UNIVERSITY OF LEEDS

This is a repository copy of Constituent-Likelihood Grammar.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/81687/

Version: Published Version

Article:
Atwell, ES (1983) Constituent-Likelihood Grammar. ICAME Journal: International
Computer Archive of Modern and Medieval English Journal, 7. 34 - 67. ISSN 0801-5775

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

CONSTITUENT-LIKELIHOOD GRAMMAR

Eric Steven Atwell

University of Lancaster, England

A INTRODUCTION

The paper by Leech et al. describes the aims of the LOB Corpus Gramma-
tical Tagging project, and explains the suite of programs we are

using to achieve these aims. In this paper, I would like to look in
greater detail at the theoretical basis of these programs; I shall
attempt to explain exactly what constituent-likelihood grammar in-
volves, and suggest some other applications of this probabilistic
approach to natural language syntax analysis.

A.1 General principles of CL grammar

The CL grammar used in the LOB Corpus project is specifically designed
to be used in tagging, that is, in assigning a grammatical-class
marker to each word in a text. In fact, the basic principles could

be generalized to apply to other levels of linguistic analysis
(parsing, semantic analysis, etc.); in general, if the analysis in-
volves assigning 'labels' to 'constituents', then a CL grammar could

be devised for this analysis.

The CL method of grammatical analysis involves two steps:

(i) Each 'constituent' is first assigned a set of potential 'labels'.
This can be done by some quite simple mechanism such as dictio~-
nary-loockup; this may well mean that some of the possible labels
are in fact inappropriate in the given context, but this does
not matter, since they will be eliminated during the second
stage. '

(ii) Each of the potential labels of a constituent is then assigned
a relative Likelihood figure, using a formula which takes into
account contextual and other relevant factors; having done this,
we can then choose the single 'best' label for the constituent,
and disregard all the others (no matter how many others there
happen to be).

34

Thus a CL grammar should not be viewed as a set of rules for genera-
ting sentences; rather, it is characterized by:
(i) an algorithm for assigning a set of possible 'labels' or tags
to any given constituent; and
{ii} a general relative likelihood formula which can be used to calcu-
late the relative likelihood of any given label or tag in any

given context.

A.2 The LOB CL grammar

In the CL grammar used to analyse the LOB Corpus, the 'labels' are
grammatical tags, and the 'constituents' are words (in this special
case, all the 'constituents' are at the same 'level’'; but this does
not mean that CL grammar could not be generalized to deal with more
complex structuring).

The tag-assignment algorithm is embodied in the program WORDTAG. Tags
are assigned mainly by dictionary-lockup; but since the set of
possible words in the English language is open-ended, the algorithm
alsc includes a number of 'default' routines to deal with words which
'fall through the net' (as explained in Leech et al.). This means
that the tag-assignment algorithm can be used to assign a set of
potential tags to any word, and this set will almost always include
the 'intuitively correct' tag.

Probably the most innovative part of the LOB CL grammar is the gene-
ral relative likelihood formula used by the 'tag-disambiguation'
program CHAINPROBS. When a word has been assigned more than one
potential tag, this formula is used to find the relative likelihood

of each candidate. We have found that a very simple formula, taking
into account only the immediate context, will correctly choose the
'best' tag in c. 96-97% of all cases (moreover, this high success

rate is consistent regardless of style: novels, newspapers, magazines,
etc. all have approximately the same success rate). Section B explains
the Tag Relative Likelihood formula in greater detail.

A,3 Other applications of CL grammar

The CL-grammar approach to language analysis was developed specifi-
cally for the LOB Corpus Grammatical Tagding research project. How-
ever, it has become clear that this method cf analysis has many other

possible areas of application. The two main advantages of CL grammar

35

over other methods of natural language analysis are:

(i) Generality and robustnese: 'Rule-based' analysis algorithms
tend to work only with sentences that 'follow the rules', and
will fail if presented with 'non-standard' English, accidental
misspellings, or other 'deviant' input. Unfortunately, as become
clear when researching with a large corpus, 'real-life' English
texts are often dotted with many of these 'imperfections'! In
contrast, the LOB Corpus Tagging programs are extremely general
and 'robust', since they will produce a reasonably acceptable
analysis of any input (they have successfully dealt with news-
paper 'telegraphese', 'foreigner English', Sci-Fi neologisms,
and even a 'humorous' text peppered with deliberate mis-
spellings!).

(ii) Simplieity: Most syntax-analysis programs build a complex 'parse
tree' for each sentence, which requires much complicated and
time-consuming computation. CL grammar, on the other hand, in-
volves analysis at a 'local level' only; the tag-likelihood
function looks at the immediate context only, net at a whale
sentence; and even within this localized context, the computa-
tion is very straightforward. This means that the amount of
computation is much less; the analysis is much simpler and
faster.

These advantages make CL grammar particularly suitable for applica-
tions requiring a simple and fast analysis of a wide range of possible
linguistic input. In sections C, D, and E I shall look briefly at
three potential uses of CL grammar; a spelling and grammar 'checker'
for use in Word Processors, a speéech analysis program for converting
from spoken to written English, and a general Grammatical Parser for
the LOB Corpus.

B THE LOB TAG RELATIVE LIKELIHOOD FUNCTION:
HOW WE DEVELOPED THE FORMULA

To give the reader a clearer idea of how 'likelihoods' are calculated
in a CL grammar, I will attempt in this section to explain the Tag
Relative Likelihood Function used in tagging the LOB Corpus; I will
do this by explaining step by step how we developed the mathematical

formula.

36

B.l1 A formalism for words and tags

The programs before CHAINPROBS (where the likelihood formula is
applied) divide the texts of the LOB Corpus into records, where each
record contains a single word and a set of potential tags, and each
record has a unique reference number (in fact, each record is a
separate line of text; but I prefer the term 'record' (rather than
'line'), since this avoids confusion (different words which were on
the same line in the original Corpus are in different records)). If
we denote the record-number by r, the word by W<r>, and the set of
tags by T<r,1>, T<r,2>», T<r,3>, ... T<r,n(r)>, where n(r) is the
number of potential tags in the record r, then a typical seguence
of records from the LOB Corpus is:

record-no. word tags

r=1 Wer-1> T<r-1,1>, T<r-1,2>, ... T<r=1,n{r-1)>
r Wer> T<r,13, T<r,2>, sow TERIT) >

Sy .6 WarHl> Teesl, 13, T<erl, 23, ... Torel atcdl) >

B.2 Relative and absolute likelihood

CHAINPROBS assigns a percentage likelihood figure to each tag in a
record. This percentage is the relative Iikelihood of the tag, rela-
tive to all the other potential tags in the record. The relative
likelihood 1 of a tag T<r,a> is the abgolute likelihood L of that tag,
divided by the sum of the absolute likelihoods of all the potential
tags in the record r:

1{T{r, a)») = LiTEr,a>»)

L(T<r, 1)

1=l..n(r)

37

B.3 ‘'Factorizing' likelihood: L = Lb * Lf * Lw

The absolute likelihood function must now be defined. Ideally, we
would like this function to take into account ail relevant contextual
information; this would be the 'perfect' absolute tag-likelihood
function. Unfortunately, it is not immediately apparent exactly what
such a formula should look like. However, we can work towards this
'perfect' formula, step by step: first we must write some simple
formula which approximates to the 'ideal'; then, we can add on extra

factors to take into account more peripheral information.

To begin with, we can say that the absolute likelihood of a tag is
dependent on the 'backward context' (i.e. the preceding tags) and the
'forward context' (i.e. the following tags); this allows us to sepa-
rate out 'backward likelihood' Lb and 'forward ilikelihood' Lf. Anothe:
important factor in deciding the likelihood of a tag is of course

the word it is to be assigned to: for example, with the word "water",
the tag NN (noun) is likelier than the tag VB (verb). Thus the
absolute likelihooud formula must also take into account Lw, the
"wora-~tag Licelihocd'.

The simplest formula for absolute likelihood which takes these three
factors into account is:

L =Lb « Lf » Lw

{where * represents multiplication). This is our first approximation
to a 'perfect' likelihood function.

B.4 Tag-pair bond B

To calculate the likelihood of a tag T<r,a>, let us assume to begin
with that the records immediately before and after r each have only
one unambiguous tag. Furthermore, let us assume that the only thing
relevant in the 'backwards context' is the single tag in the pre-
vious record, T<r-1,1>; and likewise that the only relevant factor
in the 'forward likelihood' is the tag T<r+l,1>.

This means that the 'backward likelihood' can be defined as simply
the 'bond' between T<r,a> and the preceding tag T<r-1,1>; and like-
wise, that Lf is simply the 'bond' between T<r,a> and T<r+l,1>:

Lb(T<r,a>) = B{T<r-1,1>, T<r,a>)

38

LE(T<r,a>) = B(T<r,a>, T<r+l,1>)
Values of the tag-pair bond function B are stored in a table with a
row and column for every tag in the LOB tagset.

The 'bond' between a pair of tags Tl, T2 is dependent on the freguen-
cy of cooccurrence, £(T1,T2), compared to the frequency of occurrence
of each tag individually, £(T1) and £(T2). These statistics must be
extracted from texts which have already been tagged unambiguously

(in the LOB Corpus Grammatical Tagging project, we extracted these
figures from the Brown Corpus initially (making adjustments where the
tagsets differ) but later statistics include figures drawn from the
first sections of the LOB Corpus to be analysed).

B.5 Calculating values of B for each tag-pair (T1,72)

If tags were combined randomly (i.e. if context had no influence on
the choice of tag with a word), then the ('random') probability of
tag 71 being followed by tag T2 would be

P<random>»(T1,T2) = £(T1l) » E(T2)

N1

(Nl is a constant, dependent on the number of tags in the sample.)

The actual ('true') probability of the tag-pair (T1,T2) is

P<true>(T1,T2) = £(T1,T2)

N2

(N2 is another constant.)

If we divide P<true> by P<random>, we get a very sSimple measure of
the ‘correlation' or bond between T1 and T2; ignoring the constant
factor (N1/N2) we get the formula:

B(T1,T2) = f£(T1,T2)

£(T1) » E£(T2)
The wvalue of B(T1,T2) for any tag-pair (Tl,T2) is thus dependent on
the sample from which the frequency statistics are derived, so clear-

ly it is important that the sample is representative, and reasonably

large. However, even with a very large sample, we cannot be certain

29

that the figures are perfect, especially if a particular frequency
figure happens to be very low or zero; for example, if for a given
sample f(DT,DOD)=0, does this mean that the tag-pair (DT,DOD) can
never cooccur in English, or is this simply a failing of this parti-
cular sample? It is safer to assume the latter; so we must add a
constant kl to all tag-pair frequency figures, to ensure that all
values are greater than zero. Similarly, we should add a constant k2
te all single-tag frequency figures, to ensure that we can never
divide by zero. Thus, the new definition of B is

B(TLl,T2) = £{T1,72) + k1l

(E{T1)+k2) « (£(T2)+k2)

B.6 Word-tag likelihood Lw

'Word-tag likelihood' is the likelihood that a given word will have
a given tag, regardless of other factors. Dictionary-lookup (or
equivalent mechanisms) can give us a very crude measure of Lw: if
the tag occurs with the word in the dictionary, then Lw is 1, other-
wise 0 (e.g. Lw("the" ,ATI)=1, but Lw("the",VB)=0).

In the LOB Corpus CL grammar, we found that this 'binary' likelihood
function was too crude and simplistic, so we included four 'levels'
of word-tag likelihood. The 'binary' values of Lw, 0 and 1, are im-
pliecitly assigned by straightforward dictionary-lookup, as explained
above; in addition, the Wordlist used in the LOB Corpus CL grammar
has two expliecit Lw 'weighting markers' (@ and %): if a tag appears
with a word only rarely, then that tag is marked @, and if the tag
is very rare with a given word, it is marked %, for example:

alert JJ VB NN @
water NN VB%
major JJ NNe VB%

(Notionally @ means that the tag appears with the given word in 10%
or less of all uses, and % means 1% or less. In fact often the
assignment of weightings was based on 'intelligent guesses', particu-
larly with rare words; this is one reason why we decided to limit
ourselve:z to only four 'grades' of word-tag likelihood (this decision
has since been vindicated by the consistently high success rate of
the tagging programs: it is clear that a much more 'refined' system
of gradations of Lw is unlikely to improve tagging results very

40

significantly.))

These weighting-markers appear in the LOB WORDLIST, SUFFIXLIST, and
IDIOMLIST, and are assigned by WORDTAG (and IDIOMTAG). In fact,
within the theoretical framework of a CL grammar, the assignment of
these weightings is net a necessary part of the tag-assignment
algorithm; more correctly, it 'belongs' with the mechanism for calcu-
lating tag likelihoods. In other words, if the two tasks of

(i) assigning potential tags to each word, and

(ii) calculating likelihoods for each potential tag

were autonomously dealt with by WORDTAG and CHAINPROBS respectively,
then the @ and % 'weighting-markers' would not be assigned by WORDTAG;
instead, every time CHAINPROBS applied the tag-likelihood function

to a tag, it would have to find the appropriate value of Lw for that
word-tag combination. Of course, this would require exactly the same
word-tag lookup algorithm as was used by WORDTACG to assign the poten-
tial tag in the first place; so, to save time, WORDTAG assigns poten-
tial tags and Lw weighting-markers (where appropriate) in a single
search.

B.7 Generalizing the formula to deal with ambigquous contexts

The formulae for Lb and Lf given in B.4 assume that the records
immediately before and after the current record are unambigquously
tagged, so that in working out the likelihood of tag T<r,a> the only
tags we need take into account are T<r-1,1> and T<r+l,1>. However,
if either of these records are in fact ambiguous, we must take the
other tags into account also. For example, if the immediately pre-
ceding record is ambiguously tagged, then the formula for bhackward
likelihood Lb must take into account not only T<r-1,1>, but also all
the other potential tags in record r-1: T<r-1,2>, T<r-1,3>, ...
Ter=1,n{r=1)>.

For each potential preceding tag T<r-1,i>, we must take intoc account
the bond between T<r-1,i> and T<r,a>, 'weighted' by the Backward
Likelihood in turn of T<r-1,i>, and also the Word-Tag Likelihood ILw
of T«r-1,i>. Thus, backward Ii{kelihood must be redefined as a re-

cursive function:

41

Lb(Tir,ad) = B(T{r=1,i>,T¢r,a>
BLwlWCr=15,T¢r=1,i>)
ELbAT<r-1,i%)

i=l..ni{r-1)

Foryard likelihood must also be redefined, so it can deal with seguen

ces of tag-ambiguities:

Lf(T¢r,a2) = B(T<r,a>, Tdr+l, §3)
ELw (WC<r+12>, T<r+1, §2)
LA (T<r+1, i)

i=l..nir+1)

Notice that the recursive definition of Lb means that the backward
likelihood of a tag T<r,a> theoretically takes into account all tags
preceding T<r,a»; however, in calculating relative likelihood, the
set of possible 'backward contexts' before the last unambigucus tag
is the same for all the potential tags in recoxrd r, so this can be
"cancelled out". Similarly, forward likelihood recursively defined
should theoretically involve all tags after T«<r,a>; but in calcula-
ting reiative likelihood all bonds after the next unambiguous tag

"cance. out" and can thus be ignored.

In other words, when calculating the relative likelihood of any tag
using the general formulae for Lb and Lf, we need only 'look back’
as far as the laat unambiguous tag, and we need only 'look forward'
as far as the next unambiguous tag. In general, tags are 'disambigu-
ated' by looking only at the words in the immediate context.

B.8 The relative likelihood function

As an example, let us take a sequence of five records, with five con-
secutive words: A, B, C, D, E; and with tags: a, b, b', ¢, c¢', 4, a°,
e (the first and last records are unambiguously tagged, while the

intermediate records have two tags each):

42

record no. word tags

rl A a
r2 B b, b
r3 C ey gl
r4d D d, a'
r5 E =]

To show how the formulae are applied, let us calculate 1(d), the
relative likelihood of the tag d. The formula from B.2 tells us

1(d) = L(d)

L{d) + L{a‘')
L(d) and L(d') can be expanded using the formula from B.3:

L{d) = Lb{d) * Lf(d) * Lw(D,d)
L(d') = Lb(d') * LE(d') * Lw(D,d")

Applying the recursive formulae for Lb and Lf from B.7, these equa-
tions expand to:

Ltd) = Lb(a) # LwiA,a) & Lfle) ¥ Lw(E,e)

B(a,b) TLw(B,b) $B{b,c) $LwiC,c) 4B(c,d) tLw(D,d) 3B (d,e)
+B(a,b’) $Lw(B,b* }¥B (b’ ,c) tLw(C,c) 8B(c,d) tLw(D,d) $B(d,e)
+Bfa,b)sLw(B,b) $B(b,c”) sLwiC,c’) ¥B{c’ ,d) kLw(D,d) B (d,)

+B{a,b”) ILw(B,b’) ¥B(b" ,c’) LwiC,c’) ¥B(c’ ,d) tLw(D,d) 3B (d,e)
Ltd*) = Lb(a) & LwiA,a) % Lf(e)l ¥ Lw(E,e) ¥

Bla.b) #Lw(B,b) #B(b,c)Lw(C,c) tB(c,d”) sLw(D,d”)} #BLd’)
+Bla,b")$Lu B, b*) 1B (b’ ,c) ¥Lw (T, c) 4B (c,d") $Lw(D,d”) 2B(d’ &)
+Bla,b) fLw(B,b) #B{b,c’) tLw(C,c’) $B(c’ ,d’) $Lw(D,d") $B(d’ ,&)

+H{a,b") sLw (B, b) ¥B(b’ ,c”) $LWIC,c”) ¥Bic’,d") sLw(D,d’) tBid", @)

We can think of a term such as
Bla,b)*Lw(B,b)*B(b,c)*Lw(C,c)*B(c,d)*Lw(D,d)+B(d,e)

as a chain, represented by [abede]. This notational simplification
allows us to rewrite the equation for the relative likelihood thus:

l1(d) = L(d)

L{d) + L(d")

[abede] + [ab'cde] + [abe'de] + [ab'c'de]

[abcde] + [ab'cde] + [abc'de] + [ab'c'de]
[abed'e] + [ab'cd'e] + [abe'd'e] + [ab'c'd'e]

+

(SUM OF ALL POSSIBLE 'CHAINS' FROM a TO e THROUGH d)

(SUM OF ALL POSSIBLE ‘CHAINS' FROM a TO e)

This can be generalized to give us the relative likelihood of any
tag T in terms of 'chains':

1(T) = (sum of all possible 'chains' from the last unambiguous tag
to the next unambiguous tag THROUGH TAG T)

{sum of all possible 'chains' from the last
unambiguous tag to the next unambiguous tag)

CHAINPROBS actually uses a definition of the likelihood function in
terms of ‘chains', since it is computationally more efficient; but
this new definition is entirely equivalent to the likelihood formulae
previously given.

B.9 Modifying the 'one-step' formula in special cases

So far, we have assumed that the tag-likelihood function is a
First-Order Markov process: we have assumed that a 'ehain' is com-
posed of a sequence of independent 'links', bonds betwean paire of
tags. In trials on a section of the LOB Corpus (over 20,000 words),
we found that the formulae above correctly yielded the 'best' tag
for ¢ 93-94% of words; so the 'one-step' function is in fact a very
close approximation to the 'perfect' likelihood function (we were
actually quite surprised that such a simple set of formulae could be

44

so successfull).

However, among the errors in the remaining 6-7%, there were a
significant number of cases where the function clearly needed to

look two tags backwards or forwards (rather than just one) to calcu-
late the likelihood of a 'link' in a 'chain'. These exceptional cases
fell into two main categories:

(i) tag-sequences involving a "noise-tag" such as RB (adverb), e.g.
in

"she began to seductively reveal herself"
PP3A VBD TO RB VB PPL

the forward likelihood of TO is much more dependent on VB than on RB,
and the backward likelihood of VB is more dependent on TO than RB.
In effect, when calculating the likelihood of the tag-sequence, we

would like to 'ignore' the "noise-tag" RB.

(ii) tag triples around CC (coordinating conjunction), of the form
T<a> CC T : Tag-triples in which T<a> and T are in fact the
same tag (e.g. NN CC NN, JJ CC JJ) are far likelier than tag-triples
in which T<a> and T differ (e.g. JJ CC NN).

The 'one-step' likelihood function can be used to calculate a
likelihood figure for any sequence of three tags T1, T2, T3,
essentially by multiplying B(T1,T2) * B(T2,T3). In a few special
cases, this tag-triple likelihood must be modified by a tag-triple
gsealing factor, S(T1,T2,T3). These special cases are ones where the
overall likelihood of the tag-triple depends on the 'bonding' of

Tl and T3, rather than B(T1,T2) and B(T2,T3}.

B.1l0 Summary of the final formula

How is 5(T1,T2,T3) to be incorporated into the likelihood formulae?
If the immediate context were assumed to be unambiguous, we could
simply add a new factor to the formula for absolute likelihood
(L(T<r,a>):

L(T<¢r,a») = Lb(T<r,a>) * Lf(T<r,a>) * LwiW<r>,T<r,a>)
*5(T¢r-1,1>,T<r,a>,T<r+l,1>)

To be able to deal with ambiguous contexts, we must generalize this

formula to:

45

LITér,a®) = Lu(Wir>, T<r.ad) &
BITor=1,i7, T¢r,a®) tLllir=12,Tdr=1,i) tLh(Tér—1,i>)
IB(T4r,ad, Tar+1, j2) tlw (WSr+13, T<r+1, §3) $LF(TCr+1, §3)
B5(T{r-1,13, Tér,as, Tir+i, i)

i=l..otc-1)

ji=l..nir+l)

The formulae for Lb and Lf must be similarly modified to take S

into account. The above formula for L is considerably more complex
than that of B.3. However, since 5(T1,T2,T3) only 'comes intc play'
in a few special cases, the extra computation is often redundant.
There is an alternative (equivalent) formula which is computationally
much more efficient (even though the formula looks more complicated
at first sight); it contains a separate factor dealing with 5, which
'‘cancels out' to 1 (and can thus be ignored) in most cases. This

formula is given below, in the following summary of the LOB CL
Grammar tag likelihood formulae:

Relative likelihood:

1 {Tir,a2) = LiT<r,a>}

% LAT<r,i2)

i=l..nfr}

46

Abasolute likelihood:

L{T<rya>) = Lb(Td¢r,a>) * LF{Tdr.a:) % LwiWir»,T¢r,az)

BITQr-l.1).T(r,a’llLu(Hir-l).Tér-i,i)llthT(r—l.i);
tBtT(r,a),T(r+1.j)l3Lth<r+1>,T<r+],j)fth{Tir+l.J>l
BSUTAr=1,1i2>,T{r,a», Tir+l, j>)

i=l..nir-1}

j=1l..nlr+1)

BUTr—1,i2, T<rya2) tLwilor=12, Tir=1,i »} sLb {Tir=1,i)
EBUT<r, ad, Tar+l, §2) SLw(Wdr+12, TSr+1, 320 8LF (T<r+1, i)
i=l..ntr-1) ’

j=l..nir+1)

Backward likelihood:

Lb(T<r,a») =
BIT{r=1,i>,T¢r, a)) tLu (W<r=12,T<r=1,1 20 $LB(T<r=1,13)
BtT(r—Z,h),Y(r—l,i)JletH(r-2>.7(r"2;h)ltLh(T<r~2.h)l

$5(T<r-2,h>, T<r—1,i,T¢r,ad)

h=1..n{r=-2})

E (BITGr—E,h}.T(r—I,l)]!LNEN(F‘?}.T(r—2,h>)th(T€r-2.h)J)

h=1..nlr-2)

i=l..n{r-1)

Forward likelihood:

Lf(T<r,a3) =

BTCr a2, Tar+1, 570 Sw (WCE=1>, T<r+1, §2) SLF(T<r+1, §3)
BUTCF+1, 53, TCr+2, k) tLu (HCr+23, T<r+2, k>) ELF (T¢r+2, k>)
15(T<r,ar, Tr+1, j3, T(r+2,k>)

k=1..n{r+2)

E (B(T(r*l,j},T(r+2,k)lanfN(r+2),T(r+2,k)llLbIT(r*E,k)a

k=1..nlr+2)
j=l..nir+l)

The alternative definition of relative likelihood in terms of

‘ehaing' is now:

1(T) = sum of all possible 'CHAINS'
FROM the LAST unambiguous tag
not in the middle of a 'special case' tag-triple
TO the NEXT unambiguous tag
not in the middle of a 'special case' tag-triple
THROUGH TAG T

sum of all possible 'CHAINS'

FROM the LAST unambiguous tag

not in the middle of a 'special case' tag-triple
TO the NEXT unambiguous tag

not in the middle of a 'special case' tag-triple

B.1ll Potential for further improvement

The current success rate of CHAINPROBS is consistently 96.5-97%.

Theoretically this could be improved by adding further factors to
the formulae, taking more cantextual information into account by

going beyond the simple 'Augmented First-Order Markov' model (CL

Grammar 1s ideally suited to 'enhancement through feedback').

48

However, the law of diminishing returns suggested to us that it
would probably be easier simply to correct remaining tagging-errors
'by hand' than to spend time and effort enhancing the formulae
further (at least, this is guicker in the short term, for the
immediate task of tagging the LOB Corpus; for new corpora, improve-
ments may well be worthwhile).

The types of construct in which the remaining errors tend to occur
are listed in the Manual Postedit Handbook (Atwell et al.). In
general, many of these problem-cases call for 'higher-level' gramma-
tical or semantic analysis, which would require major enhancements
of the present tagging programs. Nevertheless, we feel that our
remarkable success rate using such a simple model of language is

highly significant.

C ADAPTING THE LOB CL GRAMMAR TO DETECT SPELLING AND GRAMMATICAL
ERRORS

As explained in section A, the LOB Grammatical Tagging Programs

perform a very simple grammatical analysis of input texts. This

'surface' approach makes the programs much faster than 'full-blooded’

parsers; so they are ideally suited to applications where a 'basic'

level of grammatical analysis is all that is required.

One such application is in the automatic detection of spelling and
grammatical errors in input English texts. In this section, I shall
explain how the current LOB Grammatical Tagging programs have been
suparficially modified to detect such errors in a short sample text;
and I shall discuss what further research is reguired to produce an
efficient general-purpose aqutomatie error-detection program for

commercial Word Processing applications.

C.1 Current 'spelling-checkers' do not look at context

A number of programs are currently available which claim to 'check
spelling' in English texts. However, these programs are limited to
simple dictionary-lockup: each input word is checked against a large
Lexicon, and any word not found is assumed to be misspelt. Unfortuna-
tely, this simple method allows many errors to 'slip through' un-
detected: if a misspelling happens to coincide with another wvalid
word {(as in "I now how to prophecy the whether:!"), then it is
accepted.

49

" "

Errors such as "now", "prophecy", and "whether" in the example could
be detected by simple grammatical analysis: for example, the sub-
ordinating conjunction "whether" is easily confused with the noun
"weather"; and a noun is much likelier than a subordinating conjunc-
tion in the context

", .o thaixty

so "whether" is probably a misspelling of "weather" in this context.

C.2 Adapting the LOB Grammatical Tagging Programs

Notice that this sort of error can be detected simply by comparing
relative likelihoods of word-tags; no higher level of grammatical
analysis is reguired. Clearly the LOB CL Grammar is ideally suited
to this kind of analysis. Only a few superficial modifications were
needed to convert the current Grammatical Tagging Programs into a
prototype 'context-sensitive' spelling-checker (these mainly related
to input/output formats).

More important than the adjustments to the programs was the change
in the role of the wordlist. In Grammatical Tagging, wordlist-
lockup is just one of several methods of tag-assignment available

to WORDTAG: there were a number of 'default' routines for words not
found in the wordlist. In a spelling-checker, these 'default’'
routines are not required, in fact, tﬁey must not be used at all:

if a word is not found in the wordlist, then we can assume it is a
misspelling immediately, without the need for 'context-compatibility'
checking. Therefore, the Lexicon of a spelling-checker must be much
larger than the current LOB wordlist.

Ancother difference is that each entry in the Lexicon must not only
contain a word's 'own' tags, but also the tags of any similar words,
the error-tags. For example, in the sentence given above ("I now
how to prophecy the whether!"), the misspelt word "“prophecy" can be
detected by grammatical analysis only if we know that it is a noun,
and that there exists a very similar verb ("prophesy"); so the
Lexicon entry for "prophecy" must give not only the word's 'own'

tag NN, but alsoc the error-tag VB:

WORD TAG(S) ERROR-TAG (5)

prophecy HNN VBE

Note that error-tags are marked with € to distinguish them from ‘'own'
tags.

50

C.3 Trial run of the adapted LOB tagging programs

To put the theory to the test, a short text was devised, full of
deliberate spelling mistakes which could only be detected by gramma-
tical analysis. Also, a sample Lexicon was compiled, with an entry
for each word in the text. This text was then processed by the
adapted LOB tagging programs:

(i) VERTICALIZE put each word on a separate line (record), and
also tagged punctuation marks (so these do not have to be in-
cluded in the Lexicon)

(ii) WORDTAG assigned a set of tags and error-tags to each word,
by Lexicon-lookup (any word not found in the Lexicon can be
marked as an error at this stage)

(1iii) CHAINPROBS used the Tag Likelihood function to choose the
'best' tag for each word; if an error-tag (marked £) was
chosen, then this indicated a probable misspelling

(iv) LOBFORMAT (renamed MARKERRORS) ‘rehorizontalized' the text,
writing the message "ERROR?" underneath all words which had
been 'error-tagged'.

The output from this trial run is shown in Appendix A. Almost all

the errors in the text are flagged; but none would be uncovered by

current 'spelling-check' programs.

C.4 TFrom prototype to general-purpose program

Much research still has to be carried out to transform a 'prototype'
into a general-purpose spelling-checker for commercial Word Processing
packages:

(1) Compile a very large Wordlist, much bigger than the current
LOB wordlist,

(ii) Modify the LOB Tagset (and Tag-Pair Bond function table): the
number of tags in the current LOB Tagset is 134, but experience
has shown that many tags could be 'merged' or eliminated with
little loss ef accuracy (many of the finer distinctions drawn
in the LOB Tagset are linguistically interesting, but not
required for spelling-checking); this makes the program much
smaller and more efficient.

(iii) A set of potential tags must be added to every word in the
Lexicon: this can be done by running WORDTAG over the untagged

Lexicon, and then 'manually' checking the decisions reached.

51

{iv) We must design an algorithm to discover, for each word in the

(v)

(vi)

C.5

Lexicon, a set of 'similar' words. This algorithm must find
words which have very similar spellings to the 'target' word
(e.g. now is a common 'typo' misspelling of know); and also, it
must find words which can easily be confused because theyv sound
the same (e.g. there vs. their).

Using this 'similar-word-finding' algorithm, every word in the
Lexicon must be assigned a set of error-tags: first, a set of
similar words is associated with each 'target' word; then, the
tags from these similar words become the error-tags of the
'target' word.

The current LOB Tagging programs were originally written to be
run on University Mainframe computers, and we paid scant
attention to guestions of speed and efficiency; the programs
contain a number of routines which, in the light of experience,
are clearly not necessary in a spelling-checker (for example,
the programs are designed to collect large amounts of statisti-
cal feedback; but once a satisfactory success level is achieved,
this will not be needed). Everything but the essential 'core'
of the analysis can be cut out, and the suite of programs can
be combined into one single program, performing the analysis

in a single pass. In effect, then, the LOB CL Analysis suite
must be completely rewritten, to make it much faster and more
efficient.

Checking grammar and style

So far, we have only discussed gpelling errors which can be detected

by grammatical analysis. 1In essence, such errors are detected because

the misspelling causes an incongruity in the grammatical structure

of the sentence; the positicen of the incongruity is marked by the

warning message "ERROR?", which is to be interpreted as a spelling-

BIrOr .

In general, though, eny striking grammatical incongruity is liable

to be marked by the warning message "ERROR?"; and although up till

now we hive assumed this indicates a spelling-error, this is not

necessarily so: the user of the system must be aware that this warn-

ing may be triggered by a grammatiecal infelicity (for example, if a

word 1s not just misspelt, but accidentally missed out altogether,

52

then if an 'ungrammatical' sentence results, an "ERROR?" warning will

be triggered.

Rather more insidious and problematic than blatantly 'incorrect'
grammar is the use of obscure and unnecessarily complex grammar,
which can make documents unintelligible; this is a problem of style
rather than simple grammaticality. Fortunately, the spelling-check
program is readily adapted to check 'grammatical style' as well.
Currently, the tagging programs choose the 'best' analysis by compa-
ring the relative likelihoods of alternative analyses. A fairly
simple modification would allow us to elicit an absolute Iikeliliood
figure for the 'best' analysis of each sentence (normalized to fall
within the range 0 to 1). This figure amounts to a measure of
'grammatical deviance': sentences with a normalized absolute likeli-
hood of nearly 1 have simple, 'ordinary' grammatical structure,
while sentences with a normalized absolute likelihood near zerc are
highly 'deviant'.

Thus, the 'Automatic Text-Checker' will not only mark out blatant
errors in spelling and grammar, but it will also grade sentences
along a sliding scale according to ‘grammatical deviance' (sentences
which fall below an 'acceptability threshold' (chosen by the user)
can even be specifically marked out). Word Processors equipped with
this Automatic Text-Checker will hopefully encourage the use of

Plain English in official and business documents!

D CL GRAMMAR IN SPEECH SYNTHESIS AND ANALYSIS

Converting between written and spoken English is a trivial operation
for humans, but has proven extremely difficult for computers. CL
Analysis may prove a useful tool in tackling this problem.

D.1 Graphemic to phonemic transcription

It is generally agreed that an important stage in speech synthesis
is the translation of ordinary written text into some phonetic Fform,
in which each symbol corresponds to some specific sound. Some simple
speech-synthesis systems have a straightforward dictionary-lockup
algorithm to do this, using a dictionary which gives a single phone-
tic equivalent of each written word. A more refined version of this
algorithm also has a 'default' rule-system to translate words not
found in the dictionary, so that any input word can be assigned a

53

phonetic Lranscription; this is analogous to the default routines in
WORDTAG, which ensure that any input word is assigned a set of
potential tags.

Unfortunately, some words turn out to be 'ambiguous', in that they
can have varying pronunciation and/or stress, depending on their

grammatical function, e.g.:

"John wanted to read the paper"
vs.
"Has he read it yet?"

"She seems to reject all my advances"
vs.

"I put the rejeet in the dustbin"

A grammatical tagging algorithm could be used to disambiguate such
examples. The great advantage of CL Analysis is that we do not have
to analyse a whole sentence, but only the immediate context; a
'Grapheme-to-Phoneme Transcription' program could 'turn on' the CL
tagging and disambiquation algorithm whenever such an ambiguity
arose, but keep it 'turned off' the rest of the time.

However, if we wish to include sentence intonation in our phonetic
transcription, then grammatical analysis of the whole sentence
clearly 78 reguired. For this, the CL Grammatical Parser to be

described in Section E would be a useful tool.

D.2 Speech analysis in terms of constituent-likelihood analysis

CL Analysis plays an even more important part if we view the whole
process of speech analysis, from sound to written form, in terms
of 'tagging', that is, assignment of 'labels' to 'constituents'.

The first step in speech analysis is to convert 'raw' sound into a
digital form which can be readily manipulated by digital computer
(the Lanpcaster University Linguistics Department has an ACT Sirius 1
computer which has this facility). Next, this 'digital sound' must
be converted into a sequence of phonetic symbols; and then, the
sequence of phonetic symbols must be converted intoc normal written
English., However, these two conversion processes are far from trivi-
al. The 'units' of speech sound (phones) are of variable length

(e.g. a vowel sound is longer than a plosive), and also, the 'same'

54

utterance recorded several times will vield a slightly different
digital recording each time. This leads to uncertainty and ambiguity
in the phonetic transcription of a digital recording of an utterance.
Moreover, even if we could be sure of choosing the correct phonetic
transcription, converting this to normal written English is still a
big problem. Again, the 'units' are of variable length (unlike
written English, spoken utterances generally have nothing like a
space at every word-boundary). Alsoc, there is another level of
ambiguity, e.g. make up and may cup may both be valid interpretations
of a given phonetic transcription.

This second level of ambiguity can only be resolved by grammatical

analysis: the 'best' interpretation must be chosen on the basis of

contextual compatibility. Clearly, this problem can be tackled in

terms of CL Analysis:

{i) given a phonetic transcription of an utterance, assign a set
of potential written English interpretations; then

{ii) assign a likelihood to each potential 'labelling' or grapheme-
string, using a Likelihood Function (L<g>) which measures the
internal grammatical consistency of the grapheme-string in terms
of the contextual compatibilities of the constituent graphemes
{so that grapheme-strings which constitute 'grammatical'
sentences are assigned higher likelihoods than grapheme-strings

which involve grammatical inconsistencies).

In fact, the first level of ambiguity, encountered when moving from

digital recording to phonetic transcription, can also be dealt with

in terms of CL Analysis:

(i) given a digital recording of an utterance, assign a set of
potential phonetic transcriptions; then

{ii) assign a likelihood to each potential 'labelling' or phone-
symbol-string using a Likelihood Function (L<p>) which measures
the internal lexical consistency of the phone-symbol-string in
terms of the contextual compatibilities of the constituent
phone-symbols (so that phone-symbol-strings which constitute a
sequence of valid lexical items (words) are assigned higher
likelihoods than phone-symbol-strings which involve non-existent

'words').

A great advantage of this approach is that it allows both levels of

disambiguation to be combined in an integrated analysis algorithm:

55

we can calculate the overall likelihood that a particular grapheme-

string is the correct interpretation of a given digital recording,

simply by multiplying L<p> by L<g>». This is useful for two reasons:

(i) the 'best' phonetic transcription of a digital recording may
turn out to be grammatically inconsistent, while a 'less likely'
phonetic transcription (rejected during the first stage of dis-
ambiguation) might have had some graphemic interpretation which
is grammatically 'acceptable'. In other words, if the two
stages of disambiguation are separate, we may eliminate some
of our options 'too early'; by disambiguating only on the basis
of 'overall' likelihood, we are effectively hedging our bets
until all relevant factors have been taken into account.

{(ii) The division of the problem of speech analysis into two main
subtasks, as described above, is in fact contentious; for
example, many linguists would say that the transition from
phonetic transcription to phonemic transcription is an important
separate subtask. However, if the aim of the CL Analysis is to
assign some 'overall' Likelihocd figure to any given mapping
between digital recording and grapheme-string, then it does not
really matter how many subtasks this 'overall' process is
divided into: the 'overall' Likelihood is simply a product of

a number of factors, one for each subtask.

D.3 A CL Grammar of spoken English

The CL Grammar used by the LOB Corpus Tagging program suite is based
on statistics derived from written English texts (initially, texts
from the Brown Corpus). In a sense, we can say that the CL Grammar
was 'extracted' from these texts: although we decided upon the tagset
{using 'intuitive' knowledge of the important grammatical word-
classes of English), the texts provided the frequency statistics
which constituted the 'rules' of syntactic patterning.

The grammar of spoken English is statistically different from the
grammar of written English (for example, written English tends to
include more lengthy, complex sentences); the CL approach allows us
to quantify these differences systematically. First, a Corpus of
spoken English is needed (the London-Lund Corpus of Spoken English
could be used, or alternatively, if a sufficiently general and robust

speech-analysis program could be devised, we might even compile a

56

new Corpus using this program (the actual compilation of this new
Corpus would serve as a very thorough 'test' of such a program!).
This Corpus must then be grammatically analyzed, by running the
present LOB Grammatical Tagging programs over it, and then 'manually'
correcting the errors (many of which will be due to the imposition
of a Written English Grammar over Spoken English). P'rom the analyzed
Corpus, we can then 'extract' a CL Grammar of Spoken English, by
gathering the relevant frequency statistics. The differences between
this CL Grammar of Spoken English and the LOB CL Grammar of Written
English will be reflected in the differences in Tag-Pair Bond
function values for certain tag pairs, and also in other related-
statistical differences such as the average Absolute Likelihood
assigned to a sentence.

Thus, a speech-analysis program can be used in the compilation of a
Corpus of Spoken English, from which we can ‘'extract' a CL Grammar
of Spoken English; and this grammar will then be very useful to
researchers in speech analysis and synthesis, since it is specific-
ally geared to spoken English. Potentially, the two fields of CL
Grammar and Speech Synthesis and Analysis have much to offer each
other.

E CL GRAMMATICAL PARSER

The current LOB Corpus Grammatical Tagging programs assign a
grammatical tag to each word in a text, showing its grammatical
function; but 'higher-level' constituents are not analysed. To do
this, we need a grammatiecal parser; and it turns out that it should
be possible to perform a grammatical parse of the LOB Corpus using
algorithms very similar to those of the present tagging-suite.

E.1 Tags and hypertags

In general, each tag in the LOB Tagset can only appear in certain

syntactic (syntagmatic) positions, for example:

AT (article) comes at the start of a Noun Phrase;

IN (preposition) comes at the start of a Prepositional Phrase;

CS (subordinating conjunction) comes at the start of a Subordinate
Clause;

. (full stop) comes at the end of a Sentence;

57

NN (singular common noun) comes
(i) at the start of a Noun Phrase or
(11} at the end of a Noun Phrase or
(iii) within a Noun Phrase o»r
{1v) as a Noun Phrase in its own right (i.e. start and end of a
Noun Phrase)

These syntactic positions within higher-level constituents can be
symbolized by 'higher-level tags' or hypertags. By analogy with the
present WORDLIST (a list of words and their possible tags), we could
construct a TAGLIST of tags and their possible hypertags, with
entries such as

tag possible hypertags

AT [N

5 5]

IN [P

cs [F

NN N] N [n] [ne
pps [N

VB [vl vl ve [ve
etec.

{NB [V]does not include the object Noun Phrase, but only Verb-
constituents; however, [N] does include subordinate prepositional

phrases, etc.)

As with tags in the WORDLIST, hypertags are ordered, with @ and %

markers for rare syntagmatic functions.

E.2 Hypertag-assignment

A program analogous to WORDTAG could give each tag in a sentence
1ts appropriate hypertags, as given by the TAGLIST (this program
would in fact be much simpler than WORDTAG, as there are only 134
tags in the LOB Tagset, instead of an open-ended set of possible

words) .

Sometimes, the hypertag(s) required is(/are) indicated better by a
particular combinagtion of tags, rather than by the tags taken indivi-
dually. For example, IN (preposition) is ‘'hypertagged' [P (open pre-
positional phrase), and WDT (WH-determiner) is 'hypertagged' [F[N

{open subordinate clause and open noun phrase); but the combined

58

tag-pair IN WDT must be 'hypertagged' [F[P [N (this is for clauses
beginning "of which...", "for what...", etc.). These 'special-case'
tag-pairs and their corresponding hypertag-pairs must be listed in
a TAG-PAIR-LIST, analogous to the current IDIOMLIST of excepticnal
word combinations; a program analogous to IDIOMTAG could 'overwrite'
hypertags assigned by simple TAGLIST-lookup whenever a tag-pair
matches an entry in this TAG-PAIR-LIST.

Since these two 'hypertag-assignment' programs will be considerably
simpler than WORDTAG and IDIOMTAG, it will be practicable to combine
them inte a single program: each tag-pair in a text is first looked
up in the TAG-PAIR-LIST; but if no match is found, then hypertags

are assigned to the tags individually, according to the TAGLIST.

This unified hypertag-assignment program will be much more efficient,
since unnecessary lookups are avoided, and all hypertags are assiqned

in a single pass.

E.3 Hypertag-disambiguation

Each record has now been assigned a set of potential hypertags. Next,
a program analogous to CHAINPROBS must assign a relative likelihood
figure to each hypertag in a record, using a hyperitag Llikelihood
funetion very similar to the Tag Likelihood Function described in
Section B. We can then choose a single 'best' sequence of hypertags.
For example, the sentence "As I was eating my lunch I decided to

get a cup of coffee" would be hypertagged as follows:

WORD TAG HYPERTAG

e [s
as cs [F
I PP1A [N]
was BEDZ [v
eating VBG v]
my PP3 [N
lunch NN N]
I PP1A [n]
decided VBD [v]
to TO [T
get VB [v]
a AT [N
cup NN N
of IN [
coffee NN [w]
2 = 5]

59

E.3 Building a syntactic parse tree

Tags have now been grouped inte higher-level constituents (N, V, S,
etc.); but there are still some 'unmatched brackets'. This is
because certain tags specifically mark the start of a higher-level
constituent (e.g. cs-[F; IN-[P; AT-[N}, but often there is no such
corresponding 'end-of-phrase word'.

What we need now is a program which can insert extra closing brackets
where needed. One way to find out where to add these brackets is to
try to convert the labelled bracketing into a tree data-structure,
following simple 'conversion rules'

(1) X [¥ means "Y is the daughter of X"
{ii}) X 1 Y means "X is the daughter of Y"
{iii) X 1 [¥ means "Y is the right sister of X"

{rv) X ... X is represented by a single node X if both Xs are at
same 'level' of nested bracketing and they are not sisters
. there is no][interposing between the two Xs at tie
aame level as the Xs. Note that X ... ¥ (where X and Y are
different, and X is at the same level as Y but not a sister)
is tnvalid, since it requires a single node to be tagged both
X and Y; this is an indication that some phrase-boundary
{labelled bracket(s)) is missing.

Using such rules, we can build the following tree:

[s]

[w]

\ 1 [Fi;\\x
__T_- cs PPl;\ }?L‘DZ VBG I’ $ N %’ TO VB AT N |
————— as I was eating my lunch I dECldEd to get a cup of coffee W

60

E.4 Inserting missing closing brackets

The 'conversion rules' carry on adding daughters to a node until that
node's closing bracket is found; so, if the closing bracket is
missing, the node will continue to have daughters attached to it
until the sentence-end is reached. This means that the rightmost
daughters of an 'unclosed' node are suspect: each non-leaf node in
the tree should have at least one daughter (the first or left-most
daughter), but the nodes further to the right could well be not
daughters but right-hand sisters (or even 'aunts'!) of the 'unclosed'
node.

An example of this is the unclosed [F node (marking a subordinate
clause) in the tree above; its daughters are apparently

[nl [vl [N} [m] f[v] [T

Clearly this is wrong - this sequence of daughter-constituents could
not be a valid subordinate clause. The reason for this error in the
tree is that the missing closing bracket F] should be inserted
between luneh and I, so that the subordinate clause becomes

(N1l [v] [N]

and the remaining 'daugthers' become sisters of [F]. However, the
tree-building algorithm does not know this, so it carries on adding
daughters to the uncleosed [F node instead of the root [S].

Nevertheless, despite being 'lopsided', the tree built in this way
is still useful. The tree shows us where missing closing brackets
might be inserted: for example, the tree becomes well-formed only
if the F] is inserted after a daughter of [F.

In general, an uncleosed node [X with n daughters in the original

tree can be 'closed' in n different ways, leading to n different
parse-subtrees. So, if an 'unclosed' tree such as the one shown

above has g 'unclosed' hypertag-nodes [u<1>, [m<2>, [H<3>, ..., [H<g>,
where

[H<l> has n<l> daughters
[H<2> has n<2> daughters
[H<3> has n<3> daughters

[H<«g> has n<¢g> daughters

then there are (n<l>*n<2>*n<3>*...*n<g>) pofenticl parse-trees.

61

E.5 Choosing the 'best' parse-tree

The final stage in parsing is a program which, starting from an
‘unclosed’ tree such as the one above, generates all possible parse-
trees and compares the likelihood of each (note the analogy with
CHAINPROBS: this program effectively generates all possible tag-
sequences and compares their likelihoods; the difference is that now
we are dealing with trees rather than simple strings). To do this,
we must be able to associate a likelihood with a potential parse-~
tree; this is done using a hypertag-node likelihood funetion Lhn
which assigns any given node a likelihood figure dependent on its
daughter nodes and their likelihoods in turn. If a node A has
daughters B, C, D:

then at A we must store the likelihood that BCD is a 'valid' A (the
constituent likelihood Lc(A,BCD)), multiplied by the hypertag-node
likelihoods of B, C, and D in turn:

Lhn(A) = Lc(A,BCD) * Lhn(B) * Lhn(C) * Lhn(D)

This recursive definition allows us to calculate a likelihood fiqure
for the root [S] node which takes into account all nodes and subtrees
in the parse-tree.

E.6 The phrase dictionary

Values of the Constituent-Likelihood function Le¢ are stored in a
Phrase Dietiionary, which states, for each of the higher-level
constituents (N, S, V, P, etc.), the set of possible 'daughter-
constituent-sequences', along with the relative likelihood of each
possible sequence. For example, the Phrase Dictionary will tell us
that, in a subordinate clause (hypertagged [F]), the following
daughter-constituent-sequences are very likely:

cs [w] ‘vl [w]
cs [N] (v]

; the following sequences are less likely, but still possible:

62

cs [Nl (vl [e]

¢s [n] [v] I[T]

; but the following sequences are very unlikely:
cs [n]

cs [v]

¢s [N] [N]

Any daughter-sequences not found in the Phrase Dictionary get a very
low default probability (just above zero); in this way, we are
ensured of some analysis for any sentence (the analogy in CHAINPROBS
is that the Tag-Pair Bond function always has a value greater than
zero, to ensure that ne potential tag is ever assigned a zero likeli-

hood; see Section B.5).

E.7 A parse in three passes

To summarize, the CL Grammatical Parser outlined above will build a
syntactic parse-tree in three passes. First, every tag in a text is
assigned a set of potential hypertaggings, using a tag-pair-list

and tagliist. Secondly, the set of hypertags at each tag is disambigqu-
ated, by eliminating all but the likeliest hypertag-sequence; this

is done using a hypertag-likelihood funetion very similar to the
tag-likelihood function currently used by CHAINPROBS. Thirdly, this
'disambiguated' hypertag-sequence is converted into a set of poten-
tial parse-trees, where sach potential parse-tree has the missing
closing brackets inserted differently; a hypertag-node likelihood
funetion is used to compare likelihoods of competing potential parse-
trees.

In the final output, it will probably be useful to include not only
the single 'best' parse-tree, but also a number of 'runners-up'

(say three), in case the 'best' parse is found to be incorrect in
postediting. This can be done gquite easily, if we adopt an output
format similar to that shown in Section E.3: there are columns for
word, tag, and hypertag; and in addition, we need three more columns
to show the three 'likeliest' combinations of inserted closing
brackets. For example, the final output of the 'parse' of our

earlier example sentence might be:

63

WORD TAG HYPERTAG THREE LIKELIEST PARSES
59% 39% 2%

—————————————————— [s

as Ccs [F

I PP1lA [n]

was BEDZ [v

eating VBG V]

my PP$ [N

lunch NN N] F] F] F]
I PP1A [n]

decided VBD [v]

to T0 [T

get VB [v]

a AT [N

cup NN N] n] niT]
of IN [p

coffee NN [zix] piniT] PIT] P]
3 2 5

This representation may seem difficult to understand at first; but
hopefully posteditors will soon get to grips with it. The great
advantage is of course the economy of space: to show three potential

analyses, we do not need three complete trees.

E.8 Residual problems

Finally, it must be remembered that, of course, not all sentences
will be as straightforward as the example above! There are many
problems not touched upon (e.g. when the phrase-boundary is not
explicitly marked, as in "I gave the baby milk to drink"); but then,
any approach to syntactic parsing will encounter difficulties with
these and other stumbling blocks. The success rate of CHAINPROBS
turned out to be much higher than we expected; the lesson to be
learnt was that in the 'real' language found in a corpus, very few
‘pathological cases' actually turn up! Therefore, we have every hope
that the CL Grammatical Parser will also be very successful.

F OTHER APPLICATIONS OF CL GRAMMAR

As explained in Section A.3, CL Grammar is generally applicable to
many different forms of linguistic analysis. So far we have not
explored all the possibilities: for example, CL RAnalysis may also
be useful in formal semantic analysis. Other applications will

doubtless suggest themselves as our research continues.

64

In general, we hope we have shown that statistical, probabilistic
methods of analysis do have a place in linguistics, and specifically
in the field of syntax. Furthermore, statistical analysis should

not be seen simply as a 'heuristic' to fall back on when all else
fails; CL analysis is entirely based on probabilities, and the
Tagged LOB Corpus will be overwhelming evidence that this approach

works.

REFERENCES

Atwell, Eric Steven. 1982, 'LOB Corpus Tagging Project: Manual Pre-
edit Handbook'. Department of Linguistics and Modern English
Language and Department of Computer Studies, University of
Lancaster.

Atwell, Eric Steven. 1982, 'LOB Corpus Tagging Project: Manual Post-
edit Handbook (A mini-grammar of LOB Corpus English, examining
the types of error commonly made during automatic (computational)
analysis of ordinary written English)'. Department of Linguistics
and Modern English Language and Department of Computer Studies,
University of Lancaster.

Francis, W. Nelson and Henry Kufera. 1964 (rev. =ds. 1971 and 1979).
Manual of Information to Accompany a Standard Sample of Preasent-—
Day Edited American English, for Use with Digital Computers.
Department of Linguistics, Brown University.

Garside, Roger and Geoffrey M. Leech. 19B82. 'Grammatical Tagging of
the LOB Corpus: General Survey'. In Stig Johansson, ed. Computer
Corpora in English Language Rese¢areh. Norwegian Computing Centre
for the Humanities, Bergen.

Greene, Barbara and Gerald Rubin. 1971. Autematie Grammatical
Tagging of Engilish. Department of Linguistics, Brown University.

Johansson, S5tig, Leech, Geoffrey N. and Helen Goodluck. 1978. Manual
of Information to Accompany the Lancaster-0slo/Bergen Corpus of
Britioh English, for Use with Digital Computerg. Department of
English, University of Oslo.

Johansson, Stig and Mette-Cathrine Jahr. 1982. 'Grammatical Tagging
of the LOB Corpus: Predicting Word Class from Word Endings'.
In Stig Johansson, ed. Computer Corpora in English Language
ffgcarck. Norwegian Computing Centre for the Humanities, Bergen.
-146.

Leech, Geoffrey N., Garside, Roger and Eric Steven Atwell. 1983.
'The Automatic Grammatical Tagging of the LOB Corpus' (pp. 13-33
in this issue of ICAME News).

Marshall, Ian. 1982. 'Choice of Grammatical Word-Class without
Global Syntactic Analysis for Tagging Words in the LOB Corpus'.
Department of Computer Studies, University of Lancaster.

65

I'eterson, James. 1980. 'Computer Programs for Detecting and Correc-
ting Spelling Errors'. In Communicatiene of the Assceiation for
Computing Maehinery, 23, 12. &76-87.

66

prototype 'spelling-

Output from the trial run of the

checker!

APPENDIX A

i 1se] 12 £13234403

cHOMY3
dweu Aw 113ds 0) Jusea) pinonm SpualJj Aw sdeydad - ssaded 3yl 11e uL
cH0yy3 c¥0Y Y3 LcHoyY3
DaJeadde ,gx 113A3IIY J043 O awel aAwosandb ayly .= uos IL] B 34ny aaey
A LEEE] L¥0HY3 Ly0Hu3 Ldoy¥y3
Isnw 3L o 3L yim PLuy SLy UL a3suap les3nds pLeW] pue ¢ Janald 1eau e
Ld0Hy3
21035 I ,*% § SLyl yitm Aeme 3ab 3,u 11tA 3y 2 Aed wiy ayiw), [WF 3 WLY uwo
LH0Y¥H3 cHOHH3
yieq uom Aw 100 01 papiaap 1 “ Lep uom “ Al11eury - anp 01 pajuenm [jey3
cHOY¥Y3 LH0HY3 cHOHY3
3)0BJISLw pue 3aam oas SEA [JL3Iun ¢ au itq pue 10y pInom a3y sSawllowos
cHOMHI R EE] Ly0HY3 LYy0HY3

ue “ puodm Buiyldue pPnp I jL aw 1e pjlEq ay * IJMEA3 Luan sen Jayire) Auw
7]

T8L/E0/5R6L LY LOOVNII ¥3ISN u04 (S)93TdUYXI" (L *“1)IT¥I°LOOYNI: 3714 40 ONTLSIT 40 On3

2173MLY

4773MLy

PI73MLY

SIT3mMLY

VARELIY]

E1T3ALY

fARELIN]

LI73MLY

67

