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A two-stage approach to low-cost wind resource assessment for small-scale wind installations 

has been investigated in terms of its ability to screen for non-viable sites and to provide 

accurate wind power predictions at promising locations. The approach was implemented as a 

case study at ten UK locations where domestic-scale turbines were previously installed. In stage 

one, sites were pre-screened using a boundary layer scaling model to predict the mean wind 

power density, including estimated uncertainties, and these predictions were compared to a 

minimum viability criterion. Using this procedure, five of the seven non-viable sites were 

correctly identified without direct onsite wind measurements and none of the viable sites were 

excluded. In stage two, more detailed analysis was carried out using three months onsite wind 

measurements combined with measure-correlate-predict (MCP) approaches. Using this 

process, the remaining two non-viable sites were identified and the available wind power density 

at the three viable sites was accurately predicted. The effect of seasonal variability on the MCP 

predicted wind resource was considered and the implications for financial projections were 

highlighted. The study provides a framework for low-cost wind resource assessment in cases 

where long-term onsite measurements may be too costly or impractical. 
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1 Introduction 

Small-scale wind energy is a renewable energy technology with exciting prospects as we move 

towards a low carbon energy future. In order to achieve widespread deployment however, it is 

vital to develop tools capable of predicting the wind resource quickly, cheaply and accurately [1]. 

These tools will ensure that turbines are installed in locations which maximize the financial and 

environmental benefit and will allow customers to choose between competing low carbon 

technologies with confidence. 

The need for suitable wind resource assessment tools has been highlighted by several studies. 

In 2008, Encraft along with a number of partners carried out a UK study of 26 building mounted 

small wind turbines, known as the Warwick Wind Trials [2], to investigate turbine performance in 

a variety of locations.  The study highlighted the challenge of accurately predicting the potential 

wind resource using simple methods such as the NOABL (numerical objective analysis of 

boundary layer) [3] wind speed database. Among the study’s conclusions were that more work 

was needed in creating robust methods for predicting mean wind speeds and wind speed 

distributions, particularly in urban areas [2]. Following the Warwick Wind Trials, in 2009 the 

Energy Saving Trust (EST, a UK foundation working in partnership with government and 

business) [4], completed a larger field trial of domestic-scale wind turbines. The field trial 

monitored the performance of 57 small-scale (0.4 – 6 kW) pole and building mounted wind 

turbines in a variety of locations throughout the UK over a one year period with the aim of 

assessing turbine performance at a variety of sites. While the results showed a promising 

potential for small turbines installed at appropriate locations, a large number of the monitored 

sites revealed wind speeds and turbine performance that were significantly lower than expected 

[5, 6].  

In the large-scale wind industry, wind resource assessment is well established and typically 

involves the use of onsite anemometry to collect wind data over a period of 1-3 years [7]. These 
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data are used to make reliable predictions of the long-term wind energy resource as required by 

financial investors. In the small-scale wind industry these timescales are often impractical and 

the impact of such a measurement campaign on the total investment cost may be prohibitively 

high. In the absence of long-term onsite measurements, indirect methods must be used.  

Indirect approaches may be broadly divided into modelling or data-led techniques. Simple 

modelling techniques, such as boundary layer scaling models, can be particularly efficient since 

after development and validation, onsite wind speed measurements are generally not required 

in order to make predictions. However, since uncertainties exist at each stage of the modelling 

process [8], the final predictions may not reach the accuracy required by investors [9]. In 

contrast, data-led techniques which involve direct wind speed measurements at the site of 

interest may result in more accurate resource predictions but they are more costly and time 

consuming to implement. One way of leveraging the advantages of both of these approaches is 

through the deployment of simple modelling techniques to screen sites for suitability followed by 

more detailed assessment of promising locations using short-term onsite wind speed 

measurements.  

To investigate the feasibility of such an approach we have performed a case study of a subset 

of the installations involved in the EST field trial. Since each of these sites represents a location 

that was deemed suitable for the installation of a small-scale wind turbine, they provide an ideal 

opportunity to investigate the implementation of wind resource assessment tools in realistic 

scenarios. The case study is focused exclusively on assessing the wind resource at each site, 

as measured by onsite anemometry, and investigating the degree to which this may be 

predicted using a combined modelling and data-led approach.  

The work addresses the following issues: (I) Investigation of the appropriateness of a boundary 

layer scaling model within a decision making context at real turbine sites for the purpose of 
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identifying locations worthy of further investigation. Specifically, we address the question as to 

whether, given the inherent uncertainties of such approaches, they can be of sufficient accuracy 

to screen sites based on a viability criterion. (II) Quantification of the propagated errors in the 

predicted wind resource arising from uncertainties in the model input parameters and 

identification of the relative importance of these uncertainties using a global sensitivity analysis. 

(III) Estimation of the added value, in terms of the accuracy of the predicted wind resource, of 

implementing a very short-term onsite measurement campaign at promising sites to supplement 

the modelling approach. 

2 Methodology 

The two-stage approach to wind resource assessment proposed in this study, following the 

recommendations from previous work [9, 10], can be summarised as follows:  

(I) Site pre-screening: a boundary layer scaling model is applied at a potential wind 

turbine site to predict the mean wind speed at the proposed hub height of the turbine. 

The wind speed is used to derive a predicted mean wind power density and an 

associated uncertainty and this is compared against a predefined minimum viable 

value. If the predicted value is below this minimum, the site is deemed non-viable 

and excluded from further analysis. 

(II) Detailed analysis: For sites passing the pre-screening stage, short-term (3 months) 

onsite measurements are used along with MCP analysis to make a more precise 

prediction of the available wind resource and to identify any remaining non-viable 

sites. In practice, short-term onsite measurements may be obtained using a mobile 

meteorological mast or portable LiDAR (light detection and ranging) equipment 

depending on the number of sites to be assessed [11]. 
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Using this approach, the additional time and investment required for onsite measurements are 

not wasted on sites which are clearly non-viable and are instead concentrated on sites that have 

already been identified as having a good potential. The success of this approach is investigated 

by comparing predictions made at stages I and II with onsite wind data obtained over a 12 

month period at the selected UK sites. 

The following sections outline each stage of the process in more detail. Firstly, the 

meteorological measurements and the geographical locations of the sites are described. Next, 

details are given of the boundary layer scaling model and MCP approaches used to make wind 

resource predictions, including specific factors related to short onsite measurement periods. 

Finally, a viability criterion for use in the site pre-screening stage is developed. 

2.1 Meteorological measurements 

This study utilises wind data collected during the EST field trial of domestic-scale wind turbines 

mentioned previously. For the duration of the field trial, five minute averages of wind speed 

(resolution 1 ms-1) and wind direction (resolution 1϶) were collected at each turbine location 

using ultrasonic anemometers located at a height close to that of the turbine hub [5]. Following 

the completion of the field trial, these data were transferred to the UK trade body RenewableUK 

for the purpose of further dissemination to the research community. Data for the current study 

were obtained directly from this source. 

In order to fully investigate the wind resource assessment approaches, ideally wind data 

covering a number of years are used to account for both seasonal and inter-annual variations. 

However, given the relative infancy of the small-scale wind industry, long-term wind data from 

small turbine installations are not widely available. In the absence of long-term wind data, 

measurements covering a full year with a relatively strict data coverage criterion are desirable. 

In the current case study, a criterion of greater than 95% data coverage over a full 12 month 
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period was used in order to properly account for seasonal variability. Of the 57 fully monitored 

sites in the field trial, only 10 sites (referred to here as target sites) were found to achieve this 

criterion. While this represents a relatively small sample, the 10 sites were located in a range of 

terrains (urban, sub-urban, rural and coastal) and at a variety of heights above ground level (5-

12 m). Hence they are a useful starting point in investigating general trends associated with the 

application of resource assessment tools to real-world, small-scale wind turbine sites.  

To implement the MCP approaches, concurrent measurements from nearby reference sites are 

required. Reference sites were selected from the UK Meteorological Office (Met Office) 

anemometer network [12] on the basis of their proximity to the target sites and the openness of 

the terrain, as judged by satellite images. In cases of pairings with coastal target sites, 

preference was given to coastal reference sites. The Met Office reference site data used in this 

work consisted of hourly averages of wind speed (resolution 1 knot = 0.51 ms-1) and direction 

(resolution 10϶) recorded at a height of 10 m above ground level and averaged over a complete 

hour. Due to the different averaging periods for the Met Office reference and EST target sites, 

the EST observations were processed to obtain hourly averages of wind speed and direction. 

These data were time-aligned with the hourly Met Office observations resulting in concurrent 

data sets for each reference and target site pair, covering the period April 2008 – March 2009. 

The geographical locations of the target and reference sites are shown in Figure 1 and further 

details are given in Table 1. 
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Figure 1: Approximate geographical locations of meteorological monitoring sites. Circles represent target 
sites (T) and stars represent reference sites (Rf).  

 

Table 1: Summary of meteorological monitoring sites. ݑത௢௕௦ is the observed mean wind speed as obtained 
from onsite wind speed measurements over a 12 month period, ݄ is the target site anemometer height 
above ground level and ݀ is the separation between the target and reference sites.  

© Crown copyright/database right 2011. An Ordnance Survey/EDINA supplied 
service.
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T3 T5
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T10

Rf1

Rf6

Rf2

Rf7

Rf3

Rf5

Rf8

Target sites Reference sites

Site Terrain ǌobs(ms-1) h(m) Site Terrain d(km)

T1 Coastal 1.8 7.7 Rf1 Coastal 43

T2 Rural 4.9 8.0 Rf2 Rural 36

T3 Rural 2.4 9.8 Rf3 Semi-rural 15

T4 Coastal 3.6 5.0 Rf4 Coastal 8

T5 Sub-urban 2.2 11.3 Rf4 Coastal 20

T6 Urban 2.5 9.0 Rf5 Semi-rural 31

T7 Coastal 3.0 7.7 Rf6 Coastal 3

T8 Rural 4.3 7.0 Rf7 Rural 72

T9 Rural 4.6 7.0 Rf7 Rural 59

T10 Urban 2.3 12.0 Rf8 Coastal 50
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2.2 Boundary layer scaling model 

The modelling approach used in this work is based on a semi-empirical (SE) model first 

developed by the UK Met Office, which uses the principles of boundary layer meteorology to 

predict the spatially averaged mean wind speed without the need for direct meteorological 

measurements [8]. The model is also conceptually similar to that applied by Heath et al. [13] to 

investigate the potential energy output from a hypothetical micro-wind turbine installation in 

London. While the study by Heath et al. also investigated the detailed effects of building scale 

wind flows in urban areas using computational fluid dynamics, the SE methodology considers 

only the spatially averaged flow and is applicable to a variety of terrain types. The SE model 

was previously the subject of a detailed study [9] that evaluated its real-world performance and 

suggested modifications to improve the accuracy of its predictions. In this work, we have 

implemented the model along with the modifications recommended in reference [9]. Since a 

detailed description of the model is available elsewhere [8, 9], here we present only a summary 

of the pertinent steps. 

For wind flows close to the Earth’s surface, under neutral stability conditions and in the constant 

stress layer of flow, the vertical profile of the horizontal mean wind speed can be described by 

[14]: 

ሻݖത௔௩ሺݑ ൌ ߢכݑ   ൬ݖ െ ଴ݖ݀ ൰ 

Equation 1 

where ݑത௔௩ is the spatially averaged mean wind speed at height כݑ ,ݖ is the friction velocity with 

units [ms-1], 0.4 = ߢ is the Von Karman constant and ݀ and ݖ଴ are the displacement height and 

roughness length respectively.  
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Note that given the wind speed at some reference height, Equation 1 can be applied to calculate 

the wind speed at some new height ݖ without explicit knowledge of כݑ, providing the remaining 

parameters are known. The variables ݀ and ݖ଴, collectively called the aerodynamic parameters, 

are of particular interest since they describe the characteristics of the surface roughness. The 

displacement height, in effect, shifts the origin of the vertical z-axis to a height ݀ in order to 

account for the blocking effect of local obstacles, while the roughness length ݖ଴ serves as a 

parameterization of the drag force exerted by the roughness elements. These parameters are 

non-trivial to estimate, particularly in complex environments [15, 16].  

In the current methodology, we require both regional estimates (over several kilometres) and 

local estimates (over several hundred metres) of the aerodynamic parameters. Regional 

estimates are obtained using the blending method of Mason [17] where spatially averaged 

values for ݀ and ݖ଴ are derived from the fractionally weighted land cover at the location of 

interest [9]. As an extension of the Met Office approach, we increase the size of the regional 

area from a 1 km x 1 km to a 4 km x 4 km grid square centred on the site of interest in order to 

account more fully for contributions to the regional surface roughness. In addition, directionally 

dependent surface roughness is incorporated through division of the grid square into a further 

four subsectors. The subsectors are then used to estimate the roughness of the upwind fetch 

within a 90 degree angular sector.  This approach has been shown to be of particular 

importance in cases where there are sudden changes in roughness such as at coastal sites [9]. 

The starting point for estimates of the local aerodynamic parameters is a visual assessment of 

the local (~250 m x 250 m) site character using satellite images. In line with the Met Office 

approach [8], the site is classified according to one of seven categories (high height and density 

residential, low height and density residential, open country etc.) and appropriate estimates of ݀ 

and ݖ଴ are applied. Due to the difficulty in relating general site descriptions to specific values of 
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the aerodynamic parameters, as well as the wide range of possible site characteristics, these 

estimates have a high degree of uncertainty [8, 15]. 

Using the principles outlined above, a methodology can be developed to predict the spatially 

averaged, hub-height wind speed at a specific site given a reference wind speed at a known 

height. The approach may be summarized as follows [9]: 

(I) For a specific UK location defined on a grid of 1 km2, a reference mean wind speed at 10 m 

above open, level ground, is obtained from the Met Office National Climate Information Centre 

(NCIC) database [18]. Since the NCIC wind speeds are based on a 30 year average over the 

period 1971 – 2000, and the EST observations used for validation of the method are based on a 

single year of wind data, a correction factor was applied to account for inter-annual variability. 

Three of the reference sites used in this study (Rf1, Rf4 and Rf8) had suitably long-term data 

records and these were used to compare the mean wind speeds for the periods 1971 – 2000 

and April 2008 – March 2009. Based on this comparison, the NCIC wind speeds were multiplied 

by a correction factor of 0.97 in order to reflect the lower wind speed observations during the 

EST observation period. A similar approach was used by Sissons et al. to correct the EST 

observations relative to a 10 year mean [6]. 

(II) The reference wind speed is then scaled up to a height of 200 m, where the flow is 

considered independent of the local and regional roughness. This is achieved using Equation 1 

along with the aerodynamic parameters ݖ଴ = 0.14 m and ݀ = 0, representative of open country. 

Note that while a smaller roughness length (~0.03 m) would be expected for short-grass, 

extended regions of short grass without interruption from hedges and bushes are relatively 

unlikely in UK rural areas [8]. Hence, in practice, ݖ଴ = 0.14 m is considered more representative 

of open country and is in line with the methodology developed in reference [8].  
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(III) The wind speed is then scaled down to an intermediate height known as the blending height 

(the height at which the flow is ‘horizontally homogenous and in equilibrium with the local 

surface’ [17]), again using Equation 1. Here, aerodynamic parameters representative of the 

regional area are applied. The blending height is taken to be the larger of 10 m or two times the 

maximum canopy height of any land use within the regional grid square. This is in accordance 

with previous studies [8, 9] and is based on the assumption of a blending height of 2-5 times the 

height of the roughness elements [19]. Note that strictly this height will also be a function of the 

distance from the roughness change, although this may be impractical to implement in a simple 

automated approach designed to be applied to multiple sites.  

(IV) Equation 1 is then applied a final time to scale the mean wind speed down to the turbine 

hub-height using aerodynamic parameters representative of the local area. A Weibull wind 

speed distribution [20] is used along with the predicted mean wind speed to enable the wind 

power density to be estimated. 

It is important to note that the above methodology is formulated to predict only the spatially 

averaged mean wind speed and associated wind power. While for well exposed locations this is 

likely to be a reasonable approximation, for turbines mounted close to buildings or other 

obstructions, there can be significant local deviations from this spatial average [13, 21]. These 

deviations will depend on factors such as the geometry of the obstructions, the position of the 

turbine within a building array and the prevailing wind direction. Such factors must be assessed 

using suitable correction factors or detailed flow modelling [13], both of which are likely to be 

highly site specific. These corrections are beyond the scope of the boundary layer scaling model 

presented here which is designed to be implemented using simple parameterisations of the 

regional and local surface characteristics. However, it has previously been demonstrated [21] 

that providing certain siting recommendations are adhered to, the spatially averaged mean wind 
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speed can be considered as a good approximation of the lower bound to the wind speed 

experienced at the proposed turbine location. 

2.3 Quantifying prediction uncertainty 

As with any modelling approach, the final mean wind speed and wind power density predictions 

are subject to uncertainties. These arise firstly from assumptions and simplifications inherent in 

the model itself and secondly from uncertainties in the model input parameters. In the following 

discussion we are concerned with the uncertainties arising from the latter. At each stage of the 

model implementation, appropriate input parameters must be chosen. These include the input 

reference wind speed, the regional and local aerodynamic parameters, the blending height and 

the Weibull shape factor required to construct a distribution of wind speeds. Uncertainties in the 

values of these parameters combine to produce uncertainties in the final model predictions. 

Since accurately estimating the regional and local aerodynamic parameters is known to be 

particularly challenging, these are considered as the dominant error source in the mean wind 

speed prediction. These errors combine with the uncertainty in the Weibull shape factor to 

produce errors in the final wind power prediction. 

To quantify the effect of these uncertainties, a quasi-random sampling approach, implemented 

in the MATLAB programming environment, was applied to each individual site prediction using a 

Sobol sequence [22]. A Sobol sequence is a low discrepancy numerical sequence that allows a 

multi-dimensional parameter space to be filled efficiently with minimal gaps. Given a model 

output based on a number of input parameters, sampling using a Sobol sequence allows an 

efficient estimation of the overall output uncertainty related to various combinations of input 

parameters. For the mean wind speed prediction, a five dimensional Sobol sequence of length 

1024 was used to sample a range of values for the four aerodynamic parameters of regional 

and local ݖ଴ and ݀ as well as the blending height. An approximate uncertainty in the default 

aerodynamic parameter values for each terrain of +/- 35% was estimated, based on the ranges 
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recommended in a comprehensive study by Grimmond and Oke [15]. A range of +/- 35% was 

also used for the blending height since it was found that larger ranges resulted in parameter 

combinations within the Sobol sequence that were not physically viable. For the mean wind 

power density prediction, a six dimensional Sobol sequence of length 1024 was used, with the 

Weibull shape factor as the sixth sampling parameter. Weibull shape factors in the range ݇ = 

1.5 - 2.3 were employed based on the results of a previous study that obtained Weibull shape 

factors from 38 UK sites [9]. Using such a sampling approach gives distributions of wind speed 

and power density predictions which reflect the propagation of uncertainties within the input 

parameters to the outputs. Presented here are the mean predictions of wind speed and power 

density from these distributions with uncertainties represented by plus or minus twice the 

standard deviation (+/- 2ı) across the 1024 samples.  

In addition to estimating the overall prediction uncertainty using a sampling approach, it is also 

informative to understand the relative contributions to this uncertainty from each of the six input 

parameters. Ultimately, such information could be used to improve the model by obtaining better 

estimates of the most significant parameters. To investigate these contributions, a global 

sensitivity analysis was conducted using the GUI-HDMR (graphical user interface – high 

dimensional model representation) software tool in MATLAB, which has successfully been 

applied in a number of environmental modelling contexts [23]. Given a quasi-random sample 

across specified input parameters, (in the present case these are obtained from a six-

dimensional Sobol sequence as described above), and the corresponding model output 

(predicted wind power density) the GUI-HDMR applies a variance-based sensitivity analysis to 

estimate the relative importance of each of the input parameters. The output sensitivity to each 

parameter is quantified by means of first-order ௜ܵ, and second-order ௜ܵ௝, sensitivity indices. The 

first-order indices represent the fractional contribution of the ݅௧௛ parameter to the output 

variance and the second-order indices represent the contribution from interactions between 
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pairs of input parameters. The sum across all indices should be 1. In the current study, first- and 

second-order indices were calculated for each of the ten test sites. Second-order effects were 

however found to be small and hence are not considered in the following discussion. A detailed 

description of the GUI-HDMR is available in reference [23]. 

2.4 Measure-correlate-predict approaches 

The measure-correlate-predict (MCP) technique is a data-led method which increases the value 

of short-term wind measurements recorded at a potential wind energy site by correlating these 

with concurrent data recorded at a nearby reference site. In this work, the short-term concurrent 

wind measurements at the target and reference sites are referred to as the training data. The 

correlation obtained from the training data is applied to long-term historical data records from 

the reference site to construct a long-term time series of predicted wind speeds at the target 

site. The long-term predicted time series can then be used to extract statistical descriptors of the 

wind resource including the mean wind speed and average wind power density. Since long-term 

wind speed records are routinely held by airports and national weather forecasters, this 

technique provides a means of reducing the onsite measurement time required at the target 

site.  

MCP is already utilized in the large-scale wind industry where the relationship between the 

reference and target sites is typically estimated from a measurement period covering a year or 

more [24]. However, recent studies [10, 11] applying the MCP approach to measurement 

periods of much less than one year have shown promising results providing appropriate 

precautions are taken relating to seasonal variability and data coverage. Based on these 

observations, we have applied the MCP techniques of variance ratio regression (VR) and linear 

regression (LR) to achieve a more detailed investigation of the available wind power at each 

site. Full details of the MCP approaches can be found in reference [10], hence only a brief 

overview is provided below. 
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2.4.1 Linear regression 

A linear correlation between concurrent wind speed observations at the reference and target 

sites, ݑ௧௔௥ and ݑ௥௘௙, can be described by the linear equation [25]: 

௧௔௥ݑ ൌ ߙ ൅ ௥௘௙ݑߚ ൅  ߝ

Equation 2 

where ߙ and ߚ represent the regression coefficients obtained by minimising the sum of squares 

of the residuals and ߝ is an error term which represents the residual scatter about the mean 

prediction. Given a linear regression on the observed data, a predicted target site wind speed ݑො௧௔௥, can be obtained using the extracted regression parameters and the concurrent reference 

site wind speed ݑ௥௘௙. To account for the residual scatter about ݑො௧௔௥, which is important in 

accurately predicting the mean wind power density [10], the residual scatter term ߝ, is modelled 

using a zero-mean Gaussian distribution of the form: 

ሺͲǡࣨ ̱ ߝ ො௥௘௦ଶߪ ሻ  
Equation 3 

Here ߪො௥௘௦ represents the sample standard deviation of the residuals as estimated from the 

training data using the expression [26]: 

ො௥௘௦ߪ ൌ ඩ ͳܰ െ ʹ෍ሺݑ௧௔௥ െ ො௧௔௥ሻଶேݑ
௜ୀଵ  

Equation 4 

where ܰ is the number of training observations. 
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A representation of the residual scatter is reconstructed by adding random draws from the 

Gaussian distribution described by Equation 3 to the individual mean predictions ݑො௧௔௥ at the 

target site.  

2.4.2 Variance ratio method 

In the case of simple LR where the error term ߝ is not included, it is known that the variance of 

the predicted wind speeds about the mean is not properly accounted for. In response to this, 

Rogers et al. [27] proposed a variation of simple LR. In this approach, the predicted target site 

wind speeds are linearly related to the observed reference site wind speeds by the expression: 

ො௧௔௥ݑ ൌ ቈݑത௧௔௥ െ ቈߪො௧௔௥ߪො௥௘௙቉ ത௥௘௙቉ݑ ൅ ቈߪො௧௔௥ߪො௥௘௙቉  ௥௘௙ݑ

Equation 5 

where ߪො௧௔௥ and ߪො௥௘௙ are the sample standard deviation about the mean ݑത௧௔௥ and ݑത௥௘௙ at the 

target and reference sites respectively, as estimated from the training period. Since the ratio ߪො௧௔௥Ȁߪො௥௘௙ represent the gradient of the linear regression in Equation 5, this approach is referred 

to as the variance ratio (VR) method [27].  

To account for variations in the upwind surface roughness, and in line with previous approaches 

[10, 27], the LR and VR approaches were applied sector-wise to data which had been binned 

into 30 degree angular sectors according to the reference site wind angle. This results in 12 

separate regression equations for each reference/target site pair. For sectors that have 

recorded less than 20 data entries during the training period, a global fit was applied to all 

angular sectors. 
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2.4.3 Application of MCP approaches to data of limited length 

In order to rigorously test the success of new MCP approaches, non-overlapping periods should 

be used for training the algorithms and testing their performance. This implies the use of wind 

data covering multiple years. However, the aim of the current case study is not to test new MCP 

approaches but rather to establish to what degree the specific 12 month wind resource, 

covering the period April 2008 – March 2009, may have been predicted if the measurement 

period was restricted to just three months. While this negates the need for wind data covering 

multiple years, the fact that the wind data used in this study cover a single year leads to two 

specific challenges related to seasonal variability which must addressed. Firstly, seasonally 

varying synoptic weather patterns are likely to affect the regression parameters extracted during 

the 3 month training period and secondly, since the total data period covers just 12 months, the 

use of non-overlapping training and testing periods will result in seasonal bias. 

To account for these issues the following approach was used: (I) regression parameters were 

estimated using a full 3 month training period, (II) based on the extracted parameters, the MCP 

approaches were implemented to predict a time-series of wind speeds for the remaining 9 

months of the year, (III) an annual wind resource prediction was made by combining the 9 

months of predicted wind speeds with the 3 months of measurements during the training period. 

These steps represent a single prediction of the annual wind resource based on just 3 months 

measurements. To account for seasonal variability, the training period was next shifted by one 

month and the above steps were repeated to obtain a second prediction of the annual wind 

resource. This process was repeated for all months of the year in order to include training 

periods covering all combinations of seasons. This process results in 12 separate predicted 

wind speed time series for the period April 2008 – March 2009. This approach replicates the 

range of possible predictions that may be obtained using any arbitrary 3 month training period to 

predict the full 12 month wind resource. 
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2.5 A viability criterion 

In this work, the modelling (SE) and data-led (LR and VR) approaches to wind resource 

assessment were applied in a two-stage process involving site pre-screening followed by more 

detailed wind power predictions. The pre-screening stage involved the application of only the SE 

model in order to test sites against some criterion of viability. Sites passing the criterion were 

judged to be worthy of more detailed investigation using onsite measurements and the MCP 

approaches. 

Defining a viability criterion is non-trivial since one may consider environmental viability (the 

ability of a turbine to produce sufficient energy to repay its embedded carbon) and financial 

viability, (the ability of a turbine to produce sufficient energy to repay the financial investment). 

These will vary greatly depending on the materials and costs of specific turbines as well as the 

availability and level of government sponsored financial incentives. In the context of small-scale 

wind turbine installations, recent studies concerned with assessing city-wide wind energy 

potential [28, 29] have used a mean wind speed viability criterion of 4-5 ms-1, these values are 

also in line with industry advice offered by the UK trade body RenewableUK [30]. 

While a minimum mean wind speed is a useful starting point, the available wind power will 

depend both on the mean wind speed and the distribution of wind speeds at the proposed site. 

Hence, it is useful to express this criterion in terms of a minimum wind power density. Assuming 

a Weibull distribution of wind speeds, the mean Betz power density in the wind ݌ҧௗ, can be 

expressed as [31]: 

ҧௗ݌ ൌ ͳ͸ʹ͹ͲǤͷݑߩଷതതത ൌ ͲǤͷݑߩതଷ ͳ͸ʹ͹ Ȟሺͳ ൅ ͵Ȁ݇ሻሾȞሺͳ ൅ ͳȀ݇ሻሿଷ 

Equation 6 
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where the factor 16/27 represents the Betz limit, 1.225 = ߩ kgm-3 is the air density, Ȟ is the 

gamma function, ݇ is the Weibull shape factor and  ݑଷതതത represents the mean of the cubed wind 

speeds, (as opposed to the cube of the mean wind speed, ݑതଷ). 

Using a minimum mean wind speed of 4 ms-1 and a Weibull shape factor ݇ = 1.9, as 

representative of UK sites [9], this equates to a viability criterion of ݌ҧௗ ≥  47 Wm-2. An intuitive 

feel for this number can be gained through some simple calculations. Assuming 50% of the 

available Betz power can be converted to electrical power [4], (this is a broad approximation 

since efficiency will vary with wind speed and turbine design), for a small-scale turbine with a 

blade diameter of 2 m, this equates to an average power production of 74 W and an annual 

energy production of 647 kWh. For a larger turbine with a blade diameter of 6 m, this equates to 

an average power production of 664 W and an annual energy production of 5821 kWh. Note 

that efficiencies may be reduced for building mounted turbines in urban areas due to turbulent 

wind flows. In the following analysis, the minimum power density criterion of ݌ҧௗ ≥ 47 Wm-2 is 

applied to screen for viable sites. Locations predicted to have a power density below this value 

are deemed non-viable and are excluded at the site pre-screening stage.  

3 Results and Discussion 

The first stage in assessing the wind resource is to obtain a prediction of the mean wind speed. 

Figure 2 shows the predicted and observed mean wind speeds at the ten target sites over the 

full 12 month period using the SE model as well as the MCP approaches of LR and VR. As a 

benchmark, wind speeds from the NCIC database, used as input for the SE model, have also 

been included. Since the NCIC wind speeds represent expected values over open terrain, these 

have been scaled to the anemometer height using Equation 1 with no correction for the local 

site characteristics (i.e. using aerodynamic parameters representative of open country  ݖ଴ = 0.14 

m and ݀ = 0). For the MCP approaches, the predicted mean wind speeds are displayed as 
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predicted wind speed ranges rather than point values, representing the variable predictions 

obtained using training data from different seasons. The MCP predictions cover a range of +/- 

0.1 to 0.6 ms-1 across the different seasons using LR and this range tends to be centred close to 

the observed values. The SE predictions exhibit significantly more scatter with regular over or 

under predictions and an estimated uncertainty of +/- 0.3 to 0.7 ms-1 reflecting the uncertainty in 

the input aerodynamic parameters. Despite these uncertainties, SE offers a notable 

improvement over the uncorrected NCIC wind speeds, thus highlighting the value of the model. 

Note that in the case of the SE predictions, not all the error bars cross the observed values, 

(represented by the dotted line) indicating that some modelling uncertainties are unaccounted 

for. This is not surprising since the process detailed in Section 2.3 only accounts for 

uncertainties in the model input parameters and does not consider the specific model 

assumptions or the fact that the mean wind speed predictions are a spatial average. The 

unaccounted for errors are particularly noticeable for sites with a low observed mean wind 

speed, indicating that local obstructions to the wind flow may be causing local sheltering of 

these sites.  
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Figure 2: Predicted (ݑത௣௥௘ௗ) verses observed (ݑത௢௕௦) mean wind speeds at ten target sites using the SE 

model (circles) and the MCP approaches of LR and VR (solid bars). The NCIC wind speeds scaled to 
anemometer height (filled circles) are also shown. The error bars attached to the SE predictions represent 
an uncertainty of +/- 2ı. The MCP predictions are represented by solid bars indicating the range of 
predictions obtained for training data collected during different seasons. The dotted line represents a one-
to-one relationship. 

3.1 Site pre-screening 

In order to apply the site pre-screening procedure, an estimate of the mean wind power density ݌ҧௗ, must be made for each target site. Figure 3 shows the observed and predicted values of ݌ҧௗ 

for each site based on the SE mean wind speed predictions. The mean and uncertainty ranges 

for the predicted ݌ҧௗ are obtained using Equation 6 along with the sampling process outlined in 

Section 2.3 to account for uncertainties in the input parameters. On average, the calculated 

uncertainty in ݌ҧௗ is around +/- 50% with higher values observed at complex urban sites and 

lower values observed at open rural sites. As with the mean wind speed predictions, the 

estimated uncertainties in ݌ҧௗ do not cross the observed values in some cases indicating 

additional errors that are not accounted for in the sampling process. In particular, there appears 

to be a net positive bias in the predicted mean wind speed and wind power density for the sites 

considered in this study. Despite this however, the predictions and their associated uncertainties 

do allow the general trends to be captured.  
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Figure 3: Observed and predicted mean wind power density ݌ҧௗ, for ten target sites obtained using an SE 
model. The circles represent the mean prediction and the error bars show an uncertainty of +/- 2ı. The 
dotted horizontal line represents the viability criterion of ݌ҧௗ ≥ 47 Wm

-2
. 

To implement the site pre-screening process we wish to identify sites which are likely to be 

unsuitable as judged by the viability criterion of ݌ҧௗ ≥ 47 Wm-2. To reduce the likelihood of 

mistakenly excluding viable sites, only sites where even the most optimistic wind power 

prediction is below the viability criterion should be excluded. Taking this approach, all sites 

where the predicted ݌ҧௗ plus the associated uncertainty (top of each error bar) is below the 

viability criterion should be deemed unsuitable.  

Figure 3 shows that based on this methodology, five of the ten sites (T1, T3, T4, T5 and T6) 

would be deemed non-viable and excluded from further investigation. Figure 3 also shows that 

based on the onsite wind speed observations, these exclusions would be correct since none of 

these sites reach the minimum power density criterion. Given that turbines were installed at all 

ten sites, this result shows that even a site pre-screening process involving no onsite 

measurements would have been very valuable in identifying these sites at an early stage and 

avoiding further investments.   
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Of the five sites that passed the viability criterion, onsite observations show that three (T2, T8 

and T9) exhibited a ݌ҧௗ ≥ 47 Wm-2 while the remaining two fell well below this level. Hence, for 

the sites considered in this study, the pre-screening approach has successfully predicted five 

out of the seven non-viable sites without excluding any of the three viable sites. Based on a less 

conservative approach, namely the mean wind power prediction, all seven non-viable sites 

would have been correctly excluded, although two of these (T7 and T10) only marginally so. It is 

clear from Figure 3 that there are significant errors and uncertainties in the predicted ݌ҧௗ using 

the SE approach, indicating that it would be unwise to make financial projections based on 

these values. However, when used as a site pre-screening tool, the accuracy requirements are 

less strict requiring only that the general trends be predicted.  

3.2 Global sensitivity analysis 

Table 2 shows the first-order sensitivity indices calculated using GUI-HDMR, for each of the six 

model input parameters at each site with respect to the output prediction ݌ҧௗ. Parameters with 

larger index values (lighter shading) indicate that the output is more sensitive to that parameter.  

 

Table 2: First-order sensitivity indices ௜ܵ for the six SE model input parameters of regional displacement 
height and roughness length (݀௥௘௚, ݖ଴ǡ௥௘௚), blending height (ݖ௕௛), local displacement height and roughness 

length (݀௟௢௖௔௟, ݖ଴ǡ௟௢௖௔௟) as well as Weibull shape factor ሺ݇ሻ at each target site. Indices are calculated with 

respect to the output of predicted wind power density (݌ҧௗ). Shading indicates the relative contribution of 
each parameter to the uncertainty, from smallest (dark) to largest (light). 

On average, the single parameter with the highest sensitivity index is the Weibull shape factor ݇. However, the combined contribution of the remaining five parameters related to the mean 

wind speed prediction is proportionally larger, highlighting the importance of these parameters. 

Parameter T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Average

dreg (m) 0.047 0.106 0.095 0.008 0.107 0.024 0.054 0.097 0.105 0.089 0.073

z0,reg (m) 0.015 0.035 0.037 0.005 0.037 0.011 0.023 0.028 0.036 0.063 0.029

zbh (m) 0.007 0.188 0.062 0.013 0.035 0.010 0.010 0.130 0.197 0.013 0.066

dlocal (m) 0.352 0.000 0.167 0.593 0.112 0.626 0.344 0.000 0.000 0.337 0.253

z0,local (m) 0.284 0.054 0.209 0.224 0.171 0.210 0.263 0.074 0.067 0.190 0.174

k 0.263 0.589 0.390 0.132 0.500 0.069 0.269 0.644 0.568 0.254 0.368



24 
 

While there are site specific differences, overall the SE model is most sensitive to the local 

aerodynamic parameters and less sensitive to the regional parameters. Hence, particular care 

should be taken in obtaining accurate estimates of the local roughness length and displacement 

height. In most cases, the blending height uncertainty has a smaller contribution to the overall 

uncertainty than the local aerodynamic parameters. However, for the rural sites (T2, T8 and T9) 

where the local displacement height is fixed at zero, the blending height becomes a more 

significant parameter. 

3.3 Detailed site assessment using MCP 

Using the two stage process set out in this study, only the five sites that passed the site pre-

screening stage, (T2, T7, T8, T9 and T10), would be considered for further analysis using onsite 

measurements and the MCP approaches. For completeness however, the MCP analysis is 

undertaken for all ten target sites. Figure 4 shows the wind power density predictions for each 

site using the MCP approaches of LR and VR as detailed in Section 2.4. The predicted values 

of ݌ҧௗ are shown as ranges representing the variable predictions obtained using training data 

from different seasons.  
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Figure 4: Observed and predicted mean wind power density ݌ҧௗ, for ten target sites obtained using the 
MCP approaches of LR and VR with a training length of three months. The bars represent the range of 
predictions obtained for training data collected during different seasons. The dotted horizontal line 
represents the viability criterion of ݌ҧௗ ≥ 47 Wm

-2
. 

It is apparent from Figure 4 that significant improvements in accuracy are obtainable through the 

application of the MCP approaches. For all sites, the observed  ݌ҧௗ is within the ranges predicted 

by the MCP analysis and the average uncertainty due to seasonal variation is around +/- 22% 

using LR. The large reduction in the error and uncertainty ranges compared to the SE approach 

highlight the added value of onsite measurements even if these are restricted to just 3 months. 

The two non-viable sites that passed the initial pre-screening stage, T7 and T10, are clearly 

picked up at the secondary MCP stage as having a very low wind resource. The MCP 

predications also show that the site T4, which was deemed non-viable in the initial pre-

screening stage, is actually marginal and could be deemed as a viable site depending on the 

season used for training the MCP algorithms. Of the two MCP approaches, LR appears to be 

more accurate than VR in agreement with previous work [10]. While the MCP approaches offer 

more accurate predictions compared to the SE model, the short-term onsite measurement 

period (3 months) and associated seasonality do introduce uncertainties. For the three viable 
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sites, (T2, T8 and T9), the maximum percentage error in ݌ҧௗ is between 21% and 38% using LR, 

hence these uncertainties must be taken into consideration when making financial projections.  

3.4 Seasonal variability 

The uncertainty in the ݌ҧௗ predictions in Figure 4 is related to seasonal weather patterns which 

impact on the extracted regression parameters. Given an arbitrary three month MCP training 

period, the resulting prediction of the annual ݌ҧௗ could lie at any point within the ranges shown in 

Figure 4 making it unclear whether the prediction is an under- or over-estimate of the true wind 

resource. Figure 5 shows the variation in the predicted ݌ҧௗ for the three viable sites using LR 

trained over 12 different three month periods throughout the year. The observed values are also 

shown for comparison. 

 

Figure 5: Predicted mean wind power density ݌ҧௗ for the viable target sites as a function of the three 
month season used for training the LR algorithm. The dotted lines are included as a guide to the eye. The 
solid horizontal lines show the observed values. 

While there appears to be some similarity between the predictions at sites T8 and T9 during the 

first part of the year, overall there appears to be little correlation between the season used for 

training the MCP algorithms and the sign of the error in ݌ҧௗ at these sites. Hence, a cautious 
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approach would be to assume that the MCP prediction is at the top of the range shown in Figure 

4. Previous work at a larger number of sites has indicated a possible relationship between the 

average magnitude of the error and the training season and this may lead to recommendations 

of the best seasons in which to obtain onsite measurements so as to minimise the overall 

prediction errors [10]. 

4 Conclusions 

The feasibility of applying a two-stage approach to low-cost wind resource assessment for 

small-scale wind turbine installations using a combination of modelling and short-term onsite 

wind measurements has been investigated. The approach involves: (I) site pre-screening using 

predictions of wind power density obtained from an SE model with no direct wind measurements 

and (II) more detailed assessment using three months onsite wind measurements combined 

with MCP. As an extension to previous implementations of the SE model, the propagation of 

errors due to uncertainties in the input parameters was investigated and a global sensitivity 

analysis was conducted. 

A case study of 10 UK sites where domestic-scale wind turbines were previously installed 

showed that based on a minimum wind power density criterion, five of the seven non-viable 

sites would have been identified in advance by using the site pre-screening procedure, taking 

account of the estimated uncertainties, without the need for onsite wind measurements. The 

remaining two non-viable sites could also have been identified by obtaining just three months 

onsite wind measurements in combination with MCP analysis. In addition, the MCP analysis 

would have provided more accurate and reliable predictions of the available wind resource at 

the three viable sites. However, MCP predictions based on very short-term measurement 

periods are subject to seasonal variability and this introduces additional uncertainties in the 
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predicted wind resource. These uncertainties should be taken into consideration when making 

financial projections based on short measurement periods. 

The results provide a framework for leveraging the advantages of both modelling and data-led 

approaches to wind resource assessment for small-scale installations where more 

comprehensive long-term wind measurements may not be financially or practically viable. 

Further work should consider applying this framework to a larger number of sites over longer 

time periods to investigate its general applicability. 
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