic 217 

complementary major ion analysis performed on-site. 218 

2.2 δaboratory analysis 219 

2.2.1 εajor ions 220 

The samples were analyzed for NO3
-, chloride (Cl-) and sodium (Na+) by ion chromatography 221 

at the Department of Geography, University of Sheffield, UK using two separate systems 222 

(Dionex DX 90 ion chromatographs, 4400 integrators, AS40 autosamplers) with Dionex columns 223 

AS14A and CS12A for anions and cations respectively. Standards (range 100 to 2000 µg δ-1) 224 

were prepared every day from 1000 mg δ-1 εerck CertiPUR stock standards. The analytical 225 

precision (1 standard deviation, 1σ) estimated from repeat analyses of multi element reference 226 

standards (εerck CertiPUR) were 1.4 and 1.6 %, respectively, for the anions Cl- and NO3
-, and 227 

0.06 % for the cation Na+. Based on repeat analyses of separate filter aliquots, the analytical 228 
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precision including sample treatment was better than 5 % for each ion. Detection limits (D.δ.) 229 

defined as 3ı for the analytic blanks were 0.17, 0.21 and 0.34 µmol δ-1 for Cl-, NO3
- and Na+, 230 

respectively. 231 

The complementary spring-time 50 ml-snow samples and the diffusion line preparations 232 

(described below in section 2.3.2) were analyzed for NO3
-, Cl-, Na+, NO2

- and bromide (Br-) in 233 

Ny-Ålesund by the Institute of Atmospheric Pollution Research – National Research Council of 234 

Italy (IIA-CNR). εelted snow was analyzed without pre-treatment by ion chromatography 235 

analytical technique (Dionex ICS 90 coupled with an AS50 auto-sampler and using Dionex 236 

AS14 and CS12 columns). A multipoint calibration was performed using six standards in the 237 

range 5 to 1000 µg δ-1, obtaining linear responses. Dilutions were carried out for more 238 

concentrated samples. Calibration solutions were prepared every second week from 1000 mg δ-1 239 

standard solutions (εerck). Control samples (1000 µg δ-1 calibration solution) were analyzed 240 

every seven samples in order to re-calibrate the ion chromatograph. The variation in the 241 

concentration of these control samples ranged within 0.5 – 1 %. The analytical precision errors 242 

from repeated analyses of a calibration solution (500 µg δ-1), were 1.13, 0.73, 0.35, 0.43 and 243 

1.31 %, respectively, for Cl-, NO2
-, Br-, NO3

- and Na+. Detection limits of 46. 5, 14.3, 4.9, 6.9 244 

and 35.8 nmol δ-1 were determined for Cl-, NO2
-, Br-, NO3

- and Na+, respectively. 245 

2.2.2 NO3
- isotopic composition 246 

The 15N and 18O isotopic composition of NO3
- were analyzed at the School of Environmental 247 

Sciences, University of East Anglia, Norwich, UK, using the bacterial denitrifier method 248 

(Sigman et al., 2001; Coplen et al., 2004; Kaiser et al., 2007) where the Pseudomonas 249 

aureofaciens strain was utilized. Values presented here are denoted as isotope deltas, į(15N) and 250 
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į(18O) (IUPAC nomenclature: į(15N, 14N, NO3
-) and į(18O, 16O, NO3

-), respectively), and 251 

expressed with respect to an international standard in ‰ (10–3, per mil) (Eq. 1). 252 ߜୱୟ୫୮୪ୣ ൌ  ோ౩ౣ౦ౢିோ౨ோ౨           Eq. 1 253 

Here R represents the 15N/14N or 18O/16O ratio in the sample (sample) and reference (ref) respecively, 254 

where atmospheric nitrogen (Air-N2) was used as nitrogen reference and Vienna Standard εean 255 

Ocean Water (VSεOW) was used as oxygen reference. Positive delta values indicate an 256 

enrichment of the heavier isotope (or a depletion of the lighter isotope) compared to the standard. 257 

To calibrate the isotope delta values, the international nitrate reference material IAEA-NO-3 was 258 

used, assuming it has δ(15N) = 4.7 ‰ vs. Air-N2 and δ(18O) = 25.61 ‰ vs. VSεOW (Böhlke et 259 

al., 2003). The į(15N) values reported here have not been corrected for any non-mass dependent 260 

17O contribution to the m/z 45 ion current during mass-spectrometric analysis. However, į(17O) 261 

and į(18O) are usually well correlated and the true į(15N) was estimated to be 1-2 ‰ lower than 262 

the reported values. The bacterial denitrifier method requires a minimum of 20 nmol NO3
- 263 

(optimum being 50 nmol) in at most 10 mδ of solution. Consequently, only samples above this 264 

limit were analyzed (n = 87). 265 

2.3 Air-snow fluxes 266 

2.3.1 Surface snow net change 267 

By following the concentration change in surface snow over time, it is possible to 268 

evaluate the overall net change due to surface snow processes occurring after wet deposition. 269 

This method has previously been used to evaluate NO3
- dry deposition to snow (Cadle et al., 270 

1985; Johansson and Granat, 1986; Cadle, 1991; Cress et al., 1995). The net change (Fnet) can be 271 

calculated as (Björkman et al., 2013): 272 
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୬ୣ୲ܨ ൌ െ బ౪ି౪౪௧           Eq. 2 273 

where c is the molar NO3
- concentration in snow, V the melted volume of the sample, A the 274 

surface area of the snow sample (in this study equal to the cross section area of the sampling 275 

collar), and where t is the exposure time between the initial sample (index: 0) and the final 276 

sample (index: t). In Björkman et al., (2013) the dry deposition was calculated as an atmospheric 277 

loss, giving negative numbers, whereas here the surface gain is of interest, hence a negative sign 278 

is used in Eq. 2 to account for this. Furthermore, Eq. 2 will be valid as a pure dry deposition 279 

estimate only if no other NO3
- post-depositional processes take place and snow-water 280 

sublimation is negligible. In all other cases, Eq. 2 will describe the net effect of the various 281 

processes. In terms of the isotopic composition, Eq. 2 can be written as: 282 ܨ୬ୣ୲ ሺͳ  ୬ୣ୲ሻߜ ൌ  െ݇ ሾܿሺͳ  ሻߜ െ ܿ௧ሺͳ   ௧ሻሿ       Eq. 3 283ߜ

where k is the deposition velocity given as: k = Vt / (At), įnet is the isotopic composition of the net 284 

change, whereas į0 and įt are the initial and final isotopic composition of NO3
-. Equation 3 can 285 

be expressed as: 286 Ͳ ൌ ܿ௧ሺߜ௧ െ ୬ୣ୲ሻߜ െ ܿሺߜ െ  ୬ୣ୲ሻ        Eq. 4 287ߜ

which then can be rearranged to give: 288 ߜ୬ୣ୲ ൌ ఋିబఋబିబ           Eq. 5 289 

Eq. 5 then gives the change in the isotopic signature (įnet) and is equal to the isotopic 290 

composition of the dry deposited NO3
- if other post-depositional processes are negligible. 291 

2.3.2 NOx, HNO3
- and p-NO3

- flux measurements 292 

In addition to the snow sampling, atmospheric flux measurements of NO, NO2, HNO3 and p-293 

NO3
- to and from the snowpack were conducted by IIA-CNR outside Gruvebadet (200 m from 294 
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the snow sampling site) during the period April 9 to 27 in 2010. The NO and NO2 concentrations 295 

were measured on a 6 minute basis, using a modified commercial two-channel high-sensitivity 296 

chemiluminescence detector (Sonoma Technologies, USA, Beine et al., 2002b; Amoroso et al., 297 

2010). The two channels sampled air from dual inlets at 0.3 m and 1.5 m above the surface snow, 298 

respectively. Nitric oxide detection was based on the chemiluminescence signal produced by the 299 

reaction between NO and O3, which was photolytically generated in a 150 ml min-1 flow rate of 300 

O2 by a corona discharge O3 generator. Nitrogen dioxide was detected as NO following 301 

photolysis between 350 and 420 nm by light-emitting diodes. The instrument was calibrated 302 

daily with 5.0 µmol mol-1 of gaseous NO (NIST traceable NO standard, Scott-εarrin, in N2) at a 303 

flow rate of 2.0 ml min-1 into the sampling flow (about 1200 ml min-1), corresponding to a NO 304 

addition of 8.3 nmol mol-1. The NO detection limit was determined as 3ı of the observed scatter 305 

in the instrument signal and corresponded to 2.5 pmol mol-1 for 1 h averages. 306 

εeasurements of HNO3 and p-NO3
- concentrations were made by two independent diffusion 307 

lines (Beine et al., 2001; Perrino et al., 2001; Ianniello et al., 2002; Ianniello et al., 2007) with 308 

inlets also at 0.3 and 1.5 m above the snow surface. The HNO3 and p-NO3
- concentration was 309 

measured on a 12 h basis from April 10 to 16, while a time resolution of 24 h was used from 310 

April 17 to 27. The diffusion lines used in this study included a denuder train consisting of two 311 

sodium fluoride (1% NaF in 9:1 ethanol/water solution) coated denuders for HNO3 sampling. 312 

The atmospheric HNO3 concentrations were calculated by subtracting the analyte mass 313 

(expressed as NO3
-) in the second NaF coated denuder from the analyte mass in the first NaF 314 

coated denuder (Febo et al., 1989). The denuder train was followed by a cyclone (2.5 ȝm 315 

aerodynamic diameter cut-off point) and a filter pack set in series, for the collection of 316 

particulate matter in the coarse and fine fractions, respectively. The filter pack included a Teflon 317 
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filter (Whatman Teflon, 47 mm, 1 ȝm pore size), a nylon filter (Nylosorb Gelman, 47 mm, 1 ȝm 318 

pore size), a Na2CO3-glycerol impregnated paper filter (Whatman 41) and a H3PO3 coated paper 319 

filter. The last three filters were used to collect chemical species evaporated from the Teflon 320 

filter (Ianniello et al., 2002; Ianniello et al., 2011; Spataro et al., 2013). The sampling flow rate 321 

was 15 δ min-1, and typical sampling volumes of 11.9 m3 and 23.5 m3 were obtained for 12 h and 322 

24 h sampling periods, respectively. After sampling, the denuders, cyclone and filters were 323 

extracted and these samples were analyzed within 24 h by using the IIA-CNR Ion 324 

Chromatography system described in section 2.2.1. Under these conditions, the collection 325 

efficiency for both HNO3 and p-NO3
- was >99%. The D.δ. of HNO3 and p-NO3

- (calculated as 326 

3ı of field blanks) were 2.95 ng m-3 and 1.42 ng m-3, respectively on a 24 h measurement period, 327 

while the precision errors of these measurements were 2.54 % at 20 ng m-3 and 0.73 % at 79 ng 328 

m-3, respectively. Here we focus only on HNO3 and p-NO3
- data, although the diffusion line 329 

sampling system did allow us to also collect other gaseous and particulate compounds, which 330 

will be discussed elsewhere. 331 

The fluxes of NO, NO2, HNO3 and p-NO3
- (hereafter FNO, FNO2, FHNO3 and Fp-NO3, 332 

respectively) were determined combining the two height gradient sampling with atmospheric 333 

turbulence measurements. The difference between the measured concentrations at the two 334 

sampling heights is in this work referred to a concentration difference (ǻ = lower height – upper). 335 

Hence, a positive difference implies emission of the measured species from the snow surface.  336 

Using the measured concentration differences and the atmospheric eddy diffusivities (K) for 337 

the same period, the atmospheric fluxes for NO, NO2, HNO3 and coarse and fine particulate NO3
- 338 

were derived (Flux = Δ × K) as detailed elsewhere (Sozzi et al., 1998; Ianniello et al., 2002; 339 

Beine et al., 2003 and references therein). Diffusivities were obtained from atmospheric 340 
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turbulence measurements made at a frequency of 10 Hz by using an UVW tripropeller 341 

anemometer (εetek, USA-T1), which was placed at 1.5 m above the snowpack, assuming 342 

neutral boundary layer conditions.  343 

For the purpose of this study these fluxes have been averaged to daily emissions, depositions 344 

and net fluxes (from 09:00 onwards) for comparison with the surface snow data. 345 

2.3.3 Dry deposition estimates 346 

If the atmospheric concentration (catm) of HNO3 and p-NO3
- are measured, the expected dry 347 

deposition flux (Fdry-dep) can be modeled as long as the deposition velocities (vd) are known (e.g. 348 

Seinfeld and Pandis, 2006): 349 ୢܨ ୰୷ିୢୣ୮ ൌ  ୟ୲୫          Eq. 6 350ܿୢݒ

In a recent study covering the same spring campaign, the dry deposition of HNO3 and p-351 

NO3
- was both modelled and measured for Ny-Ålesund (Björkman et al., 2013). εedian 352 

deposition velocities were estimated to be 0.63 cm s -1 for HNO3 and 0.0025 or 0.16 cm s-1 for p-353 

NO3
-, particle size 0.7 and 7 µm in diameter, respectively (Björkman et al., 2013). The combined 354 

gaseous and particulate dry deposition, Fmodel(δND) (referring to the modelled HNO3 and p-NO3
- 355 

dry deposition rates obtained using a lognormal distribution (δND) for NO3
- aerosols sizes in 356 

Björkman et al., (2013)), will be used here for comparison with the surface snow and flux 357 

measurements, and for further modelling purposes. Björkman et al., (2013) also measured the 358 

actual NO3
- dry deposition (Ftray) to snow using a “bucket” approach (e.g. Cress et al., 1995) and 359 

found an average deposition of (0.04±0.02) mg m-2 d-1 (equal to (0.7±0.3) µmol m-2 d-1) which 360 

will also be used for further modelling purposes. An overview of NO3
- dry deposition in the 361 

Arctic, and a full description of these dry deposition estimates are given by Björkman et al. 362 

(2013). 363 
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2.3.4 Additional observations 364 

εeteorological data from Ny-Ålesund, in particular precipitation data, were provided by the 365 

Norwegian εeteorological Institute (DNεI) and are available at http://www.eklima.no. The 366 

atmospheric concentration of O3 (cO3) is continuously measured by the Norwegian Institute for 367 

Air Research (NIδU) at the nearby Zeppelin atmospheric research station (474 m a.s.l, Fig. 1), 368 

available at http://ebas.nilu.no. During the spring campaign 2010, O3 concentrations were also 369 

recorded by IIA-CNR at Gruvebadet until April 27. NIδU also provides an online base 370 

atmospheric transport model, FδEXTRA (http://www.nilu.no/projects/ccc/trajectories/). Using 371 

FδEXTRA air mass back-trajectories arriving to Ny-Ålesund were established for all sampling 372 

days at 00:00 and 12:00, with trajectories spanning 7 days back in time. 373 

Additionally, sonic anemometer (Gill R3) and fast hygrometer (Campbell Scientific KH2O 374 

krypton) data from the Amundsen-Nobile Climate Change Tower (Fig. 1) were provided by The 375 

Institute for Atmospheric Science and Climate - National Research Council of Italy (ISAC-CNR, 376 

ε. εazzola and A. Viola, per. com.). The 10 minute average data sampled at 7.5 m above 377 

ground were used to evaluate water vapour flux as an indication of sublimation rates. 378 

2.4 εodels 379 

2.4.1 Photolytic model 380 

NOx production due to photolysis of NO3
- has previously been modelled for Ny-Ålesund 381 

snow, using the solar zenith angle (șSZA) and the surface snow NO3
- concentrations, with results 382 

comparable to NOx emission measurements (France et al., 2010; France et al., 2011b). This 383 

model assumes that the photolysis of NO3
- only follows the reaction NO3

- + hv ĺ NO2 + O- and 384 
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is, according to the reactions in Fig. 2, a simplification of the DI dynamics, but has the potential 385 

to provide useful insights into the NO3
- loss through photolysis. For the purpose of this study, a 386 

photolytic rate function considering only the surface snow layer during clear sky conditions 387 

(France et al., 2010) will be used for comparison to the sampled top 5 cm of the snowpack. 388 

However, a depth integrated model would be more appropriate if bulk snowpack samples were 389 

under consideration (see France et al., 2010; France et al., 2011a; France et al., 2011b for further 390 

details). Here only surface snow was sampled, in order to avoid a potential disturbance of the 391 

post-depositional processes under investigation. 392 

A polynomial function (Eq. 7) was fitted to the photolysis rates (J NO3-, in s-1) given in 393 

France et al. (2010) as a function of șSZA (in º), with R2= 0.9994 (Fig S1): 394 ܬయష ൌ ͳǤͳͺ݁ିଵସߠୗସ െ ͳǤͲͻ݁ିଵଶߠୗଷ െ ͵Ǥͷͳ݁ିଵଵߠୗଶ െ ͺǤͺͲ݁ିଵߠୗ  ͵Ǥͺ݁ି  Eq. 7 395 

where șSZA was extracted for Ny-Ålesund (http://www.esrl.noaa.gov/gmd/grad/neubrew/) with 1 396 

h resolution. Furthermore, to not induce any error from Eq. 7 when the sun is close to or below 397 

the horizon, J NO3- was set to zero for șSZA > 89.77º.  398 

The upper limit for the surface snow NO2 emission (FJ NO3-) can then be calculated as: 399 ܨొోయష ൌ  ୗ           Eq. 8 400ݖయషܿܬ 

where c0 is the concentration of NO3
- (in mol m-3) and zSWE is the snow water equivalence of the 401 

surface snow (in m). For lower NO3
- concentrations, or unusually high NO2 emissions, the 402 

surface snow NO3
- concentration might change over the course of the day. To minimize this 403 

potential source of error, the time resolution of the photolysis calculations was set to 1 h in 404 

accordance with the șSZA data. The FJ NO3- emission given by Eq. 8 provides the flux in µmol m-2 405 

d-1 units. 406 
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2.4.2 Box models 407 

A box model, describing the main sources and sinks of NO3
- in the snow, was applied to 408 

predict changes in concentration (cNO3), į(15N) and į(18O) of NO3
-. In this box model all 409 

outgoing fluxes were assumed to be due to photolysis of NO3
-, and all incoming fluxes were 410 

assumed to be due to NO3
- dry deposition. Hence, this is a simplification of the actual processes, 411 

which might for example also include evaporation of HNO3 (see Fig. 2). However, as an initial 412 

assumption (and further justified below) photochemistry was assumed to be the major loss 413 

process for this surface snow study.  414 

In the model, the change in cNO3 over time when the sun is below the horizon was 415 

expressed as Eq. 9, while Eq. 10 gives the change when both dry deposition and photolysis are 416 

present: 417 

ௗௗ௧ ൌ ௩ౚ౪ౣ            Eq. 9 418 

ௗௗ௧ ൌ ௩ౚ౪ౣ െ  Eq. 10 419          ܿܬ

Here vdcatm equals the dry deposition rates according to Eq. 8, and was attributed to the 420 

Fmodel(δND) or Ftray in Björkman et al. (2013), while the product of photolytic rate (J) and 421 

snowpack concentration (c) constitutes the loss process. Note, in Eq. 10 and the following 422 

equations the photolytic rate of NO3
- (JNO3- in Eq. 7) has been substituted with J to keep the 423 

equations simple. Equations 9 and 10 can be integrated to give the new concentration (ct): 424 ܿ௧ ൌ ௩ౚ౪ౣ௧  ܿ          Eq. 11 425 

ܿ௧ ൌ ቀ௩ౚ౪ౣ ቁ כ ሺͳ െ  ݁ି௧ሻ  ܿ݁ି௧       Eq. 12 426 

where Eq. 11 and 12 represent periods when the sun is below or above the horizon, respectively. 427 

The isotopic composition of NO3
- remaining in the snow (įt) can then be expressed as: 428 
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௧ߜ ൌ ቀ´ െ ͳቁ ܴ୰ୣൗ           Eq. 13 429 

Similarly to Eq. 11 and 12, c´t are given by: 430 ܿ´௧ ൌ ௩ౚ´౪ౣ௧  ܿ´          Eq. 14 431 

ܿ´௧ ൌ ቀ௩ౚ´౪ౣ´
ቁ כ ൫ͳ െ ݁ି´௧൯  ܿ´݁ି´௧       Eq. 15 432 

where c´0 = c0Rref(1+į0), c´atm = catmRref(1+įatm), J´ = J(1+İ), and where į0 and įatm are the initial 433 

and atmospheric N or O isotopic composition, respectively, while İ is the photolytic fractionation 434 

for 15N/14N (15İ) and 18O/16O (18İ). Primed quantities refer to the less abundant isotopic species 435 

(15N or 18O). The error due to the assumption that the concentration of the major isotope is equal 436 

to the total nitrate concentration, is negligible (<0.01 ‰). 437 

In order to evaluate the daily į(15N), į(18O) and cNO3 changes from the NOx, HNO3
- and p-NO3

- 438 

flux measurements (section 2.3.2), the daily averaged emissions (Femi) and deposition (Fdep) were 439 

evaluated in a similar way:  440 ܿ௧ ൌ ிሺౚ౦ሻ௧ െ ிሺౣሻ௧  ܿ         Eq. 16 441 

ܿ´௧ ൌ ி´ሺౚ౦ሻ௧ െ ி´ሺౣሻ௧  ܿ´        442 

 Eq. 17 443 

where F´(dep) = F(dep)Rref(1+įatm), F´(emi) = F(emi)Rref(1+įphoto), and įphoto is the isotopic composition 444 

of the instantaneous photolytic product: įphoto = į0(1+İ)+İ. 445 

Previous studies have suggested a range of 15İ, from –48 ‰ (Frey et al., 2009) to –12 ‰ 446 

(Blunier et al., 2005), and 18İ from –34 ‰ (Frey et al., 2009) to between 2 and 7 ‰ (εcCabe et 447 

al., 2005) for the photolytic fractionation in question. However, secondary reactions (e.g. NO2 + 448 

OH- ĺ NO3
-) following photolysis will generate an exchange of O (see DI reactions in Fig. 2, 449 
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Jacobi and Hilker, 2007) suggesting that any measured estimation of 18İ will represent the 450 

combined effect of both the photolytic fractionation and secondary reactions (εcCabe et al., 451 

2005; Erbland et al., 2013). For the purpose of this study, 15İ and 18İ were set to –48 and 2 ‰, 452 

respectively (εcCabe et al., 2005; Frey et al., 2009). Furthermore, a sensitivity test covering a 453 

range from 0 to –70 ‰ for 15İ and 10 to –50 ‰ for 18İ was also performed to evaluate the actual 454 

influence of different photolytic fractionations on the results. 455 

 Furthermore, three įatm deposition scenarios for each isotope composition, į(15N) and 456 

į(18O), were evaluated with the aim of establishing the most likely input source, so called “end-457 

member”, signatures for any dry deposition. For įatm(15N) these scenarios were set to resemble: I) 458 

the local biogeochemical signal (+5 ‰), II) the ambient atmospheric signal (–13 ‰) described 459 

for Ny-Ålesund by Amoroso et al. (2010), and III) the influence of Polar basin air (–20 ‰) 460 

suggested by εorin et al. (2009). For įatm(18O) the scenarios were set to resemble: I) the low 461 

į(18O) signal found in HNO3 at Summit, Greenland (+40 ‰) due to the interaction with OH 462 

during NOx-cycling and removal (see Fig. 2, Jarvis et al., 2009), II) the mid-latitude HNO3 signal 463 

(+75 ‰) found in air arriving at Svalbard (εorin et al., 2009), and III) the uniquely high į(18O) 464 

found for HNO3 in the polar basin atmosphere during spring due to the influence of the BrO-465 

pathway (up to +100 ‰, εorin et al., 2009). 466 

 467 

3. Results 468 

3.1 NO3
- concentrations 469 

The surface snow NO3
- concentrations (cNO3) during the dark (n = 14) and the spring (n = 79) 470 

campaign averaged (2.9±0.2) µmol δ-1 and (1.7±0.1) µmol δ-1, respectively (where the 471 

uncertainty denotes the standard error, σxࡄ ), with a total concentration range from 0.6 to 6.3 µmol 472 
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δ-1 (Fig. 3e). The variations among the three replicates, sampled approx. 10 m apart, were 473 

moderate (average σxࡄ  = 0.3 µmol δ-1) with some exceptions (maximum σxࡄ  = 1.4 µmol δ-1 on 474 

April 9), as viewed by the occasionally increased σxࡄ  in Fig. 3e. The cNO3 variation found is larger 475 

than the errors expected from IC analysis itself and therefore shows that local variation and the 476 

layering of the surface snow have a large influence. During both the dark and the spring 477 

campaign, several precipitation events occurred (Fig. 3e) which introduced new snow layers with 478 

event-specific NO3
- concentration and isotopic signature. These events interrupted any trends 479 

that post-depositional processes would have introduced to the surface snow chemistry, and the 480 

spring data were therefore separated into three distinct, precipitation-free periods: April 12-21, 481 

23-26 and April 27 - εay 5 (Fig. 3). Periods 1 and 2 were characterized by multiple surface 482 

snow layers, whereas period 3 followed a large (> 5 cm) precipitation event resulting in a 483 

relatively uniform snow surface (Fig. 3a). Period 3 was therefore considered the most reliable 484 

period for identification of cNO3 and isotope composition trends.  485 

For the spring campaign, linear regression models fitted to all three periods showed 486 

significant increases in the surface snow cNO3 (Fig. 3e and Table 1), indicative of net deposition 487 

or snow-water sublimation (see section 3.4). No such changes were found during the short dark 488 

sampling campaign due to interrupting precipitation events. In general, all three spring periods 489 

indicated a day to day cNO3 variation. To avoid any bias caused by such variation the fitted linear 490 

regression models were used to calculate initial (index: 0) and final (index: t) values of cNO3 (and 491 

other relevant parameters) for each period and will be used for modelling purposes (Table 1 and 492 

2). 493 

3.2 NO3
- isotopic composition 494 



23 

 

The į(15N) of NO3
- ranged between –15.9 and –13.7 ‰ during the dark sampling (n = 495 

12), and between –19.9 and 0.7 ‰ during the spring campaign (n = 71), averaging (–14.7±0.2) 496 

‰ and (–8.7±0.5) ‰ respectively (Fig. 3d). The į(18O) ranged between 76.6 and 83.7 ‰ during 497 

the dark sampling, and 76.5 to 90.6 ‰ during the spring campaign, averaging (79.2±0.6) ‰ and 498 

(85.1±0.4) ‰ respectively (Fig. 3d). In summary, the spring snow has significantly elevated 499 

values of į(15N) and į(18O) compared to the dark sampling (p-value < 0.01), although both 500 

periods showed considerable variability.  501 

δinear regression models revealed significant increases of į(15N) and į(18O) during 502 

period 3 (Table 1), and to a lesser extent (p-value = 0.08) for į(18O) during period 2 (Fig. 3d and 503 

Table 1). The remaining linear regression models fitted for į(15N) and į(18O) during period 1 and 504 

2 were not significant (Fig. 3d and Table 1). In a similar manner to cNO3, the initial and final 505 

į(15N) and į(18O) values were calculated for each period using the linear regression models 506 

(Table 1 and 2) to minimize the effects of daily variability upon further calculations. 507 

3.3 Snow Br- and atmospheric O3 concentrations 508 

In contrast to cNO3, surface snow concentration of Br- (cBr) showed an overall linear 509 

decline, particularly during period 2 and 3 (Fig. 3b and Table 1). This decline was in clear 510 

contrast to the observed sea-salt deposition, as shown by the linear regression models fitted to the 511 

surface snow Na+ and Cl- concentrations (cNa and cCl, respectively in Table 1). The most likely 512 

explanation for this cBr depletion involves BrO chemistry (discussed in section 4.4), which is 513 

typically connected to changes in atmospheric O3 concentration (cO3). The ambient cO3 showed 514 

evidence for several ozone depletion events (ODEs) during the spring campaign. These ODEs 515 

mainly occurred during period 2 and 3, and were commonly associated with air mass back-516 

trajectories arriving from the polar basin (Fig. 3b and c). 517 
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3.4 Sublimation rates 518 

The measurement of water vapour fluxes during the campaign was challenging due to 519 

riming or fog on the optical windows of the fast hygrometer, meaning that calibration was not 520 

always possible, which reduced the number of valid measurements. The removal of outliers from 521 

the sonic anemometer data further reduced the data to a final count of 282 measurements 522 

throughout the precipitation free sub-periods. Nevertheless, the data confirm a low sublimation 523 

rate: the water vapor fluxes indicated an average sublimation rate of (–0.042±0.002) mm d-1 (n = 524 

282), where the total water vapor flux spanned between –0.007 and 0.008 mm h-1 (negative flux 525 

indicates surface loss). This sublimation rate has a very small impact on surface snow NO3
- 526 

concentration as discussed below. 527 

3.5 Air-snow fluxes 528 

3.5.1 Surface snow net change 529 

The increasing trends in surface snow cNO3 indicate a net deposition of NO3
- since snow-530 

water sublimation was found to be low. Hence, this indicated that dry deposition rates overcome 531 

photolytic and evaporative losses. Using the calculated initial and final values of cNO3 and V for 532 

each period (Table 2), all three period were confirmed to have a significant increase due to net 533 

deposition according to Eq. 2 (Table 3). Similarly the isotopic composition for the net change 534 

was calculated according to Eq. 5 (Table 3). 535 

3.5.2 NOx, HNO3
- and p-NO3

- flux measurements 536 

The mean NO2 concentrations (CNO2) during the campaign were 28.6 (ı = 19.3) pmol 537 

mol-1 and 28.7 (ı = 20.3) pmol mol-1 at the upper and lower inlet, respectively (Fig. 4a). 538 

Similarly, the mean NO concentrations (CNO) were 15.2 (ı = 12.5) and 16.6 (ı = 17.5) at the 539 

upper and lower inlet respectively (Fig. 4b). The CNO and CNO2 concentrations showed 540 
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statistically significant diurnal cycles on some days (9-11 April, 15-16 April, 22-27 April) with 541 

amplitudes of 1-36 pmol mol-1 and 3-49 pmol mol-1 for CNO and CNO2, respectively (Fig. 4a, b). 542 

The diurnal cycles appeared more or less symmetric with UV radiation, with maximum CNO and 543 

CNO2 observed between 11:00 and 13:00, reaching minima values during night-time. During 544 

periods without diurnal cycles the maximum NO and NO2 concentrations were reached between 545 

18:00 and 21:00, with minimum values measured between 06:00 and 12:00 and, hence, delayed 546 

the diurnal irradiance pattern. The turbulence measurements resulted in median eddy diffusivity 547 

(K) of 0.2 mol m-2 s-1 (with the first and third quartile at 0.14 and 0.22 mol m-2 s-1, respectively), 548 

and the NOx, HNO3 and p-NO3
- fluxes were calculated as K multiplied by the difference between 549 

the two inlets (as detailed in Beine et al., 2003). The 6 min NOx fluxes data (Fig. 4c) showed a 550 

median NO emission of – 0.73 pmol m-2 s-1 (with the first and third quartile at – 0.31 and – 1.53 551 

pmol m-2 s-1, respectively) with a median NO2 emission of – 0.79 pmol m-2 s-1 (with the first and 552 

third quartile at – 0.35 and – 1.62 pmol m-2 s-1, respectively). The corresponding median NO 553 

deposition rates (Fig. 4c) were 0.61 pmol m-2 s-1 (with the first and third quartile at 0.27 and 1.18 554 

pmol m-2 s-1, respectively) while the median NO2 deposition was 0.83 pmol m-2 s-1 (with the first 555 

and third quartile at 0.38 and 1.54 pmol m-2 s-1, respectively). The combined daily fluxes of NOx 556 

(FNOx), used for comparison to the surface snow concentrations (Fig. 5b), showed an daily 557 

averaged FNOx emissions range from –0.2 to –1.8 µmol m-2 d-1, and the daily average FNOx 558 

depositions ranged from 0.2 to 1.7 µmol m-2 d-1 (Fig. 5b). The resulting daily net fluxes (Ȉ FNOx) 559 

ranged from –0.1 to 0.2 µmol m-2 d-1 (Fig. 5b). 560 

The mean concentrations of HNO3, fine and coarse particulate NO3
- were 6.06 ± 5.32, 561 

14.33 ± 13.68 and 15.14 ± 9.53 ppt, respectively. The HNO3 and the combined fine and coarse 562 

particulate NO3
- fluxes (FHNO3 and Fp-NO3, Fig. 5c) mostly indicated a deposition, with the mean 563 
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values of 1.59 ± 1.32 pmol m-2 s-1 and 4.84 ± 3.52 pmol m-2 s-1, respectively. The resulting daily 564 

net flux of the total HNO3 and p-NO3
- (ȈFNO3) showed variable rates, from – 0.6 to 3.2 µmol m-2 565 

d-1 (Fig. 5c), where the flux of p-NO3
- (Fp-NO3) exceeded that of HNO3 (FHNO3) and thus 566 

dominated ȈFNO3, with particularly high rates during the precipitation event between period 2 567 

and 3 (Fig. 5c). The data also shows that fine particles (<2.5 µm diameter) were responsible for 568 

much of the p-NO3
- flux during high flux events. The sampling interval (12 or 24 h) for FHNO3 569 

and Fp-NO3 did not allow a separation of daily emission and deposition estimates, as was achieved 570 

using the 6 minute FNOx data. 571 

3.6 Box models 572 

The photolytic rate function (JNO3-) showed clear diurnal variation superimposed upon a 573 

uniformly increasing trend as a consequence of the steadily rising sun (midnight sun commenced 574 

on April 18). The integrated daily surface snow flux (FJNO3-), estimated from JNO3- and cNO3, 575 

showed emission rates of the same order of magnitude as the measured ȈFNOx. However, FJ NO3- 576 

was considerably lower than the measured NOx emission (FNOx). This mismatch is likely due to 577 

the estimation of NO3
- photolysis from surface snow only being compared to measured 578 

emissions above the full snowpack. 579 

The measured range of the combined HNO3 and p-NO3
- fluxes (ȈFNO3) was of the same 580 

order of magnitude as the modelled HNO3 + p-NO3
- dry deposition (Fmodel(δND)) during this 581 

spring campaign (Björkman et al., 2013), although the measured average NO3
- dry deposition 582 

(Ftray) showed higher spring averages than both Fmodel(δND) and the ȈFNO3 (Fig. 5c). However, 583 

the substantial atmospheric fluxes of HNO3 and p-NO3
- (FHNO3 and Fp-NO3) observed in 584 

connection with the precipitation event between period 2 and 3 was not captured by the dry 585 

deposition estimates in Björkman et al. (2013) (Fig. 5c). 586 
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4. Discussion 587 

Here we present a discussion of the trends and influences on NO3
- concentrations and 588 

isotopic composition found for Ny-Ålesund surface snow. We argue that the main process during 589 

precipitation free periods is the addition of NO3
- through dry deposition, which dominates over 590 

NO3
- post-depositional losses via photolysis and evaporation. However, this dry deposition can 591 

be influenced both by atmospheric sources, as well as NOx, HNO3
- and HONO emitted from 592 

deeper within the snowpack, processes which therefore require consideration. An active 593 

involvement of halogen chemistry was also inferred from the surface snow measurements, and so 594 

we discuss the role of surface snow as a contributor in the production of boundary layer BrO. 595 

4.1 Dry deposition vs. post-depositional loss 596 

A striking feature during the spring sampling is the significant increase of cNO3 for all three 597 

sub-periods, in-between precipitation events (Table 1 and Fig. 3e), where a positive net change 598 

(Fnet) was confirmed for all periods using Eq. 2 (Table 3). Hence, Eq. 2 gives the overall net 599 

increase or decrease of cNO3, where the most likely surplus would be due to an NO3
- addition by 600 

dry deposition as long as snow sublimation is low. The measured sublimation rates during the 601 

three periods were low and could only have changed the daily cNO3 by a modest quantity 602 

(average 0.31±0.03 %, range 0.2 to 0.8 %), which is well below the day to day cNO3 variations 603 

(average 11.1±1.6 %, for the same periods). Similarly, the model photolysis rate (JNO3-) could 604 

only have changed the daily cNO3 by a 0.2 to 0.4 % reduction, indicating a very minor influence 605 

of photolysis on these daily variations. Of course, HNO3 evaporation and HONO emissions 606 

could further influence the daily variations. However, both these processes require a surplus of 607 

H+, whereas Ny-Ålesund snow is typically alkaline (Beine et al., 2003; Amorosso et al., 2006) 608 

with a high sea-salt content given the close proximity to the fjord. Furthermore, the NO2
- levels 609 
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where below the detection limit of the IC measurements (data not shown) further indicating low 610 

HONO production. The limited occurrence of sublimation, modelled JNO3- and positive Fnet 611 

collectively therefore indicate that the addition of NO3
- through dry deposition outweighed any 612 

changes induced by photolytic and/or evaporative loss processes. The estimated Fnet for the three 613 

periods, with a daily-weighted average of 0.9±0.4 µmol m-2 d-1 (Table 3), is also consistent with 614 

the measured dry deposition rate (Ftray, 0.7±0.3 µmol m-2 d-1) estimated for the same time period 615 

by Björkman et al. (2013). However, these are slightly higher than the average modelled dry 616 

deposition (Fmodel(δND), 0.3±0.1 µmol m-2 d-1 ) for this period (Björkman et al., 2013), and also 617 

slightly higher than the value Beine et al. (2003) found for Ny-Ålesund (~0.2 µmol m-2 d-1) 618 

during an previous spring, using a diffusion line sampling technique. 619 

The į(15N) and į(18O) composition of the net change (įnet), as calculated by Eq. 5, differed 620 

between the three sub-periods (Table 3). Regarding the Fnet, no major influence of loss processes 621 

was found for periods 1 and 2, since any fractionation during post-depositional loss would have 622 

led to an įnet(15N) increase in NO3
-. In contrast, period 1 and 2 showed negative įnet(15N) values 623 

of –8.2±13.6 and –12.2±18.8 ‰, respectively, even though the validity of these estimates are 624 

reduced by the non-significant regressions used for calculation. One might argue that the 625 

significant positive įnet(15N) value of (7.0±0.7) ‰ calculated for the NO3
- in period 3 could be 626 

indicative of post-depositional loss. This would, however, contradict the significant cNO3 increase 627 

and positive Fnet observed for this period (Table 3), therefore alternative explanations need to be 628 

considered, as attempted through box modelling below. The NO3
- įnet(18O) found for period 1, 629 

even though the linear regression was non-significant, was lower than the isotope delta of the 630 

snow (Table 3), whereas for periods 2 and 3 the įnet(18O) approached the upper limit found for 631 

atmospheric HNO3 in this region (100 ‰, εorin et al., 2009). The isotopic signature of snow 632 
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NO3
- is, however, influenced by several co-occurring processes as discussed in the introduction 633 

and viewed in Fig. 2 and will be further investigated in section 4.3.  634 

4.2 NOx, HNO3
- and p-NO3

- flux measurements 635 

The flux measurements revealed both emissions and deposition fluxes of all the investigated 636 

compounds (NO, NO2, HNO3
- and p-NO3

-, Fig. 4 and 5) and where the mean NO and NO2 637 

concentrations were in agreement with other measurements in the coastal Arctic boundary layer 638 

during the same time of year (Allegrini et al., 1999; Beine et al., 2001; 2002b; Amoroso et al., 639 

2010; Sander and Bottenheim, 2012). Although the calculated daily NO and NO2 fluxes (Fig. 5) 640 

are in the lower region of what has earlier been reported for Ny-Ålesund by Amoroso et al. 641 

(2010), the occasional diurnal cycling of NO and NO2 observed confirms previous studies 642 

carried out at Ny-Ålesund (Beine et al., 1996 and 1997). Also the daily average HNO3 flux 643 

measured in 2010 are within the variability of earlier estimates for Ny-Ålesund (Beine et al., 644 

2003; Amoroso et al., 2010), but substantially lower than the episode with exceptionally high 645 

deposition fluxes (up to 1.5 µmol m-2 h-1) reported by Amoroso et al. (2010). 646 

Due to coastal location of Ny-Ålesund, the chemical composition of snow was dominated by 647 

a marine influence. As a result of sea salt inputs, and to a lesser extension of dust, the ionic 648 

balance of snow revealed an alkaline character for 44% of the daily snow samples (with pH 649 

values between 7.80 and 8.70) which, according to Beine et al. (2003 and 2008), could lead to a 650 

reduced NOx emission and even to an increased deposition. In addition, it is worth noting that 651 

33% and 41% of all available 6-min NO and NO2 fluxes (about 5000 values), respectively, were 652 

positive values, indicating that a NOx deposition to the snow surface occurred, as observed in 653 

earlier polar studies (e.g: Beine et al., 2002, Amoroso et al., 2010). It has previously been shown 654 

that the intricate system of NO3
- photolysis and NOx emission is followed by a subsequent HNO3 655 
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deposition, producing a diurnal pattern at Summit, Greenland, with day-time emission and night 656 

time deposition (Hastings et al., 2004). A similar feature can be observed in our 2010 flux data, 657 

were the NO and NO2 emission during periods of high irradiance can be on the same order of 658 

magnitude as the total HNO3 and p-NO3
- deposition. Indicating that, for this almost alkaline 659 

snow environment, the NOx emissions were reduced or close to zero. Thus, the measured fluxes 660 

of NOx, HNO3 and p-NO3
- are neither sufficient to explain the observed cNO3 increase. In the 661 

following section we will further focus on separating and explaining the processes influencing 662 

the surface snow, using the box model to find the most likely sources of the observed NO3
- 663 

deposition and its isotopic signature. 664 

4.3 Reproducing observed trends 665 

In the box model used here, describing the main source and sink of NO3
- in the snow (section 666 

2.4.2), all outgoing fluxes are assumed to be due to photolysis and all incoming fluxes due to 667 

HNO3 dry deposition. As a consequence of the day-to-day variability of isotope deltas and cNO3, 668 

our comparison between model and measured data focuses on the regression analysis for the 669 

three precipitation-free spring periods, bearing in mind the lower p-values for the trends in į(15N) 670 

and į(18O) of snow NO3
- during period 1 and 2 (Table 1 and Fig. 3). 671 

4.3.1 Box model using FNOx and FNO3 672 

The box model (Eq. 16) shows that the measured net fluxes of NOx (Ȉ FNOx, Fig 5b) and 673 

HNO3 + p-NO3
- (Ȉ FNO3, Fig 5c) were insufficient to alter the surface snow cNO3 significantly 674 

during periods 1 and 2 (Fig. 6c, noting the atmospheric flux measurements were terminated on 675 

April 27, just prior to period 3). The small change in cNO3 such daily net fluxes would induce was 676 

below the detection limit of the snow sampling procedure used here. A similar conclusion was 677 
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reached by Beine et al., (2003) when they compared atmospheric dry deposition estimates with 678 

the surface snow NO3
- concentrations.  679 

In spite of the limited ability of the atmospheric flux driven model to reproduce the 680 

surface snow cNO3 trends, the modelled influence on į(18O) and į(15N) was more pronounced 681 

(using Eq. 17, Fig. 6). This is especially the case during the first day of period 1, when p-NO3
- 682 

emission (Fig. 5c) resulted in an increased modelled į(18O), and where the įatm(18O) scenarios 683 

+40 and +100 ‰ followed the very lower and upper limit of the data variability for the rest of 684 

period 1 (Fig. 6a). Although particle emission from snow might be limited (Cadle, 1991), some 685 

re-suspension of particles by wind is possible (Barrie et al., 1998). During period 2 neither of the 686 

įatm(18O) scenarios followed the observed į(18O) pattern. For periods 1 and 2, the modelled d15N 687 

was not as sensitive to the choice of įatm(15N) scenarios (+5, –13 and –20 ‰), as for į(18O). In 688 

fact, model results for all three įatm(15N) scenarios were well within the data variability and did 689 

not deviate much from each other (Fig. 6b). Overall, none of the įatm scenarios and emission 690 

fractionations, including the sensitivity test for different fractionations (15İ and 18İ, section 2.4.2), 691 

reproduced the observed trends in a satisfactory way. This is probably due to the many layers 692 

found in the sampled surface snow during period 1 and 2, that can yield large daily variations in 693 

į(15N) and į(18O). It is especially troublesome that the observed cNO3 trends (Table 1) and 694 

calculated dry deposition rates (Table 3) cannot be explained by the atmospheric flux in the box 695 

model. A possible explanation could be a re-deposition of NOx, HNO3
- and HONO emitted from 696 

deeper within the snowpack, or the soil below, to the surface snow layer. Such a sub-surface 697 

source would then not necessarily need to involve an emission to the atmospheric boundary 698 

layer, thus could impact the surface snow measurements of NO3
- deposition but not the 699 

atmospheric flux measurements as a result. 700 
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4.3.2 Box model using JNO3- and Fmodel(δND) or Ftray 701 

As a second attempt to reproduce the observed surface snow trends (Eq. 11 and 12) and to 702 

also address the observations of period 3, which can be considered most reliable as the surface 703 

snow was one homogeneous layer, the modelled photolysis (JNO3-) was used in conjunction with 704 

Fmodel(δND), Fig. S2. This box modelling attempt, and a third approach, using JNO3- in 705 

conjunction with Ftray, Fig. 7, captured the cNO3 trends far better than the atmospheric flux 706 

measurements. This was particularly the case with the third attempt, which reproduced the 707 

observed cNO3 increase during period 3 in a sufficient manner (Fig. 7), attributing the addition 708 

through dry deposition to have a prevailing role over photolytic and, probably, evaporative loss. 709 

For the isotopic composition the models (Eq. 14 and 15) seems to have had a clear negative 710 

influence upon the surface į(15N) signature during periods 1 and 2 (Fig. S2 and 7), with a 711 

įatm(15N) close to the ambient atmospheric (–13 ‰, Amoroso et al., 2010) and the Polar Basin 712 

signals (–20 ‰ , εorin et al., 2009). This also corresponds well to the main back-trajectories 713 

observed during these periods (Fig. 3c). In contrast, period 3 indicated the influence of a positive 714 

end-member (+7.0 ± 0.7 ‰, Table 3) that cannot be explained by a photolytic and/or evaporative 715 

NO3
- loss, hence indicates dry deposition seems to have occurred. This positive į(15N) signature 716 

is more in line with the +5 ‰ previously described for snowpack biogeochemical processes in 717 

this region (Amoroso et al., 2010), indicating a re-deposition of NOx, HNO3
- and HONO emitted 718 

deeper within (or below) the snowpack. However, anthropogenic NOx emissions are also in 719 

general slightly positive (e.g. Hastings, 2010), with the exception of agricultural soils (Felix and 720 

Elliott, 2013). For example, εorin et al., (2009) found an atmospheric nitrate signal of +5.9 ‰ 721 

from European air in the English Channel, a value also consistent with mid-latitude spring values 722 

for the U.S. (Elliott et al., 2009). For period 3, the air mass back-trajectories are more stagnant 723 
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around Svalbard, with a south-easterly influence at the end of this period. This indicates that the 724 

high end-member found for period 3 could also be influenced by local or European emission 725 

sources, and is not necessarily solely a biogeochemical signal. 726 

For period 1, the į(18O) end-member is close to the mid-latitude scenario (+75 ‰, Fig. S2 727 

and 7), which is also the post-1950 background value for this region as indicated by Svalbard 728 

ice-core averages (+75.1 ± 4.1 ‰, Vega, 2014), in spite of a northerly airflow which was 729 

assumed to bring a į(18O) signal around +100 ‰. The į(18O) end-member for period 2 and 3 is 730 

on the other hand more in line with air masses from the Polar Basin (εorin et al., 2009), for 731 

which the uniquely high į(18O) has been found to result from an active atmospheric BrO 732 

interaction (Fig. 2, εorin et al., 2007a; εorin et al., 2007b). This is especially surprising for 733 

period 3, where the back-trajectories are stagnant or south-easterly oriented, with only a minor 734 

influence of Polar air (Fig. 3c). Under these circumstances a mid-latitude į(18O) scenario would 735 

be expected for period 3, rather than the +100 ‰ evidenced here. The reason for this deviation is 736 

probably due to a local snow-determined BrO-NOx interaction, the first such observation of its 737 

kind in this region, and will be further discussed in section 4. 738 

The sensitivity test performed (shaded ranges in fig 6, 7 and S2) indicates that the actual 739 

photolytic fractionation used in the box modelling has little influence on the outcome, probably 740 

due to the prevailing dry deposition regime in our surface snow. 741 

In summary; Period 1 shows evidence of a polar basin/ ambient atmospheric influence on 742 

į(15N) and a į(18O) signature that resembles mid-latitudinal air. Period 2 shows a polar basin 743 

influence upon both the į(15N) and the į(18O) signatures; whilst period 3 has a į(15N) similar to 744 

that which is expected from either biogeochemical cycling of NH4
+ in the snowpack, or 745 

local/European emissions, along with the BrO influenced į(18O) signature.  746 
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4.4 O3 and BrO interaction 747 

During the spring campaign several O3 depletion events (ODE) occurred; on April 13, 21 748 

– 22, 26 – 27 and April 30 – εay 1 (Fig. 3b). Such events are known in the Arctic as a result of 749 

active halogen chemistry where Br2, BrCl or Cl2 (ultimately of oceanic origin, whose release is 750 

believed to involve snow and first-year sea-ice) are released in to the boundary layer. Their rapid 751 

photolysis by solar radiation forms Br or Cl radicals, which then initiates a chain reaction 752 

depleting O3 (Fig. 2, e.g. Foster et al., 2001; Simpson et al., 2007; Abbatt et al., 2012). For Ny-753 

Ålesund, studies typically observe such events as a consequence of the advection of air masses 754 

already depleted in O3, originating from the polar basin (e.g. Barrie and Platt, 1997), where low 755 

levels of boundary layer O3 are typical during spring (Hopper et al., 1994; Hopper et al., 1998; 756 

Jacobi et al., 2010). This is consistent with the ODEs observed during the spring 2010, where 757 

more northerly air flows occur prior to the ozone depletion episodes (Fig. 3) and where satellite 758 

data (Begoin et al., 2010) reveals increased BrO column abundances concurrent with the ODE’s 759 

(Fig. S3). Alongside its impact on boundary layer O3, BrO can also influence NOx-cycling and 760 

its transformation to HNO3, via the formation and hydrolysis of BrONO2. This generates a 761 

uniquely high į(18O) (Fig. 2, e.g. Evans et al., 2003; εorin et al., 2007b). 762 

For period 2 a northerly airflow was observed which can explain both the low į(15N) 763 

(photolytic produced NOx from polar basin snowpacks) and the high į(18O) (BrO-pathway) end-764 

member (εorin et al., 2009). However, for period 3, when the airflow is stagnant or south-765 

westerly, with only a minor influence of polar basin air, the high į(18O) end-member would need 766 

to have another explanation. Interestingly the Br- concentrations (cBr) in the surface snow are 767 

high during period 1, decrease during period 2, then remain low and slightly decrease further 768 

during period 3 (Fig. 3b and Table 1). There is also a significant (p < 0.05) negative correlation 769 
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between the daily averages of cBr and cNO3 (R = –0.84) during period 3, as well as between cBr 770 

and į(15N) and į(18O) (R = –0.91 and –0.83, respectively). According to the BrO-pathway in Fig. 771 

2, formation of BrONO2 from BrO + NO2 can be followed by a photolytic dissociation, or – 772 

particularly under conditions of high surface area – be followed by hydrolysis whereby BrONO2 773 

disintegrates into HNO3 and HOBr on ice crystals (Evans et al., 2003; εorin et al., 2007b). This 774 

latter case thereby converts NOx into HNO3. Assuming that this reaction occurs within the snow 775 

or just above, the newly formed HOBr would further react with Br- ions in the DI with a release 776 

of gaseous Br2 as a result (e.g. Simpson et al., 2007; Abbatt et al., 2012). In the presence of a 777 

NOx, HNO3 or HONO supply from deeper within the snowpack (i.e. photolysis, evaporation or 778 

biologic emissions from the snow or soil), this BrO-NOx chemistry would rapidly re-deposit the 779 

NOx as HNO3 in the surface snow. This would then minimize any snowpack emissions and, in 780 

the case of negligible local soil emissions, keep the total snow NO3
- budget un-altered. This 781 

coupled BrO-NOx chemistry can explain both the decrease in Br- concentration in the surface 782 

snow as well as the increasing į(18O) and cNO3 values observed in the surface snow during period 783 

2 and 3. This is the first time such coupling has been observed in Svalbard, although increasing 784 

BrO levels have earlier been reported above Ny-Ålesund snow following an ODE (Avallone et 785 

al., 2003). To start the BrO production and following chain reactions, an initial pulse (or “seed”) 786 

of reactive halogens is needed (Simpson et al., 2007). It is however, unlikely that the BrO 787 

cycling seen in our cBr and į(18O) data, and in the BrO record from Avallone et al., (2003) are 788 

initiated locally. They are likely rather results of polar basin air advection providing “seed” 789 

halogens during the observed ODEs, which then initiate the local BrO production. This 790 

hypothesis is further strengthened by the column content of BrO (Fig. S3) where the atmosphere 791 

above western Svalbard, and eastern parts of the Fram Strait, shows prevailing low BrO levels, 792 
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which only increases in conjunction with ODE’s when surges of BrO moves into the Ny-Ålesund 793 

area. Nevertheless, during period 3, our surface snow bromide, nitrate, and į(18O) observations 794 

provide evidence for continued local (snowpack) BrO-NOx cycling, even whilst BrO column 795 

abundances decline and ambient air ozone recovers. 796 

5. Conclusion 797 

Detailed sampling of the photo-active surface zone of the Ny-Ålesund snowpack during 798 

winter and spring-time demonstrates that NO3
- dry deposition is the predominant process 799 

determining NO3
- concentrations during precipitation free periods and prevails over any NO3

- 800 

post-depositional loss via photolysis and HNO3 evaporation within this layer. The measured dry 801 

deposition in uniform surface snow (0.6±0.2 µmol m-2 d-1) is in line with previously reported 802 

values for Ny-Ålesund (Björkman et al., 2013). However, it indicates greater net deposition than 803 

that derived from cumulative NOx, HNO3
- and p-NO3

- fluxes, measured 200 m from the sampling 804 

site. Given its permeable nature, we emphasize that the snowpack should be considered as an 805 

integral part of the atmospheric boundary layer, allowing relevant reactions (Fig. 2) to occur 806 

within interstitial air pockets within the snow. Thus, our observed dry deposition of NO3
- could 807 

originate from both the overlying atmosphere and from re-deposition of NO3
- released from 808 

deeper within the snowpack. 809 

εagnitudes and trends in surface snow į(15N) and į(18O) were compared to back-trajectory 810 

analysis and local ODEs indicative of BrO chemistry. Trajectories originating from the polar 811 

basin were found to bring 15N-depleted air masses to Svalbard, confirming findings from an 812 

earlier atmospheric study of NO3
- in Ny-Ålesund aerosol (εorin et al., 2009), and demonstrating 813 

that such NO3
- is deposited to the snowpack. Stagnant air and air masses originating from mid-814 

latitude regions were related to 15N-enriched dry NO3
- deposition with an end-member of 815 
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(+7.0±0.7) ‰. Such positive į(15N) values have previously been found in European and U.S. air 816 

(Elliott et al., 2009; εorin et al., 2009), probably as a result of anthropogenic emissions (e.g. 817 

Kendall et al., 2007), but can also result from in-situ biogeochemical cycling of clay-bound NH4
+ 818 

(Amoroso et al., 2010). 819 

The average į(18O) values were lower during the winter-time compared to spring-time, when 820 

NO3
- deposition from polar basin air masses only exhibited positive į(18O) trends in conjunction 821 

with low O3 levels. These conditions indicate active halogen cycling and demonstrate the 822 

importance of NOx to NO3
- formation via coupled BrO-NOx chemistry (as identified in Ny-823 

Ålesund aerosol: εorin et al., 2009) for snow NO3
- deposition. Furthermore, we identify 824 

evidence for such BrO chemistry occurring within the snowpack (interstitial air pockets) itself, 825 

and demonstrate its active involvement in the NO3
- post-depositional cycling, as evidenced by 826 

steadily decreasing snow Br- content and increasing į(18O) and NO3
- concentration in surface 827 

snow samples. These are the first observations of such snowpack BrO-NOx coupling in this part 828 

of the Arctic. However, as indicated both by this and a previous study (Avallone et al., 2003), 829 

local BrO production is concomitant with the arrival of BrO active O3-depleted air, which 830 

contributes the necessary “seed” halogens to get the local production initiated (Simpson et al., 831 

2007). This production might explain the uniquely high į(18O) end-member (+105.9±72.3 ‰) 832 

found even during stagnant and south-easterly air influences, regions usually associated with 833 

higher O3 levels. 834 

In summary, our study demonstrates how careful sampling of surface snow can provide 835 

useful insights regarding atmospheric and snow processes controlling the fate of reactive 836 

nitrogen in the Arctic including coupling of BrO-NOx chemistry. In particular, our results 837 
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elucidate the relative importance of these processes for a snowpack located in a coastal region at 838 

low altitude (Ny-Ålesund), in contrast to studies elsewhere (e.g. Greenland). 839 
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Table 1. Fitted linear regression models (y=kx+m) for the three periods (Fig. 4)*. 1176 

Model Period k m n R2 p-value Unit 
cNO3 1 0.1 −7.8 30 0.17 < 0.03 µmol δ-1 

2 0.2 −18.1 12 0.50 0.01 µmol δ-1 
3 0.1 −6.5 26 0.34 < 0.01 µmol δ-1 

cBr 1 1.5 −61.3 29 0.06 0.18 nmol δ-1 
2 −20.6 2100.4 12 0.56 < 0.01 nmol δ-1 
3 −4.5 566.2 23 0.56 << 0.01 nmol δ-1 

cCl 1 2.4 −206.6 29 0.09 0.11 µmol δ-1 
2 3.4 −348.0 12 0.04 0.56 µmol δ-1 
3 3. 1 −339.7 26 0.45 < 0.01 µmol δ-1 

cNa 1 1.0 −70.8 30 0.02 0.42 µmol δ-1 
2 2.7 −279.4 12 0.06 0.43 µmol δ-1 
3 3.2 −354.8 27 0.40 < 0.01 µmol δ-1 

į(15N) 1 −0.1 8.8 23 0.01 0.67 ‰ 
2 −0.4 41.6 12 0.02 0.65 ‰ 
3 0.6 −85.1 26 0.49 < 0.01 ‰ 

į(18O) 1 −0.1 90.2 23 0.00 0.78 ‰ 
2 0.9 −20.7 12 0.28 0.08 ‰ 
3 0.7 −0.4 26 0.37 < 0.01 ‰ 

zSWE 1 0.1 −8.2 30 0.50 << 0.01 cm 
2 0.03 −2.0 12 0.02 0.63 cm 
3 0.2 −21.1 26 0.88 << 0.01 cm 

V 1 4.0 −346.8 30 0.50 << 0.01 mδ 
2 −0.7 −157.3 12 0.01 0.80 mδ 
3 7. 8 −896.6 26 0.88 << 0.01 mδ 

*Regression models where analyzed for the NO3
- concentration (cNO3), Br- concentration (cBr), 1177 

Cl- concentration (cCl), Na+ concentration (cNa), the NO3
- isotopic composition (į(15N) and 1178 

į(18O)), the surface snow water equivalence (zSWE), and the sample volume (V). Also given are 1179 
the numbers of measurements (n) used for each regression, the multiple R2 value for the models, 1180 
and the significance (p-value) of the slope k.  1181 
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Table 2. Calculated initial (0) and final (t) values from the regression model in Table 1. 1182 

Model Period 0 t Unit 
cNO3 1 1.1±0.2 1.8±0.2 µmol δ-1 

2 1.4±0.1 1.9±0.1 µmol δ-1 
3 1.7±0.1 2.3±0.1 µmol δ-1 

į(15N) 1 −5.3±1.8 −6.5±1.7 ‰ 
2 −7.4±1.7 −8.7±1.7 ‰ 
3 −12.9±0.6 −8.0±0.6 ‰ 

į(18O) 1 84.0±1.2 83.4±1.2 ‰ 
2 85.2±0.9 88.0±0.9 ‰ 
3 83.0±0.9 88.7±0.9 ‰ 

zSWE 1 1.3±0.1 2.2±0.1 cm 
2 1.7±0.1 1.8±0.1 cm 
3 0.4±0.1 1.8±0.1 cm 

V 1 57.2±4.0 92.9±4.0 mδ 
2 73.4±5.2 71.2±5.2 mδ 
3 15.6±2.9 78.0±2.9 mδ 

  1183 



48 

 

Table 3. Calculated net change of NO3
- (Fnet) and isotopic signatures (į(15N) and į(18O)). 1184 

Period Fnet
* į(15N)# į(18O)#

 
(µmol m-2 d-1) (‰) (‰) 

1 0.9±0.4 −8.2±13.6 82.7±87.9 
2 1.4±0.6 −12.2±18.8 95.4±110.6 
3 0.6±0.2 7.0±5.6 105.9±72.3 

*calculated from Eq. 2 1185 
#calculated from Eq. 5. 1186 

  1187 
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Figure captions: 1188 
 1189 

Figure 1. εaps of a) the Ny-Ålesund region and b) the Svalbard archipelago. Included in a) as a 1190 
star is the surface snow sampling site and ”Gruvebadet” (a newly established research site), the 1191 
Amundsen-Nobile Climate Change Tower (CCT) and the Zeppelin Station. In b) the most 1192 
commonly used ice-core drilling sites (Holtedahlfonna, δomonosovfonna and Austfonna) are 1193 
given along with the major settlements (δongyearbyen, Barentsburg, Svea, Ny-Ålesund and 1194 
Hornsund). 1195 
 1196 
Figure 2. A schematic of the processes important for NO3

- dynamics in Svalbard surface snow.  1197 
 1198 
Figure 3. Nitrate concentrations (cNO3) and isotopic signatures (į(15N) and į(18O)) of the daily 1199 
surface snow samples in 2010. Including; a) a schematic sketch of the visible layering found in 1200 
the sampled surface snow; b) the atmospheric O3 concentration (cO3) measured at the Zeppelin 1201 
Station and at Gruvebadet, along with surface snow Br- concentrations (cBr); c) a schematic 1202 
sketch of 7 days back-trajectories obtained from the FδEXTRA model, where arrows indicate 1203 
flow paths and circles indicate stagnant air; d) the measured į(15N) and į(18O) in the surface 1204 
snow, and; e) the measured cNO3 in the surface snow together with the registered precipitation in 1205 
Ny-Ålesund. Furthermore, error bars indicates standard error (σxࡄ ), * indicate samples where σ xࡄ  is 1206 
calculated from only two data points, and symbols without error bars indicates one replicate. 1207 
Solid lines represent significant linear regression models (lm, p-value < 0.05), while broken lines 1208 
equal non-significant trends (p-value > 0.05). 1209 
 1210 
Figure 4. εeasured flux data (6 minute resolution) from Gruvebadet during the spring campaign 1211 
2010. Including; a) the NO concentrations (CNO) at the upper and lower inlets; b) the NO2 1212 
concentrations (CNO2) at the upper and lower inlets; c) the NO and NO2 flux data (FNO and FNO2, 1213 
respectively) derived from the difference between the upper and lower inlets and the eddy 1214 
diffusivity, K. 1215 
 1216 
Figure 5. εeasured and modelled NOx, HNO3 and p-NO3

- fluxes measured at Gruvebadet. 1217 
Where; a) is the photolytic rate (JNO3-) estimated from Eq. 7; b) is the daily average emission and 1218 
deposition of NO, NO2 and NOx (FNO, FNO2 and FNOx) and the daily NOx net flux (ȈFNOx). Also 1219 
included is the estimated photolytic NO2 flux (FJNO3-) using JNO3- in a) and the measured cNO3 in 1220 
Fig. 3e; c) is the daily average emission and deposition of HNO3 (FHNO3) and p-NO3

- (Fp-NO3) and 1221 
the net flux of these (ȈFNO3), also included is the measured (Ftray) and modelled (Fmodel(δND)) 1222 
NO3

- dry deposition to Ny-Ålesund given in Björkman et al. (2013). 1223 
 1224 
Figure 6. Box model results, using the NOx, HNO3

- and p-NO3
- flux measurements. Given in a) is 1225 

the modeled įt for 18O (Eq. 13) for the three isotopic deposition scenarios (įatm) where; + 40 ‰ 1226 
resembles the OH signal found in Greenland (Jarvis et al., 2009); + 75 ‰ resembles a mid-1227 
latitude signal (εorin et al., 2009); and + 100 ‰ resembles the influence of BrO chemistry 1228 
(εorin et al., 2009). Also included in a) is the actual measured į(18O) and co-occurring linear 1229 
regression models (lm, Table 1). Similarly b) gives the modeled įt for 15N (Eq. 13) for the three 1230 
isotopic deposition scenarios (įatm) where; – 20 ‰ represents Polar basin air (εorin et al., 2009); 1231 
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– 13 ‰ represent ambient air (Amoroso et al., 2010); and + 5 ‰ represents a local 1232 
biogeochemical signal (Amoroso et al.,2010). Also included in b) is the measured į(15N) and 1233 
developed lm’s. Given in c) is the modeled ct (Eq. 16) along with the measured cNO3 and lm’s. 1234 
Furthermore, the fractionation sensitivity test is included as shaded areas around the box model 1235 
results in a) and b). 1236 

Figure 7. Same as Fig. 6 but where the box model parameterization for three mission of NOx 1237 
from the snow-pack is based on the photolytic rate function (J NO3-, Eq. 7) and the deposition of 1238 
nitrate from the atmosphere based on the dry deposition rate (Ftray) using Eq. 11 and 12. 1239 

 1240 
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