
This is a repository copy of Constituent-Likelihood Grammar.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/81687/

Version: Published Version

Article:

Atwell, ES (1983) Constituent-Likelihood Grammar. ICAME Journal: International 
Computer Archive of Modern and Medieval English Journal, 7. 34 - 67. ISSN 0801-5775 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


CONSTITUENT-LIKELIHOOD GRAMMAR 

Er i c  S t e u e n  A tweZZ  

Univerezty of Lancaster, England 

A INTRODUCTION 

The paper by Leech et  0 2 .  describes the aims of  the LOB Corpus Gramma- 

tical Tagging project, and explains the suite of programs we are 

u s ~ n g  to achieve these aims. In this paper, I would like to look in 

greater detail at the theoretical basis of these programs; I shall 

attempt to explain exactly what constituent-ZikeZiilood grammar in- 

volves, and suggest some other applications of this probabilistic 

approach to natural language syntax analysis. 

A.l General principles of CL grammar 

The CL qrammar used in the LOB Corpus project is specifically designed 

to be used in tagging, that is, in assigning a grammatical-class 

marker to each word in a text. In fact, the basic principles could 

be generalized to apply to other levels of linguistic analysis 

(parsing, semantic analysis, etc.); in general, if the analysis in- 

volves assigning 'labels' to 'constituents', then a CL qrammar could 

be devised for this analysis. 

The CL method of grammatical analysis involves two steps: 

li) Each 'constituent' is first assigned a set of potential 'labels'. 

This can be done by some quite simple mechanism such as dictio- 

nary-lookup; this may well mean that some of the possible labels 

are in fact inappropriate in the given context, but this does 

not matter, since they will be eliminated during the second 

stage. 

(ii) Each of the potential labels of a constituent is then assigned 

a ~ , u Z n t i o s  ZikeZiiroad figure, using a formula which takes into 

accrilnt contextual and other relevant factors; having done this, 

w e  uen then choose the single 'best' label for the constituent, 

and disregard all the others (no matter how many others there 

happen to be). 



Thus a CL grammar should not be viewed as a set of rules for genera- 

ting sentences; rather, it is characterized by: 

lil an algorithm for assigning a set of possible 'labels' or tags 

to any given constituent; and 

Cii) a general r e Z n t i v e  Z ikeZihood formula which can be used to calcu- 

late the relative likelihood of any given label or tag in any 

given context. 

A . 2  The LOB CL grammar 

In the CL grammar used to analyse the LOB Corpus, the 'labels' are 

grammatical tags, and the 'constituents' are words (in this special 

case ,  all the 'constituents' are at the same 'level'; but this does 

not mean that CL grammar could not be generalized to deal with more 

complex Structuring). 

The tag-assignment algorithm is embodied in the program WORDTAG. Tags 

are assigned mainly by dictionary-lookup; but since the set of 

possible words in the English language is open-ended, the algorithm 

also includes a number of 'default' routines to deal with words which 

'fall through the net' (as explained in Leech e t  O Z . ) .  This means 

that the tag-assignment algorithm can he used to assign a set of 

potential tags to an3 word, and this set will almost always include 

the 'intuitively correct' tag. 

Probably the most innovative part of the LOB CL grammar is the gene- 

ral reZot iue l i k e l i h o o d  formula used by the 'tag-disambiguation' 

program CHAINPROBS. When a word has been assigned more than one 

potential tag, this formula is used to find the relative likelihood 

of each candidate. We have found that a very simple formula, taking 

into account only the immediate context, will correctly choose the 

'best' tag in c. 96-97% of all cases lmo~eovcr, this high success 

rate is consistent regardles~ of style: novels, newspapers, magazines, 

etc. all have approximately the same success rate). Section B explains 

the Tag Relative Likelihood formula in greater detail. 

A.3 Other applications of CL grammar 

The CL-grammar approach to language analysis was developed speclfl- 

cally for the LOB Corpus Grammatical Tagging research project. How- 

ever, it ha5 become clear that this methad of analysis has many other 

possible areas of application. The two main advantages of CL grammar 



over other methods of natural language analysis are: 

111 C e n e r a L i t y  and robuatneee: 'Rule-based' analysis algorithms 

tend to work only with sentences that 'follow the rules', and 

wlll fail if presented with 'non-standard' English, accidental 

misspellings, or other 'deviant' input. Unfortunately, as become 

clear when researching with a large corpus, 'real-life' English 

texts are often dotted with many of these 'imperfections'! In 

Contrast, the LOB Corpus Tagging programs are extremely general 

and 'robust', since they will produce a reasonably acceptable 

analysis of an# input (they have successfully dealt with news- 

paper 'telegraphese', 'foreigner English', Sci-Pi neologisms, 

and even a 'humorous' text peppered with d e z i b e r o t e  mis- 

spellings!). 

liil Simplicity: Most syntax-analysis programs build a complex 'parse 

tree' for each sentence, which requires much complicated and 

time-consuming computation. CL grammar, on the other hand, in- 

volves analysis at a 'local level' only; the tag-likelihood 

function looks at the immediate context only, not at a whole 

sentence; and even within this localized context, the computa- 

tion is very straightforward. This means that the amount of 

computation is much less; the analysis is much simpler and 

faster. 

These advantages make CL grammar particularly suitable for applica- 

tions requiring a simple and fast analysis of a wide range of possible 

linguistic input. In sections C, 0 ,  and E I shall look briefly at 

three potential uses of CL grammar; a spelling and grammar 'checker' 

for use in Word Processors, a speech analysis program for converting 

from spoken to written English, and a general Grammatical Parser for 

the LOB Corpus. 

B THE LOB TAG RELATIVE LIKELIHOOD FUNCTION: 

110P1 WE DEVELOPED THE FOPSlULA 

To glve the reader a clearer idea of how 'likelihoods' are calculated 

~n a CL grammar, I will attempt in this section to explain the Tag 

Relatrve Llkellhood Functlon used in tagging the LOB Corpus; I will 

do this by explaining stcp hy step how we developed the mathematical 

formula. 



B.l A formalism for words and tags 

The programs before CHAINPROBS (where the likelihood formula is 

applied) divide the texts of the LOB Corpus into records, where each 

record contains a single word and a set of potential tags, and each 

record has a unique reference number (in fact, each record is a 

separate line of text; but I prefer the tern 'record' (rather than 

'line'), since this avoids confusion (different words which were on 

the same line in the original Corpus are in different recordsll. If 

we denote the record-number by r, the word by W<=>,  and the set of 

tags hy T<r,l>, T<r,2>, T<r,3>, ... T<r,nlrl>, where nlrl is the 

number of potential tags in the record r, then a typical sequence 

of records from the LOB Corpus is: 

record-no. word tags 

r-l W<r-l> Te-l,l>, T<r-1,2>, . . . T<r-1,nIr-ll> 

r W<r> T<r,l>, T<r,2>, ... T<r,nlr)> 

r+l W<r+l> T<r+1,1>, Te+1.2>, ... T<r+l,n(r+l)> 

B.2 Relative and absolute likelihood 

CHAINPROBS assigns a percentage likelihood figure to each tag in a 

record. This percentage is the relative likelihood of the tag, rela- 

tive to all the other potential tags in the record. The relative 

likelihood 1 of a tag T e , a >  is the abaoZute  likelihood L of that tag, 

divided by the sum of the absolute likelihoods of all the potential 

tags in the record r: 

I IT<r,a>) = L(T<r ,a>)  



8.3 'Factorizing' likelihood: L = Lb * Lf r LW 

The absolute likelihood function must now be defined. Ideally, we 

would like this function to take into account nZZ relevant contextual 

information; this would be the 'perfect' absolute tag-likelihood 

function. Unfortunately, it is not immediately apparent exactly whit 

such a fonnuli! should look like. However, we can work towards this 

'perfect' formula, step by step: first we must write some simple 

formula which approximates to the 'ideal'; then, we can add on extra 

Eactors to take into account more peripheral information. 

TO begin with, we can say that the absolute likelihood of a tag is 

dependent on the ' b a c k w a r d  contest' (i.e. the preceding tags) and the 

' f o r w a r d  context '  (i.e. the following tagsl; this allows us to sepa- 

rate out ' b a c k w a ~ d  Z iheZ ihood '  Lb and ' f o r w a r d  Z i k e Z i h o o d '  Lf. Anothe: 

important factor in deciding the likelihood of a tag is of course 

the word it is to be assigned to: for example, with the word "water", 

the tag NN (noun1 is likelier than the tag V 2  (verb). Thus the 

absolute ?iRelihcod formula must also take into account LW, the 

' A ' .  J Y Z - L O ~  L i k e Z i l t o o L ' .  

The simplest formula for absolute likelihood which takes these three 

factors into account is: 

(where represents multiplication). This is our first approximation 

to a 'perfect? likelihood function. 

B.4 Tag-palr bond B 

TO calculate the likelihood of a tag T a , a > ,  let us assume to begin 

with that the records immediately before and after r each have only 

one unambiguous tag. Furthermore, let us assume that the only thing 

relevant in the 'backwards context' is the single tag in the pre- 

vious record, Ttr-l,l>; and likewrse that the only relevant factor 

in the 'forward llkellhood' is the tag T<r+l,l>. 

Thls means that the 'backward lzkellhood' can be defined as smply 

the ' b o ~ i t i '  between T e , a >  and the preced~ng tag Te-l,l>; and l ~ k e -  

wlse, that LE 1 s  smply the ' b o n d '  between T<r,a> and Ta+l.l>: 



Values of the tog-pair bond function B are stored in a table with a 

TOW and column for every tag in the LOB tagset. 

The 'bond' between a pair of tags Tl, T2 is dependent on the freguen- 

cy of cooccurrence, f(Tl,T2), compared ta the frequency of occurrence 

of each tag individually, f(T1) and f(T2). These statistics must be 

extracted from texts which have already been tagged unambiguously 

(in the LOB Corpus Grammatical Tagging project, we extracted these 

figures from the Brown Corpus initially (making adjustments where the 

tassets differ). but later statistics include figuree drawn from the 

first sections of the LOB Corpus to be analysed). 

B.5 Calculating values of B for each tag-pair IT1,TZ) 

If tags were combined randomly 1i.e. if context had no influence on 

the choice af tag with a word), then the I'random') probability of 

tag T1 being followed by tag T2 would be 

lN1.i~ a constant, dependent on the number of tags in the sample.) 

The actual ('true') probability of the tag-pair ITl,T2) is 

IN2 is another constant.) 

If we divide P<truc> by Pcrandom,, we get a very simple measure of 

the 'correlat~on' or bond between T1 and T2; ignoring the constant 

factor (N1/N2) we get the formula: 

The value of BlT1,TZ) for any tag-pair (T1,TZ) is thus dependent on 

the sample from which the frequency statistics are derived, so clear- 

ly it is important that the sample is representative, and reasonably 

large. However, even with a very large sample, we cannot be certaln 



that the figures are perfect, especially if a particular frequency 

figure happens to be very low or zero; for example, if for a given 

sample f(DT,DODl=O, does this mean that the tag-pair (DT,DOD) can 

neve r  cooccur in English, or is this simply a failing of this parti- 

cular sample? It is safer to assume the latter; so we must add a 

constant kl to nZZ tag-pair frequency figures, to ensure that all 

values are greater than zero. Similarly, we should add a constant k2 

to all single-tag frequency figures, to ensure that we can never 

divide by zero. Thus, the new definition of B is 

B.6 Word-tag likelihood LW 

'Word-tag likelihood' is the likelihood that a given word will have 

a given tag, regardless of other factors. Dictionary-lookup (or 

equivalent mechanisms1 can give us a very crude measure of LW: if 

the tag occurs with the word in the dictionary, then Lw is 1, other- 

wise 0 (e.g. L~('~the".ATIl=l, but Lw~'~the'~,VBl=Ol. 

In the LDB Corpus CL grammar, we found that this 'binary' likelihood 

funct~on was too crude and simplistic, so we included four 'levels' 

of word-tag likelihood. The 'binary' values of Lw, 0 and 'l, are im- 

p l i c i t l ~  assigned by straightforward dictionary-lookup, as explained 

above; in addition, the Wordlist used in the LOB Corpus CL grammar 

has two e s p l i ~ i t  LW 'weighting markers' l @  and 91: if a tag appears 

with a word only rarely, then that tag is marked C, and if the tag 

is veru rare with a given word, it is marked %,  for examp1.e: 

alert JJ VB NNP 

watsr NN VB% 

major JJ NNB VB% 

(Not~onally @ means that the tag appears with the given word in 10% 

or less of all uses, and % means 1% or less. In fact often the 

assignment of weightings was based on 'intelligent guesses', particu- 

larly wlth rare words; this is one reason why we decided to limit 

ourselves to only four 'grades' of word-tag likelihood (this decision 

has since been vindicated by the consistently high success rate of 

the tagging programs: it is clear that a much more 'refined' system 

of gradations of LW is unlikely to improve tagging results very 



These weighting-markers appear in the LOB WORDLIST, SUFFIXLIST, and 

IDIOMLIST, and are assigned by WORDTAG (end IDIOMTAG). In fact, 

within the theoretical framework of a CL grammar, the assignment of 

these weightings is not a necessary part of the tag-assignment 

algorithm; more correctly, it 'belongs' with the mechanism for calcu- 

lating tag likelihoods. In other words, if the two tasks of 

lil assigning potential tags to each word, and 

(ii) calculating likelihoads for each potential tag 

were autonomously dealt with by WORDTAG and CHAINPROBS respectively, 

then the @and B 'weighting-markers' would not be assigned by WORDTAG; 

instead, every time CHAINPROBS applied the tag-likelihood function 

to a tag, it would have to find the appropriate value of LW for that 

word-tag combination. Of course, this would require exactly the same 

word-tag lookup algorithm as was used by WOROTAG to assign the poten- 

tial tag in the first place; so, to save time, WORDTAG assigns potcn- 

tial tags and  LW weighting-markers (where appropriate) in a single 

search. 

B.7 Generalizing the formula to deal with ambiguous contexts 

Thy formulae for Lb and Lf given in 8.4 assume that the records 

immediately before and after the current record are unambiguously 

tagged, so that in working out the likelihood of tag T<r,a> the only 

tags we need take into account are T<r-1.1) and T<r+l,l>. However, 

if either of these records are in fact o m b i g u o u o ,  we must take the 

other tags into account also. For example, if the immediately pre- 

ceding record is ambiguously tagged, then the formula for b o c k w a r d  

Z i k e Z i i t o o d  Lb must take into account not only T<r-l,l>, but also all 

the other potential tags in record r-l: T - 2  T - 1 3  ... 
TO-l,n(r-l)>. 

For each potential preceding tag T<r-l,i>, we must take into account 

the b o n d  between T<r-l,i> and T<r,a>, 'weighted' by the Backward 

Likelihood in turn of T<r-l,i>, and also the Word-Tag Likelihood LW 

of T<r-l,i>. Thus, b a c k w a r d  l i k e l i h o o d  must be redefined as a re- 

cursive function: 



F O F W ~ P ~  ZikeZihaad must also be redefined, so it can deal with sequen 

ces of tag-ambiguities: 

Notice that the recursive definition of Lb means that the bnokward 

Z ika t ihood  of a tag T<r,a> theoretically takes into account oZZ tags 

preceding T<r,a>; however, in calculating ~ e t o t i v e  likelihood, the 

set of possible 'backward contexts' before the last unambiguoun tag 

is the same for all the potential tags in record r, so this can be 

"cancelled out". Similarly, forword ZikeZihood recursively defined 

should theoretically involve oZZ tags after Ta,a>; but in calcula- 

ting reSat - i ve  likelihood all bonds after the next unambiguous tag 

"cancei out" and can thus be ignored. 

In other words, when calculating the relative likelihood of any tag 

using the general formulae for Lb and Lf, we need only 'look back' 

as far as the t o o t  unambiguouo t a g ,  and we need only 'look forward' 

as far as the n a z t  unornbiguoua t a g .  In general, tags are 'disambigu- 

ated' by looking onZy at the words in the irnrnediote c o n t e r t .  

B.8 The relative likelihood function 

As an example, let us take a sequence of five records, with five con- 

secutive words: A, B, C. D, E; and with tags: a, h, b', c ,  c', d. d', 

e (the ilrst and last records are unambiguously tagged, while the 

lnterrnedlate records have two tags each): 



r e c o r d  no. word t a g s  

To show how t h e  formulae are a p p l i e d ,  l e t  u s  c a l c u l a t e  l l d ) ,  t h e  

r e l a t i v e  l i k e l i h o o d  of t h e  t a g  d.  The formula from 8 . 2  t e l l s  u s  

L ld )  and L ( d ' )  can be expanded us ing  t h e  formula from 8.3: 

Applying t h e  r a c u r s i v e  formulae f o r  Lb and Lf from B.7,  t h e s e  equa- 

t i o n s  expand t o :  



we can thlnk of a term such as 

as a chain, represented by [abcdel. This notational simplification 

allows us to rewrite the equation for the relative likelihood thus: 

lldl = L(d1 

Lldl + L(d'1 

= [abcde] + [ab'cdel + [abc'del + [ab'c'del 

[abcde] + [ab'cdel + [abc'del + [ab'c'dcl 

+ [abcd'el c [ab'cd'el + [abc'd'e] + lab'c'd'el 

= (SUM OF ALL POSSIBLE 'CHAINS' FROM a TO e THROUGH d) 

(SUM OF ALL POSSIBLE 'CHAINS' FROM a TO el 

This can be generalized to give us the relative likelihood of any 

tag T in terms of ' cho ina ' :  

1lTl = (sum of all possible 'chains' from the last unambiguous tag 

to the next unambiguous tag THROUGH TAG Tl 

(sum of all possible 'chains' from the last 

unambiguous tag to the next unambiguous tag) 

CHAINPROBS actually uses a definition of the likelihood function in 

terms of 'chains', since it is computationally more efficient; but 

this new definition is entirely equivalent to the likelihood formulae 

previously given. 

B.9 Modifying the 'one-step' formula in special cases 

SO far, we have assumed that the tag-likelihood function is a 

Flrst-Order Markov process: we have assumed that a 'chain' is com- 

posed of a sequence of independent 'links', bonds between poira of 

tags. In trials on a sect~on of the LOB Corpus lover 20,000 words), 

we found that the formulae above correctly yielded the 'best' tag 

for C 93-948  of words; 50 the 'one-step' function is in fact a very 

close approximation to the 'perfect' likelihood function (we were 

actually qurte surprised that such a simple set of formulae coulcl be 



However, among the errors in the remaining 6-7%, there were a 

significant number of cases where the function clearly needed to 

look two tags backwards or forwards (rather than just one) to calcu- 

late the likelihood of a 'link' in a 'chain'. These exceptional cases 

fell into two main categories: 

(il tag-sequences involving a "noise-tag" such as RB (adverb), e.g. 

in 

"she began to seductively reveal herself" 

PP3A VBD TO RB VB PPL 

the forward likelihood of TO is much more dependent on VB than on RB, 

and the backward llkelxhood of VB is more dependent on TO than RB. 

In effect, when calculating the likelihood of the tag-sequence, we 

would like to 'ignore' the "noise-tag" RB. 

(ii) tag triples around CC (coordinating conjunction), of the form 

T<a> CC T<h> : Tag-triples in which T<a5 and T<b> are in fact the 

same tag (e.g. NN CC NN, JJ CC JJI are far likelier than tag-triples 

in which T<a> and T<b> differ (e.g. JJ CC NN). 

The 'one-step' likelihood function can be used to calculate a 

likelihood figure for any sequence of three tags T1, T2, T3. 

essentially by multiplying B(Tl.T2) r B(TZ,T31. In a few special 

cases, this tag-triple likelihood must be modlfied by a t ag - t r i pLe  

~ c o l i n g  f o c t o r ,  S(Tl,TZ,T3). These special cases are ones where the 

overall likelihood of the tag-triple depends on the 'bonding' of 

T1 and T3, rather than B(T1,TZ) and B(T2,T3). 

8.10 Summary of the final formula 

HOW is S(Tl,TZ,T3) to be incorporated into the likelihood formulae? 

If the immediate context were assumed to be unambiguous, we could 

simply add a new factor to the formula for absolute likelihood 

(L('r<r,a>) : 

To be able to deal with ambiguous contexts, we must generalize this 

formula to: 



The formulae for Lb and Lf must be similarly modified to take S 

lnto account. The above formula for L is considerably more complex 

than that of 8.3. However, since S(Tl,TZ.T3) only 'comes into play' 

In a few special cases, the extra computation is often redundant. 

There is an alternative (equivalent) formula which is computationally 

much more efficient (even though the formula looks more complicated 

at first sight); it contains a separate factor dealinq with S, which 

'cancels out' to 1 land can thus be ignored) in most cases. This 

formula is given below, in the following summary of the LOB CL 

Grammar tag likelihood formulae: 

R e l a t i v e  Z i k e l i h o o d :  



A b o o l u t e  L i k e l i h o o d :  

L t T< r , a> l  = L b l T < r , a > l  t L f  IT<r .a : l  i LwtW:r>,T<r,a) l  t 

Backward Z i k e Z i h o o d :  



Forward l ikelihood: 

Lf IT<r,a>) = 

j-l. . "W+ l )  

The a l t e rna t r ve  de f i n i t i on  of r e l a t i v e  l ike l ihood i n  terms of 

' c h a i n s '  is now: 

11T) = sum of a l l  poss ib le  'CHAINS' 

FROM t h e  LAST unambiguous tag  

not i n  t he  middle of a ' spec ia l  case '  t ag - t r i p l e  

TO the  NEXT unambiguous tag  

not  i n  t he  middle of a ' spec ia l  case' t ag - t r i p l e  

THROUGH TAG T 

sum of a l l  poss ib le  'CHAINS' 

FROM the  LAST unambiguous t a g  

not  i n  t he  middle of a ' spec ia l  case '  t a g - t r i p l e  

TO the  NEXT unambiguous tag  

not i n  t he  middle of a ' spec ia l  case' t ag - t r i p l e  

8.11 P ~ t e n t l a l  f o r  f u r the r  Improvement 

The cur ren t  success r a t e  of CllAINPROBS is cons is ten t ly  96.5-978. 

Thcorcc~ca l l y  this could be rmproved by addrng fu r the r  f ac to rs  t o  

the formulae, takxng mare contextual  l n fo rma t~on  i n t o  account by 

g o ~ n g  beyond the simple 'Augmented Flrst-Order Markov' model (CL 

Grammar is l dca l l y  s u ~ t e d  t o  'enhancement through feedback' ) .  



However, the law of diminishing returns suggested to us that it 

would probably be easier simply to correct remaining tagging-errors 

'by hand' than to spend time and effort enhancing the formulae 

further (at least, this is quicker in the short term, for the 

immediate task of tagging the LOB Corpus; for new corpora, improve- 

ments may well be worthwhile). 

The types of construct in which the remaining errors tend to occur 

are listed in the Manual Postedit Handbook (Atwell e t  a t . ) .  In 

general, many of these problem-cases call for 'higher-level' gramma- 

tical or semantic analysis, which would require major enhancements 

of the present tagging programs. Nevertheless, we feel that our 

remarkable success rate using such a simple model of language is 

highly significant. 

C ADAPTING THE LOB CL GRAMMAR TO DETECT SPELLING AND GRAMMATICAL 
ERRORS 

As explained in section A, the LOB Grammatical Tagging Program5 

perform a Very simple grammatical analysis of input texts. This 

'surface' approach makes the programs much faster than 'full-blooded' 

parsers; so they are ideally suited to applications where a 'basic' 

level of grammatical analysis is all that is required. 

One such application is in the automatic detection of spelling and 

grammatical errors in input English texts. In this section, I shall 

explain how the current LOB Grammatical Tagging programs have been 

superficially modified to detect such errors in a short sample text; 

and I shall discuss what further research is required to produce an 

efficient general-purpose a u t o m a t i c  e r r o r - d e t e c t i o n  program for 

commercial Word Processing applications. 

C.l Current 'spelling-checkers' do not look at context 

A number of programs are currently available which claim to 'check 

spelling' in English texts. However, these programs are limited to 

simple dictionary-lookup: each input word is checked against a large 

Lexicon, and any word not found is assumed to be misspelt. Unfortuna- 

tely, this simple method allows many errors to 'slip through' un- 

detected: if a misspelling happens to coincz.de with another valid 

word (as in "I now how to prophecy the whether!"), then it is 

accepted. 



Errors such a5 'nowa', "prophecy", and "whether' in the example coutd  

be detected by simple grammatical analysis: for example, the sub- 

ordinating conjunction "whether" is easily confused with the noun 

"weather"; and a noun is much likelier than a subordinating conjunc- 

tlon in the context 

' l . . .  the X!" 

so "whether" is probably a misspelling of "weather" in this context. 

C . 2  Adapting the LOB Grammatical Tagging Programs 

Notice that this sort of error can be detected simply by comparing 

relative likelihoods of word-tags; no higher level of grammatical 

cnalysis is required. Clearly the LOB CL Grammar is ideally suited 

to this kind of analysis. Only a few superficial modifications were 

needed to convert the current Grammatical Tagging Programs into a 

prototype 'context-sensitive' spelling-checker (these mainly related 

to input/output formats). 

More important than the adjustments to the programs was the change 

in the role of the wordlist. In Grammatical Tagging, wordlist- 

lookup is just one of several methods of tag-assignment available 

to WORDTAG: there were a number of 'default' routines for words not 

found in the wordlist. In a spelling-checker, these 'default' 

routines are not required, in fact, they must not be used at all: 

if a word is not found in the wordlist, then we can assume it is a 

misspelling immediately, without the need for 'context-compatibil~ty' 

checking. Therefore, the Lexicon of a spelling-checker must be much 

larger than the current LOB wordl~st. 

Another difference is that each entry in the Lexicon must not only 

contaln a word's 'own' tags, but also the tags of any similar words, 

the error - togn.  For example, in the sentence given above ("I now 

how to prophecy the whether!"), the misspelt word "prophecy" can be 

detected by grammatical analysis onZy if we know that it is a noun, 

and that there exists a very similar verb ("prophesy"); so the 

Lexicon entry for "prophecy' must give not only the word's 'own' 

tag NN, but also the error-tag VB: 

I+ORD TAGIS) ERROR-TAG IS l 

prophecy MN VBE 

Note that errar-tags are marked with E to distinguish them from 'own' 

tags. 



C.3 Trial run of the adapted LOB tagging programs 

TO put the theory to the test, a short text was devised, full of 

deliberate spelling mistakes which could ant(/ be detected by gramma- 

tical analysis. Also, a sample Lexicon was compiled, with an entry 

for each word in the text. This text was then processed by the 

adapted LOB tagging programs: 

(i) VERTICALIZE put each word on a separate line (record), and 

also tagged punctuation marks (so these do not have to be in- 

cluded in the Lexicon) 

(ii) WORDTAG assigned a set of tags and error-tags to each word, 

by Lexicon-lookup (any word not found in the Lexicon can be 

marked as an error at this stage) 

(ili) CHAINPROBS used the Tag Likelihood function to choose the 

'best' tag for each word; if an error-tag (marked £ )  was 

chosen, then this indicated a probable misspelling 

(iv) LOBFORMAT (renamed MARKERRORS) 'rehorizontalized' the text, 

writing the message "ERROR?" underneath all words which had 

been 'error-tagged'. 

The output from this trial run is shown in Appendix A. Almost all 

the errors in the text are flagged; but none would be uncovered by 

current 'spelling-check' programs. 

C.4 From prototype to general-purpose program 

Much research still has to be carried out to transform a 'prototype' 

into a general-purpose spelling-checker for commercial Word Processing 

packages : 

li) Compile a very large wordlist, much bigger than the current 

LOB wordlist. 

(ii) Modify the LOB Tagset (and Tag-Pair Bond function tahle): the 

number of tags in the current LOB Tagset is 134, but experience 

has shown that many tags could be 'merged' or eliminated with 

little loss of accuracy (many of the finer distrnctions drawn 

in the LOB Tagset are linguistically interesting, but not 

required for spelling-checking); this makes the program much 

smaller and more effrcient. 

(iii) A set of potential tags must be added to every word in the 

Lexicon: this can he done by running WORDTAG over the untagged 

Lexzcon, and then 'manually' checking the decisions reached. 



(iv) We must design an algorithm to discover, for each word in the 

Lexicon, a set of 'similar' words. This algorithm must find 

words whlch have very slmilar spellings to the 'target' word 

(e.g. now is a common 'typo' misspelling of k n o w ) ;  and also, it 

must find words which can easily be confused hecause they sound 

the same (e.g. there vs. their). 

Using this 'similar-word-finding' algorithm, every word in the 

Lexlcon must be assigned a set of error-tags: first, a set of 

similar words is associated with each 'targct' word; then, the 

tags from these similar words become the error-tags of the 

'target' word. 

(vi) The current LOB Tagging programs were originally written to be 

run on University Mainframe computers, and we paid scant 

attention to questions of speed and efficiency; the programs 

contain a number of routines which, in the light of experience, 

are clearly not necessary in a spelling-checker (for example, 

the programs are designed to collect large amounts of statisti- 

cal feedhack; but once a satisfactory success level is achieved, 

t h ~ s  Will not be needed). Everything but the essential 'core' 

of the analysis can be cut out, and the suite of programs can 

be combined into one single program, performing the analysis 

in a single pass. In effect, then, the LOB CL Analysis suite 

must he completely rewritten, to make it much faster and more 

efficient. 

C.5 Checking grammar and style 

So far, we have only discussed opelZing errors which can be detected 

by grammatical analysis. In essence, such errors are detected because 

the misspelling causes an incongruity in the grammatical structure 

of the sentence; the position of the incongruity is marked by the 

warning message "ERROR?", which is to be interpreted as a spelling- 

error. 

In general, though, any striking grammatzeal incongruity is liahle 

to be marked by the warnrng message "ERROR?"; and although up till 

now we h2vc assumed this indicates a spelling-error, this is not 

necessarily so: the user of the system must be aware that this warn- 

ing may be triggered by e grommotical infelicity (for example, if a 

word is not just misspelt, but accidentally missed out altogether, 



then if an 'ungrammatical' sentence results, an "ERROR?" warning will 

be triggered. 

Rather more insidious and problematic than blatantly 'incorrect' 

grammar is the use of obscure and unnecessarily complex grammar, 

which can make documents unintelligible; thls is a problem of ntyle 

rather than simple qrammatlcality. Fortunately, the spelling-check 

program is readily adapted to check 'grammatical style' as well. 

Currently, the tagging programs choose the 'best' analysis by compa- 

ring the peZotiue Likel ihoodn of alternative analyses. A fairly 

simple modification would allow us to eliclt an obnoZute Z ikeZihood 

figure for the 'best' analysis of each sentence (normalized to fall 

wlthin the range 0 to 1). This figure amounts to a measure of 

' g ~ o m m n t i c a Z  deviance': sentences with a normalized absolute likeli- 

hood of nearly 1 have simple, 'ordinary' grammatical structure, 

while sentences with a normalized absolute likelihood near zero are 

highly 'deviant'. 

Thus,the 'Automatic Text-Checker' will not only mark out blatant 

errors in spelling and grammar, but it will also grade sentences 

along a sliding scale according to 'grammatical devrance' (sentences 

which fall below an 'acceptability threshold' (chosen by the user1 

can even be specifically marked out). word Processors equipped with 

this Automatic Tcxt-Checker will hopefully encourage the use of 

Plain English in official and business documents! 

D CL GRAMMAR IN SPEECH SYNTHESIS AND ANALYSIS 

Converting between written and spoken English is a trivial operation 

for humans, but has proven extremely difficult for computers. CL 

Analysis may prove a useful tool in tackling this problem. 

D.l Grophemlc to phonemlc transcription 

It is generally agreed that an important stage in speech synthesis 

is the translation of ordrnary written text into some phonetic form, 

in which each symbol corresponds to some specific sound. Some simple 

speech-synthesis systems have a straightforward dictianary-lookup 

algorithm to do this, using a dictionary which gives a single phone- 

tic equivalent of each written word. A more refined version of this 

algorithm also has a 'default' rule-system to translate wards not 

found in the dictionary, so that any input word can be assigned a 



phonetic transcription; this is analogous to the default routines in 

WORDTAG, which ensure that any input word is assigned a set of 

potential tags. 

tinfortunately, some words turn out to be 'ambiguous', in that they 

can have varying pronunciation and/or stress, depending on their 

grammatical function, e.g. : 

"John wanted to =cad the paper" 

VS. 

"Has he r e a d  it yet?', 

"She seems to r e j e c t  all my advances" 

vs. 

''I put the  eject in the dustbm" 

A grammatical tagging algorithm could be used to disambiguate such 

examples. The great advantage of CL Analysis is that we do not have 

to analyse a whole sentence, but only the immediate context; a 

'Grapheme-to-Phoneme Transcription' program could 'turn on' the CL 

tagging and disambiguation algorithm whenever such an ambiguity 

arose, but keep it 'turned off' the rest of the time. 

However, if we wish to include sentence intonation in our phonetic 

transcription, then grammatical analysis of the whole sentence 

clearly ia required. For this, the CL Grammatical Parser to be 

described in Section E would be a useful tool. 

D.2 Speech analysis in terms of constituent-likelihood analysis 

CL Analysis plays an even more important part if we view the whole 

process of speech analysis, from sound to written form, in terms 

of 'tagging', that is, assignment of 'labels' to 'constituents'. 

The first step in speech analysis is to convert 'raw' sound into a 

digltal form which can be readily manipulated by digital computer 

(the Lancaster University Linguistics Department has an ACT Sirius 1 

computer whlch has this facility). Next, this 'digital sound' must 

be converted Into a sequence of phonetic symbols; and then, the 

sequence of phonetic symbols must be converted into normal written 

English. Yowcver, these two conversion processes are far from trivi- 

al. The 'units' of speech sound (phones1 are of variable length 

(e.g. a vowel sound is longer than a plosive), and also, the 'same' 



utterance recorded several times will yield a slightly different 

digital recording each time. This leads to uncertainty and ambiguity 

in the phonetic transcription of a digital recording af an utterance. 

Moreover, even if we could be sure of choosing the correct phonetic 

transcription, converting this to normal written English is still a 

big problem. Again, the 'units' are of variable length (unlike 

written English, spoken utterances generally have nothing like a 

space at every word-boundary). Also, there is another level of 

ambiguity, e.g. make up and ma!, clip may both be valid interpretations 

of a given phonetic transcription. 

T h l ~  second level of ambiguity can only be resolved by grammatical 

analysis: the 'best' interpretation must be chosen on the basis of 

contextual compatibility. Clearly, this problem can be tackled in 

terms of CL Analysis: 

(i) given a phonetic transcription of an utterance, assign a set 

of potential written English interpretations; then 

(ii) assign a likelihood to each potential 'labelling' or grapheme- 

string, Using a Likelihood Function (L<g>) which measures the 

internal grammatical consistency of the grapheme-string in terms 

of the contextual compatibilities of the constituent graphemes 

(so that grapheme-strings which constitute 'grammatical' 

sentences are assigned higher likelihoods than grapheme-strings 

which involve grammatical inconsistencies). 

In fact, the first level of ambiguity, encountered when moving from 

digital recording to phonetic transcription, can also be dealt with 

in terms of CL Analysis: 

(i) given a digital recording of an utterance, assign a set of 

potential phonetic transcriptions; then 

(ii) assign a likelihood to each potential 'labelling' or phone- 

symbol-string using e Likelihood Function (L<p>) which measures 

the intei-nal lexical consistency of the phone-symbol-string in 

terms of the contextual compatibilities of the constituent 

phone-symbols (so that phone-symbol-strings which constitute a 

sequence of valid lexical items (words) are assigned higher 

likellhoods than phone-symbol-strmgs which involve non-existent 

'words' ) . 

A great advantage of this approach is that it allows both levels of 

dis8mbi9uatlon to be combined in an integrated analysis algorithm: 



we can calculate the overall likelihood that a particular grapheme- 

string 1s the correct interpretation of a given drgital recording, 

simply by multiplying L<p> by L<¶>. This is useful for two reasons: 

(i) the 'best' phonetic transcription of a digital recording may 

turn out to be grammatically inconsistent, while a 'less likely' 

phonetic transcription (rejected during the first stage of dis- 

ambiquationl might have had some graphemic interpretation which 

is grammatically 'acceptable'. In other words, if the two 

stages of disambiguation are separate, we may eliminate some 

of OUT options 'too early'; by disambiguating only on the basis 

of 'overall' likelihood, we are effectively hedging our bets 

until oZZ relevant factors have been taken into account. 

(iil The division of the problem of speech analysis into two main 

subtasks, as described above, is in fact contentious; for 

example, many linguists would say that the transition from 

phonetic transcription to phonemic transcription is an important 

separate subtask. However, if the aim of the CL Analysis is to 

assign some 'overall' Likelihood figure to any given mapping 

between digital recording and grapheme-string, then it does not 

really matter how many subtasks this 'overall' process is 

divided into: the 'ovsrall' Likelihood is aimply a product of 

a number of factors, one for each subtask. 

0 . 3  A CL Grammar of spoken English 

The CL Grammar used by the LOB Corpus Tagging program suite is based 

on statistics derived from written English texts (initially, texts 

from the Brown Corpus). In a sense, we can say that the CL Grammar 

was 'extracted' from these texts: although w e  decided upon the tagset 

(using 'intuitive' knowledge of the important grammatical word- 

classes of Englishl, the texts provided the frequency statistics 

which constituted the 'rules' of syntactic patterning. 

The grammar of spoken English is statistically different from the 

grammsr of written English (for example. written English tends to 

include lrorc lengthy, complex sentences); the CL approach allows us 

to quant~ty these differences systematically. First, a Corpus of 

spoken Enqllsh is needed (the London-Lund Corpus of Spoken English 

could be used, or alternatively, if a sufficiently general and robust 

speech-analysis program could be devised, we might even compzle a 



new Corpus using this program (the actual compilation of this new 

Corpus would serve as a very thorough 'test' of such a program!). 

This Corpus must then be grammatically analyzed, by running the 

present LOB Grammatical Tagging programs over it, and then 'manually' 

correcting the errors (many of which will be due to the imposition 

of a Written English Grammar over Spoken English). rrom the analyzed 

Corpus, we can then 'extract' a CL Grammar of Spoken English, by 

gathering the relevant frequency statistics. The differences between 

this CL Grammar of Spoken English and the LOB CL Grammar of Written 

English will be reflected in the differences in Tag-Pair Bond 

function values for certain tag pairs, and also in other related 

statistical differences such as the average Absolute Likelihood 

assigned to a sentence. 

Thus, a speech-analysis program can be used in the compilation of a 

Corpus of Spoken English, from which we can 'extract' a CL Grammar 

of Spoken English; and this grammar will then be very useful to 

researchers in speech analysis and synthesis, since it is specific- 

ally geared to spoken English. Potentially, the two fields of CL 

Grammar and Speech Synthesis and Analysis have much to offer each 

other. 

E CL GRAMMATICAL PARSER 

The current LOB Corpus Grammatical Tagging programs assign a 

grammatical tag to each word in a text, showing its grammatical 

function; but 'higher-level' constituents are not analysed. To do 

this, we need a grommotienl parser ;  and it turns out that it should 

be possible to perform a grammatical parse of the LOB Corpus using 

algorithms very similar to those of the present tagging-suite. 

E.1 Tags and hypertags 

In general, each tag in the LOB Tagset can only appear in certain 

syntactic (syntaqmaticl positions, for example: 

AT (article) comes et the start of a Noun Phrase; 

IN (preposition) comes at the start of a Prepositional Phrase; 

CS (subordinating conjunction1 comes at the start of a Subordinate 

Clause; 

. (full stop1 come5 at the end of a Sentence; 



MN (singular common noun) comes 

(il at the start of a Noun Phrase or 

(ri) at the end of a Noun Phrase or 

(iiil within a Noun Phrase or 

(ivl as a Noun Phrase in its own right (i.e. start ond end of a 

Noun Phrase1 

These syntactic positions within higher-level constituents can be 

symbolized by 'higher-level tags' or h ! j p e r t o g e .  By analogy with the 

present WORDLIST (a list of words and their possible tags), we could 

Construct a TAGLIST of tags and their possible hypertags, with 

entries such as 

tag possible hypertags 

AT [N 

S1 

IN [P 

CS [F  

NN NI N [NI [N@ 

PP$ [N 

vs [V1 V] V@ [V@ 

etc. 

(NB [Vldoes not include the object Noun Phrase, but only Verb- 

constituents; however, [NI doee  include subordinate prepositional 

phrases, etc. ) .  

As with tags in the WORDLIST, hypertags are ordered, with @ and % 

markers for rare syntagmatlc functions. 

A program analogous to IVORDTAG could glve each tag in a sentence 

its appropriate hypertags, as given by the TAGLIST (thrs program 

would in fact be much slmpler than WORDTAG, as there are only 134 

tags in  the LOB Tagset, Instead of an open-ended set of posslble 

words). 

Sometimes, the hypertaglsl requlred isl/areI indicated better by a 

particular : o m i ~ i , ~ o t i o n  of tags, rather than by the tags taken indivi- 

dually. For example, IN (preposition) is 'hypertagged' [P (open pre- 

pos1tmnal phrase), and wDT (we-determiner) is 'hypertagged' [F[N 

(open subordinate clause and open noun phrase); but the combined 



taq-pair IN WDT must be 'hypertagged' [F[P [N (this is for clauses 

beginning "of which...", "for what...", etc.). These 'special-case' 

taq-pairs and their corresponding hypertag-pairs must be listed in 

a TAG-PAIR-LIST, analogous to the current IDIOMLIST of exceptional 

ward contbinations; a program analogous to IDIOMTAG could 'overwrite' 

hypertags assigned by simple TAGLIST-lookup whenever a tag-pair 

matches an entry in this TAG-PAIR-LIST. 

Since these two 'hypertag-assignment' programs will be considerably 

simpler than IVORDTAG and IDIOMTAG, it will be practicable to combine 

them into a single program: each tag-pair in a text is first looked 

up in the TAG-PAIR-LIST; but if no match is found, then hypertags 

are assigned to the tags individually, according to the TAGLIST. 

This unified hypertag-assignment program will be much more efficient, 

since unnecessary lookups arc avoided, and all hypertags are assiqned 

in a single pass. 

Each record has now been assigned a set of potential hypertags. Next, 

a program analogous to CHAINPROBS must assign a relative likelihood 

figure to each hypertag in a record, using a i i y p e r t a g  Z ikeZihoad 

f u n c t i o n  very similar to the Tag Likelihood Function described in 

Section B. We can then choose a single 'best' sequence of hypertags. 

For example, the sentence "As I was eating my lunch I decided to 

get a cup of coffee" would be hypertagged as follows: 

WORO TAG HYPERTAG 

as CS [ F  
I PPlA [NI 
was BED2 [V 
eating VBG V] 
my PPS [N 
lunch NN 
I 

NI 
PPlA [NI 

decided VBD [V] 
to TO LT 
get VB tvl 
a AT N 
CUP NN N 
of IN [P 
coffee NN [NI 

S1 



E.3 Building a syntactic parse tree 

Tags have now been grouped into higher-level constituents IN, V, S, 

etc.); but there are still some 'unmatched brackets'. This is 

because certain tags specifically mark the a t o r t  of a higher-level 

constituent (e.g. CS-[F; IN-[P; AT-[N), but often there is no such 

corresponding 'end-of-phrase word'. 

What we need now is a program which can insert extra closing brackets 

where needed. One way to find out where to add these brackets is to 

try to Convert the labelled bracketing into a tree data-structure, 

following simple 'conversion rules': 

(i) X [ Y means ' Y  is the daughter of X" 

lii) X 1 Y means "X is the daughter of y" 

liii) X 1 [ Y means "Y is the right sister of X" 

(IV) X ... X is represented by a single node X if both Xs are at 

same 'level' of nested bracketing and they are not sisters 

. there is no l [  interposing between the two Xs at t h e  

oame ZeUeZ as the Xs. Note that X .. . Y (where X and Y are 

different, and X is at the same level as Y but not a sister) 

is invalid, since it requires a single node to be tagged both 

X and Y; this is an indication that some phrase-boundary 

(labelled bracketlsl) is missing. 

Using such rules, we can build the following tree: 



E . 4  Inser t ing  missing c los ing  brackets 

The 'conversion r u l e s '  car ry  on adding daughters to  a node u n t i l  t h a t  

node's c los ing  bracket  i s  found; so ,  i f  t he  c los ing  bracket  i s  

missing, t he  node w i l l  continue t o  have daughters at tached t o  it 

u n t i l  t he  sentence-end i s  reached. This means t h a t  t h e  r ightmost 

daughters of a n  'unclosed' node are suopec t :  each non-leaf node i n  

t h e  t r e e  should have a t  l e a s t  one daughter ( t h e  f i r s t  o r  le f t -most  

daughter ) ,  but t he  nodes fu r the r  t o  t h e  r i g h t  could wel l  be not 

daughters but right-hand s i s t e r s  (o r  even 'aunts ' ! )  of t he  'unclosed' 

node. 

An example of t h i s  is t h e  unclosed [F node (marking a subordinate 

c lause)  i n  the t r e e  above; i t s  daughters a r e  apparently 

Clear ly  t h i s  is wrong - t h i s  sequence of daughter-const i tuents could 

not  be a va l id  subordinate c lause.  The reason f o r  t h i s  e r r o r  i n  t he  

t r e e  is t h a t  t h e  missing c los ing  bracket  F] should be inser ted  

between lunch and I, so t h a t  t h e  subordinate c lause becomes 

[NI [V] [NI 

and t h e  remaining 'daugthers '  become s i s te rs  of [P].  However, t he  

tree-bui lding algori thm does not  know t h i s ,  so i t  c a r r i e s  on addinq 

daughters t o  t h e  unclosed [ F  node instead of t he  roo t  [S] .  

Nevertheless, desp i te  being ' l ops ided ' ,  t h e  t r e e  b u i l t  i n  t h i s  way 

is s t i l l  useful .  The t r e e  shows u s  where missing c los ing brackets 

m i g h t  be inser ted:  f o r  example, t he  t r e e  becomes well-formed only 

i f  t he  F1 is i nser ted  a f t e r  a daughter of [F. 

I n  general ,  an unclosed node [ X  with n daughters i n  t he  o r i g ina l  

t r e e  can be 'c losed '  i n  n d i f f e r e n t  ways, leading t o  n d i f f e r e n t  

parse-subtrees. So, i f  an 'unclosed' t r e e  such as  t he  one shown 

above has q 'unclosed' hypertag-nodes [ I i < l > ,  [H<2>, [H<3>, . . . , [H<q>, 

where 

[H<l> has n < l >  daughters 

[H<2> has n<2> daughters 

[H<3> has n<3 > daughters 

[H<¶> has n < q >  daughters 

then the re  are  (n<l>*n<2>*n<3>* ...* nqc l , )  potentic: paroe-tress 



E.5 Choosing the 'best' parse-tree 

The final stage in parsing is a program which, starting from an 

'unclosed' tree such as the one above, generates all possible parse- 

trees and compares the likelihood of each (note the analogy with 

CIIAINPROBS: this program effectively generates all possible tag- 

sequences and compares their likelihoods; the difference is that now 

we are dealing with trees rather than simple strings). To do this, 

we must be able to associate a likelihood with a potential pnrse- 

tree; thls is done using a hyper tag-node Z i k e l i l ~ o o d  function Lhn 

which assigns any given node a likelihood figure dependent on its 

daughter nodes and their likelihoods in turn. If a node A has 

daughters B, C. D: 

m 
B C D  

then at A we must store the likelihood that BCD is a 'valid' A (the 

c o n o t i t u e n t  l i k e z i h o o d  Lc(A,BCD) I ,  multiplied by the hypertag-node 

likelihoods of B, C, and D in turn: 

This recursive definition allows us to calculate a likelihood figure 

for the root [ S 1  node which takes into account all nodes and subtrees 

in the parse-tree. 

E.6 The phrase dictionary 

Values of the Constituent-Likelihood function Lc are stored in a 

Phraoe D i c i i o n o r y ,  which states, for each of the higher-level 

constztuents (N. S, V, P, etc.), the set of possible 'daughter- 

cOnstituent-~equence5', along with the relative likelihood of each 

poss~ble sequence. For example, the Phrase Dictionary will tell us 

that, in a subordinate clause (hypertagged [F]), the following 

daughter-constituent-sequences are very likely: 

CS [NI !V1 [ N I  

CS IN?  [v1 

; the following sequences are less likely, but still possible: 



; but the following sequences are very unlikely: 

Any daughter-sequences not found in the Phrase Dictionary get a very 

low default probabil~ty (just above zero); in this way, we are 

ensured of oome analysis for any sentence (the analogy in CFIAINPROBS 

is that the Tag-Pair Bond function always has a value greater than 

zero, to ensure that no potential tag is ever assigned a zero likeli- 

hood; see Section B.5). 

E.7 A parse in three passes 

TO summarize, the CL Grammatical Parser outlined above will build a 

syntactic parse-tree in three passes. First, every tag in a text is 

assigned a set of potential hypertaggings, using a tag-poir-Zist 

and tagz iot .  Secondly, the set of hypertags at each tag ia disambigu- 

ated, by eliminating a11 but the likeliest hypertag-sequence; this 

is done using a hyper tng-L ike l ihood funct ion very similar to the 

tag-likelihood function currently used by CHAINPROBS. Thirdly, this 

'disambiguated' hypertag-sequence is converted into a set of poten- 

tial paree-trees, where each potential parse-tree has the missing 

closing brackets inserted differently; a h y p e ~ t o g - n o d e  ZiksZihood 

funct ion is used to compare likclihoode of competing potential parse- 

trees. 

In the final output, it will probably be useful to include not only 

the single 'best' parse-tree, but also a number of 'runners-up' 

(say three), in case the  'best' parse is found to be incorrect in 

postediting. This can he done quite easily, if we adopt an output 

format similar to that shown in Section E.3: there are columns for 

word ,  tag ,  and hyper tng ;  and in addition, we need three more columns 

to show the three 'likeliest' combinations of inserted closing 

brackets. For example, the flnal output of the 'parse' of our 

earlier example sentence might be: 



VlORO TAG HYPERTAG THREE LIKELIEST PARSES 

59% 39% 2% 

------------------ [S 
as CS [F 
I PPlA 
was 

[NI 
BED2 [V 

eating VBG V1 
my PPS [ N 
lunch NN N 1 
I PPlA [NI 
declded VBD 
to 

[V1 
TO [ T 

get VB [V1 
a AT N 
c'+' NN NI 
of 

NI NIT] 
IN [P 

coffee NN [NI PINIT] PIT] P] 
S l 

This representation may seem difficult to understand at first; but 

hopefully posteditors will soon get to grips with it. The great 

advantage is of course the economy of space: to show three potential 

analyses, we do not need three complete trees. 

E.8 Residual problems 

Finally, it must be remembered that, of course, not all sentences 

will be as straightforward as the example above! There are many 

problems not touched upon (e.g. when the phrase-boundary is not 

explicitly marked, as in "I gave the baby milk to drink"); but then, 

ony approach to syntactic parsing will encounter difficulties with 

these and other stumbling blocks. The success rate of CHAINPROBS 

turned out to be much higher than we expected; the lesson to be 

learnt was that in the 'real' language found in a corpus, very few 

'pathological cases' actually turn up: Therefore, we have every hope 

that the CL Grammatical Parser will also be very successful. 

F OTiiER APPLICATIONS OF CL GRAMMAR 

AS explained in Sect-ion A . 3 ,  CL Grammar is generally applicable to 

many different forms of linguistic analysis. So far we have not 

explored all. the possibilities: for example, CL Analysis may also 

be useful i n  formal semantic analysis. Other applications will 

doubtless suggest themselves as our research continues. 



In general, we hope w e  have shown that s t a t i o t i c n l ,  p r o b n b i l i s t i c  

methods of analysis d o  have a place in linguistzcs, and specifically 

in the field of syntax. Furthermore, statistical analysis should 

n o t  be seen simply as  a 'heuristic' to fall back on when all else 

fails; CL analysis is entirely based on probabilities, and the 

Tagged LOB Carpus will be overwhelming evzdence that this approach 

works. 

REFERENCES 

Atwell, Eric Steven. 1982. 'LOB Corpus Tagging Project: Manual Pre- 
edit Handbook'. Department of Linguistics and Modern English 
Language and Department of Computer Studies, University of 
Lancaster. 

Atwell, Eric Steven. 1982. 'LOB Corpus Tagging Project: Manual Post- 
edit Handbook (A mini-grammar of LOB Corpus English, examining 
the types of error commonly made during automatic (computational) 
analysis of ordinary written English)'. Department of Linguistics 
and Modern English Language and Oepartment of Computer Studies, 
University of Lancaster. 

Francis, W. Nelson and Henry KuEera. 1964 (rev. eds. 1971 and 1979). 
MonuaZ o f  I n f o ~ m o t i o n  t o  Accompany o S t a n d a r d  Sample of P r e s e n t -  
Day E d i t e d  Amer ican Engldoh,  f o r  Uae w i t h D i g i t a 2  Compute re .  
Department of Linguistics, Brown University. 

Garside, Roger and Geoffrey N. Leech. 1982. 'Grammatical Tagging of 
the LOB Corpus: General Survey'. In Stig Johansson, ed. Computer  
C o r p o r a  i n  E n g l i n ? ~  Language Ranearch .  Norwegian Computing Centxe 
for thc ilurnanities, Bergen. 

Greene, Barbara and Gerald Rubin. 1971. A u t o m a t i c  Grammat i ca l  
Tagg ing  of EngZiol i .  Department of Linguistics, Brown University. 

Johansson, Stig, Leech, Geoffrey N. and rielen Goodluck. 1978. Elnnuat 
of In for rnat io , i  t o  Accompan!, t i re L n n ~ a ~ t e r - O s l o / R e r g ~ n  C D F P U D  o f  
R r i t i o h  E n g l i s h ,  f o r  Uee w i t h  D i g i t a l  Compute re .  Department of 
English, University of Oslo. 

Johansson, Stig and Mette-Cathrine Jnhr. 1982. 'Grammatical Tagging 
of the LOB Corpus: Predictinq Word Class from Word Endings'. 
In Stig Johansson, ed. Computer  C o r p o r a  i n  Fng l inh  Language 
R a s e o r c h  Norwegian Computing Centre for the Humanities, Bergen. 
118-146. 

Leech, Geoffrey N., Garside, Roger and Eric Steven Atwell. 1983. 
'The Automatic Granmatlcal Tagging of the LOB Corpus' (pp. 13-33 
in this issue of ICAXE N c w o ) .  

Elarshall, Ian. 1982. 'Choice of Grammatical ilord-Class without 
Global Syntactic Analysis for Tagging Words in the LOB Corpus'. 
Department of Coinputer Studies, University of Lancaster. 



Peterson, James. 1980. 'Computer Programs f o r  Detecting and Correc- 
t i ng  Spe l l ing  Errors'.  I n  C o m n i u n i c o t i o , ~ ~  of t h e  A s e o c i a t i o n  f o r  
Comput ing M a c h i n e r y ,  2 3 .  1 2 .  676-87. 



APPENDIX A: Output from the trial run of the prototype 'spelling- 
checker '  

* - 
n u x o  
c 4 U C  
D a r n *  

m 1) . L 
D C 

D l - 0 -  
= ' - I .  
a E 
G. * 
= = E - .  

C 
m " F. m 
C 

.v. 
p. .- 

m- C O  5 = O E  
4. m 0  DLI 
Z U _  Y C 
C I I L  " - 

W  0 .- 
. D 

C 1 

= m  0 ,. 
n  0 U m 
2 m n  3 
n =  m .- 

W I  Y 
4. 

- - n u  - - m 
.- .? 

C  
4- 

U c 
. - 

C 
E 3 

C  
5 

. v -  
m .- 

U c 2 
C. E 0 

0 p. - 0 r. 
1 Y 

O L I  a  . c 

nLI 4-0 
Y .?E Z 

.. 
m _  * 

U 
c 

W -  (D 

m n 
0 C 

C f r E  

h. 
m C .. 

C  
- p .  C.. . 
2 0  LI ". 
m p .  C O  r. u p .  
L =  O L I  a  - 0  
Y Y  L E  Y O  .-a 
h 

W , E  6 L I  
n a  Y 

L D 
U - W 

O C .  
3 

m T2 W 

I I Y .  
C . . .  '. C 1 

U C  "7 m 
5 CI 1 .. 
C O  E 
L = . -  .. E 
m =  C  .- 
- W  L C  = 

E m 
* o c c  
E m r O  


