
This is a repository copy of Restructuring web service interfaces to support evolution.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/81645/

Version: Accepted Version

Proceedings Paper:
Webster, D, Townend, P and Xu, J (2014) Restructuring web service interfaces to support
evolution. In: Proceedings - IEEE 8th International Symposium on Service Oriented
System Engineering, SOSE 2014. Service Oriented System Engineering (SOSE), 2014
IEEE 8th International Symposium on, 07-11 Apr 2014, Oxford, UK. IEEE Computer
Society , 158 - 159. ISBN 9781479925049

https://doi.org/10.1109/SOSE.2014.66

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Restructuring Web Service Interfaces to support Evolution

David Webster, Paul Townend, Jie Xu

School of Computing,

University of Leeds

Leeds, UK

{D.E.Webster, P.M.Townend, J.Xu}@leeds.ac.uk

Abstract— This paper presents an overview of a scheme (RES-

WS) to enable Web Service providers to be able to evolve their

service interface in a non-backwards compatible way and still

maintain compatibility with existing consumers. The need for a

non-passive approach to evolving services while still remaining

backwards compatible is highlighted and presented based on a

clear need identified within the literature. Based on graph

rewriting theory, the set of refactorings was formally

represented as transformations through rewriting rules and

enables a set of preconditions to be defined for each

transformation. A demonstrator has been developed to

implement the RES-WS scheme as a message mediator which

interprets the chain of primitive refactoring transformations

required to carry out a particular complex transformation.

Experimental validation was performed to demonstrate the

feasibility and effectiveness of the message mediator for an

upgraded Web Service against its QoS constraint.

Keywords-Web Services, Restructuring, Refactoring

I. INTRODUCTION

Just as traditional software evolves over time, there is a
need to evolve Web Services and their interfaces similarly.
Evolution of services must be undertaken in a controlled
manner to avoid an interruption in the ability for a consumer
to be able to interact with the service and contributes towards
their overall dependability.

Whilst passive strategies for maintaining backwards
compatibility are considered best practice at the current time
[1,2], there are still challenges for situations when the service
provider aims to make an incompatible change for various
reasons, including dealing with an interface becoming too
complex or due to the maintenance cost of supporting
concurrent service versions.

A research challenge to address, therefore, is resolving
the conflict between a service provider that needs to break
backwards compatibility to evolve its interface in order to
accommodate new requirements and the assumption from a
set of service consumers who either assume that the service
interface will remain fixed or are unable to adapt due to
constraints such as lack of development agility.

II. CONTRIBUTION

This short paper expands on a solution to the problem of
evolving Web Service interfaces through the use of a scheme
that we call RES-WS to permit the restructuring of a Web
Service’s interface elements to support the automated
generation of a SOAP message mediator. This work builds

upon our previously published work in this domain [3] to
offer verification and validation through empirical
experimentation. In order to be successful this restructuring
process needs to occur without affecting the functional
compatibility with a service’s consumers in addition to
preserving the service’s ability to operate within a minimal
real-time performance overhead constraint.

III. EXPERIMENTATION AND RESULTS

The objective for this experimentation was to assess the
overhead of applying RES-WS to a use-case and provide an
empirical measure of the performance overhead incurred. To
assess the relative effect of applying the RES-WS message
mediator a sensor service integration demonstrator
developed for a previous project [4] was benchmarked for
performance prior to refactoring and the application of the
message mediator. For this demonstrator the QoS for a
response from the sensor integration workflow was 2000ms.
The second objective was to assess the overhead of applying
RES-WS to a Web Service providing service to multiple
consumers in parallel using a serial and parallel mode
message mediator. The following questions were asked:

1 Does the application of the message mediator
increase the average response time above a baseline
range?

2 Does the application of the message mediator result
in an increase in response time as the number of
parallel sensors increases?

In the experiments the number of sensors generated
within the sensor simulation started at 1 and then increases in
increments of 5 sensors from 5 onwards. 200 samples were
recorded from multiple executions of the sensor detection
workflow. The experiments performed are discussed below:

A. Baseline Experiment

The results retrieved from running the baseline
experiments from unmodified services can be seen in Figure
1. In terms of response time performance, despite an increase
in the sensor count, the results demonstrate that as the
number of sensors increases past 10 sensors, there is no clear
decrease in response time.

B. Initial Second Stage Experiment for Message Mediation

The purpose of this experiment was to assess the
increased response time when the modified sensor retrieval
workflow was not producing parallel requests and hence not
expecting parallel invocations of the sensor services. The
results of this experiment are presented in Figure 2.

C. Second Stage Experiment for Serial and Parallel mode

Message Mediation

The next part of the second stage experiment was to
determine the performance impact on the distributed system
when the message mediator was used to handle parallel
requests that needed a response within the QoS time frame.
Given that the Workflow Service expects that instances of
the Sensor Service would be invoked in parallel, the parallel
execution mode for the message mediator provided the most
natural fit. The results of this experiment are presented in
Figure 3 and Figure 4.

IV. CONCLUSIONS

Although message mediator did not provide any value
faults within the mediated messages, the results demonstrate
that the probability of introducing a late timing fault
increased as the number of parallel service invocations that
the message mediator needed to deal with increases. The
parallel operating mode produced a higher average response
time than the serial mode, however, the standard deviation of
the average response time was much lower. With the serial
operating mode whilst messages entered into the message
queue later had a high probability of generating a late timing
fault under high loads, there was a high probability that
earlier messages would return with a smaller response time
than the parallel operating mode.

It is extremely difficult, however, to be able to give a
system agnostic measure to help conclude when the message
mediator will cease to be useful under domain specific
constraints. Given that each scenario can provide variances
in: message size; the number of restructuring operations; the
number of parallel sensors and the QoS limit the evaluation
of the message mediator must be evaluated against the
system within which it is being used. Experimentation,

however, has revealed issues that would not have been
addressed through purely theoretical consideration of the
problems associated with Web Service restructuring.
Although the sensor integration demonstrator is a relatively
small-scale system developed for research, the issues
revealed will apply to commercial systems when scaled up
and demonstrate that potential degradation of the QoS
provided needs to be addressed.

ACKNOWLEDGMENT

The work reported in this paper has been supported in
part by the NECTISE programme jointly funded by BAE
Systems and the U.K. EPSRC Grant EP/D505461/1, the UK
EPSRC WRG platform project (No. EP/F057644/1), the
National Basic Research Program of China (973) (No.
2011CB302602), the UK TSB STRAPP project (No. 1926-
19253), and the Major Program of the National Natural
Science Foundation of China (No. 90818028).

REFERENCES

[1] T. Erl, A. Karmarkar, P, Walmsley, H. Haas, L. Yalcinalp, K. Liu, D.
Orchard, A. Tost, J. Pasley, “Web Service Contract Design and
Versioning for SOA,” Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2009.

[2] V. Andrikopoulos, S. Benbernou, M. Papazoglou, " Evolving
Services from a Contractual Perspective," in CAiSE '09: Proceedings
of the 21st International Conference on Advanced Information
Systems Engineering, vol. 5565, pp. 290-304, Springer-Verlag, 2009.

[3] D. Webster, P. Townend, J. Xu. "Interface refactoring in
performance-constrained web services." Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), 2012 IEEE
15th International Symposium on. IEEE, 2012.

[4] D. Russell, L. Liu, Z. Luo, C. Venters, D. Webster, J. Xu, "Realizing
Network Enabled Capability Through Dependable Dynamic Systems
Integration," in proceedings of International Conference on Computer
and Information Technology, pp. 1269-1274, 2010.

Figure 1: Results of baseline response times for

unmodified V1 sensors.

Figure 2: Raw response times (milliseconds) for Initial

Second Stage Experiment.

Figure 3: Raw results of Message Mediation in

Parallel mode.

Figure 4: Raw results of Message Mediation in Serial

mode.

