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Abstract 

Crop models of crop growth are increasingly used to quantify the impact of global changes 

due to climate or crop management. Therefore, accuracy of simulation results is a major 

concern. Studies with ensembles of crop models can give valuable information about model 

accuracy and uncertainty, but such studies are difficult to organize and have only recently 

begun. We report on the largest ensemble study to date, of 27 wheat models tested in four 

contrasting locations for their accuracy in simulating multiple crop growth and yield 

variables. The relative error averaged over models was 24-38% for the different end-of-

season variables including grain yield (GY) and grain protein concentration (GPC). There 

was little relation between error of a model for GY or GPC and error for in-season variables. 

Thus, most models did not arrive at accurate simulations of GY and GPC by accurately 

simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-

mean) or median (e-median) of simulated values, gave better estimates than any individual 

model when all variables were considered. Compared to individual models, e-median ranked 

first in simulating measured GY and third in GPC. The error of e-mean and e-median 

declined with an increasing number of ensemble members, with little decrease beyond 10 
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models. We conclude that multimodel ensembles can be used to create new estimators with 

improved accuracy and consistency in simulating growth dynamics. We argue that these 

results are applicable to other crop species, and hypothesize that they apply more generally to 

ecological system models. 

 

Introduction 

Global change with increased climatic variability are projected to strongly impact crop and 

food production, but the magnitude and trajectory of these impacts remain uncertain 

(Tubiello et al., 2007). This uncertainty, together with the increasing demand for food of a 

growing world population (Bloom, 2011), has raised concerns about food security and the 

need to develop more sustainable agricultural practices (Godfray et al., 2010). More 

confident understanding of global change impacts is needed to develop effective adaptation 

and mitigation strategies (Easterling et al., 2007). Methodologies to quantify global change 

impacts on crop production include statistical models (Lobell et al., 2011) and process-based 

crop simulation models (Porter & Semenov, 2005), which are increasingly used in basic and 

applied research and to support decision making at different scales (Challinor et al., 2009, Ko 

et al., 2010, Angulo et al., 2013, Rosenzweig et al., 2013b). 

 

Different crop growth and development processes are affected by climatic variability via 

linear or non-linear relationships resulting in complex and unexpected responses (Trewavas, 

2006). It has been argued that such responses can best be captured by process-based crop 

simulation models that quantitatively represent the interaction and feedback responses of 

crops to their environments (Porter & Semenov, 2005, Bertin et al., 2010). Wheat is the most 

important staple crop in the world providing over 20% of the calories and proteins in human 

diet (FAOSTAT, 2012). It has therefore received much attention from the crop modeling 
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community and over 40 wheat crop models are in use (White et al., 2011). These differ in the 

processes included in the models and the mechanistic detail used to model individual 

processes like evapotranspiration or photosynthesis. Therefore, a thorough comparative 

evaluation of models is essential to understand the reliability of model simulations and to 

quantify and reduce the uncertainty of such simulations (Rötter et al., 2011). 

 

The Wheat Pilot study (Asseng et al., 2013) of the Agricultural Model Intercomparison 

and Improvement Project (AgMIP; Rosenzweig et al., 2013b) compared twenty-seven wheat 

models, the largest ensemble of crop models created to date. The models vary greatly in their 

complexity and in the modeling approaches and equations used to represent the major 

physiological processes that determine crop growth and development and their responses to 

environmental factors, see Table S3 in supplemental in Asseng et al. (2013). 

 

An initial study (Asseng et al., 2013) analyzed the variability between crop models in 

simulating grain yield (GY) under climate change situations without specifically investigating 

multimodel ensemble estimators considering other end-of-season and in-season variables to 

better justify their possible application. The present analysis uses the resulting dataset to 

study how the multimodel ensemble average or median can reproduce in-season and end-of-

season observations. In its simplest and most common form, a multimodel ensemble 

simulation is produced by averaging the simulations of member models weighted equally 

(Knutti, 2010). This method has been practiced in climate forecasting (Räisänen & Palmer, 

2001, Hagedorn et al., 2005) and in ecological modeling of species distribution (Grenouillet 

et al., 2011), and it has been shown that multimodel ensembles can give better estimates than 

any individual model. Such improvement in skill of a multimodel ensemble may be also 

applicable to crop models. Preliminary evidence suggests that the average of ensembles of 
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simulations is a good estimator of GY for several crops (Palosuo et al., 2011, Rötter et al., 

2012, Bassu et al., 2014) and possibly even better than the best individual model across 

different seasons and sites (Rötter et al., 2012). However, a detailed quantitative analysis of 

the quality of simulators based on crop model ensembles, compared to individual models is 

lacking. By looking at outputs of multiple growth variables (both in-season and end-of-

season), we would get a broader picture of how ensemble estimators perform and a better 

understanding of why they perform well compared to individual models. It is important 

therefore to consider not only GY but also other growth variables. If multimodel ensembles 

are truly more skillful than the best model in the ensemble, or even simply better than the 

average of the models, then using ensemble medians or means may be a powerful estimator 

to evaluating crop response to crop management and environmental factors.  

 

Model evaluations can give quite different results depending on the use of the model that 

is studied. Here we investigate the situation where models are applied in environments for 

which they have not been specifically calibrated, which is typically the situation in global 

impact studies (Rosenzweig et al., 2013a). The model results were compared to measured 

data from four contrasting growing environments. The modeling groups were provided with 

weather data, soil characteristics, soil initial conditions, management and flowering and 

harvest dates for each site. Although only four locations were tested in the AgMIP Wheat 

Pilot study, this limitation is partially compensated for by the diversity of the sites ranging 

from high to low yielding, from short to long season, and irrigated and not irrigated 

situations.  

 

Two main approaches to evaluate the accuracy and uncertainty of the AgMIP wheat model 

ensemble were followed. First we evaluated the range of errors and the average error of the 
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models for multiple growth variables, including both in-season and end-of-season variables. 

Secondly, we evaluated two ensemble-based models, the mean (e-mean) and the median (e-

median) of the simulated values of the ensemble members. Finally, we studied how the error 

of e-mean and e-median changed with the size of the ensemble. 

 

Materials and Methods 

Experimental data 

Quality-assessed experimental data from single crops at four contrasting locations 

representing diverse agro-ecological conditions were used. The locations were Wageningen, 

The Netherlands (NL; Groot & Verberne, 1991), Balcarce, Argentina (AR; Travasso et al., 

2005), New Delhi, India (IN; Naveen, 1986), and Wongan Hills, Australia (AU; Asseng et 

al., 1998). Typical regional crop management was used at each site. In all experiments, the 

plots were kept weed-free, and plant protection methods were used as necessary to minimize 

damage from pests and diseases. Crop management and soil and cultivar information, as 

given to each individual modeling group, are given in Table 1. 

 

Daily values of solar radiation, maximum and minimum temperature and precipitation 

were recorded at weather stations at or near the experimental plots, except for IN solar 

radiation which was obtained from the NASA POWER dataset of modeled data (Stackhouse, 

2006) that extends back to 1983. Daily values of 2-meter wind speed (m s-1), dew point 

temperature (ºC), vapor pressure (hPa), and relative humidity (%) were estimated for each 

location from the NASA Modern Era Retrospective-Analysis for Research and Applications 

(Bosilovich et al., 2011), except for NL wind speed and vapor pressure that were measured 

on site. Air CO2 concentration was taken to be 360 ppm at all sites. A weather summary for 

each site is shown in Table 1 and Fig. 1. 
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For all sites, end-of-season (i.e. ripeness-maturity) values for GY (t DM ha-1), total 

aboveground biomass (AGBMm, t DM ha-1), total aboveground nitrogen (AGNm, kg N ha-1), 

and grain N (GNm, kg N ha-1) were available. From these values, biomass harvest index (HI = 

100 × GY/AGBMm, %), N harvest index (NHI = 100 × GNm/AGNm, %), and grain protein 

concentration (GPC = 0.57 × GNm/GY, % of grain dry mass) were calculated. In-season 

measurements included leaf area index (LAI, m2 m-2; 15 measurements in total), total 

aboveground biomass (AGBM, t DM ha-1; 28 measurements), total aboveground N (AGN, kg 

N ha-1; 27 measurements) and soil water content to maximum rooting depth (mm, 28 

measurements). Plant-available soil water to maximum rooting depth (PASW, mm) was 

calculated from the measured soil water content by layer ( VΘ , vol%), the estimated lower 

limit of water extraction (LL, vol%) , and the thickness of the soil layers (d, m): 

 

 ( )V,
1

PASW LL
k

i i i

i

d
=

= × Θ −  (1) 

 
where k is the number of sampled soil layers. 

 

Based on the critical N dilution curve of wheat (Justes et al., 1994), a N nutrition index 

(NNI, dimensionless) was calculated to quantify crop N status. Although this curve is 

empirical, it is based on solid theoretical grounds (Lemaire & Gastal, 1997). Climatic 

conditions can affect growth and N uptake differently, but the NNI reflects these effects in 

terms of crop N needs (Lemaire et al., 2008, Gonzalez-Dugo et al., 2010). For a given 

AGBM, NNI was calculated as the ratio between the actual and critical ( CN ; g N g-1  DM) 

AGN concentrations defined by the critical N dilution curve (Justes et al., 1994): 
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 0.442
C 5.35 AGBMN −= ×  (2) 

 
If the NNI value is close to 1 it indicates an optimal crop N status, a value lower than 1 

indicates N deficiency and a value higher than 1 indicates N excess.  

 

Models and setup of model intercomparison 

The models considered here were the 27 wheat crop models (Table S1 in supplemental) used 

in the AgMIP Wheat Pilot study (Asseng et al., 2013). All of these models have been 

described in publications and are currently in use. Not all models simulated all measured 

variables, either because the models did not simulate them or because they were not in the 

standard outputs. Of the 27 models, 23 models simulated PASW values, and 20 simulated 

AGN and GN, and therefore NNI and GPC could be calculated for these 20 models. NHI 

could be calculated for 19 models.  

 

All modeling groups were provided with daily weather data (i.e. precipitation, minimum 

and maximum air temperature, mean relative air humidity, dew point temperature, mean air 

vapor pressure, global radiation and mean wind speed), basic physical characteristics of soil, 

initial soil water and N content by layer and crop management information (Table S1 in 

supplemental). No indication of how to interpret or convert this information into parameter 

values was given to the modelers. Modelers were provided with observed anthesis and 

maturity dates for the cultivars grown at each site. Qualitative information on vernalization 

requirements and daylength responses were also provided. All models were calibrated for 

phenology to avoid any confounding effects. 
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In the simulations, phenology parameters were adjusted to reproduce the observed anthesis 

and maturity dates, but otherwise models were not specifically adjusted to the growth data, 

which were only revealed to the modelers at the end of the simulation phase of the project. 

The information provided correspond to the partial model calibration in Asseng et al. (2013). 

Modelers were instructed to keep all parameters except for genotypic coefficients, constant 

across all four sites. The soil characteristics and initial conditions and crop management were 

specific to each site but were the same across all models. 

 

The experimental data used in this study have not been used to develop or calibrate any of 

the 27 models. Experiments at AU and NL were used by one and two models as part of large 

datasets for model testing in earlier studies, respectively; but no calibration of the models was 

done. Except for the four Expert-N models which were run by the same group, all models 

were run by different groups without communication between the groups regarding the 

parameterization of the initial conditions or cultivar specific parameters. In most cases, the 

model developers ran their own model. 

 

Model evaluation 

Many different measures of the discrepancies between simulations and measurements have 

been proposed (Bellocchi et al., 2010, Wallach et al., 2013), and each captures somewhat 

different aspects of model behavior. We concentrated on the root mean squared error (RMSE) 

and the root mean squared relative error (RMSRE), where each error is expressed as a 

percentage of the observed value. The RMSE has the advantage of expressing error in the 

same units as the variable. For comparing very different environments likely to give a broad 

range of crop responses, the relative error may be more meaningful than the absolute error as 

it gives more equal weight to each measurement. However, RMSRE needs to be interpreted 
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with care because it is very sensitive to errors when measured values are small, as occurred 

for several early-season growth measurements. 

 

RMSE was calculated as the square root of the mean squared error (MSE). MSE for 

model m and for a particular variable (MSEm) was calculated as: 

 

 ( )
2

,
1

1
ˆMSE

N

m i m i

i

y y
N =

= −  (3) 

 

where iy  is the value of the ith measurement of this variable, ,ˆ
m i

y  is the corresponding value 

simulated by model m, and N is the total number of measurements of this variable (i.e. the 

sum over sites and over sampling dates per site for in-season variables). 

 

RMSRE was calculated as: 

 

 

2

,

1

ˆ1
RMSRE 100

N
i m i

m

i i

y y

N y=

− 
= ×  

 
  (4) 

 
To assess whether a model that simulates well for one variable also performs well for 

other variables, Pearson’s product-moment correlation between the RMSE or RMSRE value 

of each model was calculated across the variables. The adjusted two-sided P-values (q-

values) resulting from the correction for multiple tests were calculated and reported here. 

Multimodel ensemble estimators 

We considered two estimators that are based on the ensemble of model simulations. The first 

ensemble estimator, e-mean, is the mean of the model simulations. The second ensemble 
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estimator, e-median, is the median of the individual model simulations. For each of these 

ensemble models, e-mean and e-median, we calculated the same criteria as for the individual 

models, namely MSE, RMSE, and RMSRE. 

 

In order to explore how e-mean MSE and e-median MSE varied with the number of 

models in the ensemble, we performed a bootstrap calculation for each value of M’ (number 

of models in the ensemble) from 1 to 27. For each ensemble size M’ we drew B = 25 × 2n 

bootstrap samples of M’ models with replacement, so the same model might be represented 

more than once in the sample. n was varied from 1 to 10 and the results were essentially 

unchanged beyond 3,200 (i.e. for n ≥ 7) bootstrap samples. The results reported here use n = 

9. The final estimate of MSE for e-mean was then: 

 

 ( )
2

e-mean e-mean,
1 1

1 1
ˆMSE

B N
b

i i

b i

y y
B N = =

= −  (5) 

 

where ,ˆb

e mean i
y −  is the e-mean estimate in bootstrap sample b of the ith measurements of this 

variable, given by: 

 

 
'

e-mean, ,
1

1
ˆ ˆ

'

M
b b

i m i

m

y y
M =

=   (6) 

 
For e-median the estimate of MSE was calculated as: 

 ( )
2

e-median e-median,
1 1

1 1
ˆMSE

B N
b

i i

b i

y y
B N = =

= −  (7) 
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In the case of e-mean, we can calculate the theoretical expectation of MSE analytically 

as a function of M’. Consider a variable at a particular site. Let *
i

µ  represent the true 

expectation of model simulations for that site (the mean over all possible models), and let 

, 'ȝ̂
i M

 represent an e-mean simulation which is based on a sample of models of size M’. The 

expectation of MSE (expectation over possible samples of M’ models) for e-mean is then: 

 

 

( ) ( ) ( )

( )
( )

22 * *
' , ,

1 1

2*

1

1 1
ˆ ˆMSE ȝ ȝ ȝ

ˆvar1 ȝ

N N

M i i M i i i i M

i i

N
i

i i

i

E E y E y
N N

y
y

N M

µ
= =

=

   = − = − + −     
 

= − + 
 

 


 (8) 

 
where ( )ˆvar

i
y  is the variance of the simulated values for the different models. The first term 

in the sum in (equation 8) is the squared bias of e-mean, when e-mean is based on a very 

large number of models. The second term is the variance of the model simulations divided by 

M. *
i

µ  can be estimated as the average of the simulations over all the models in our study, 

and ( )ˆvar
i

y can be estimated as the variance of those model simulations.  

 

All calculations and graphs were made using the R statistical software R 3.0.1 (R Core 

Team, 2013). Pearson’s product-moment correlation P-values were adjusted for false 

discovery rate using the ‘LBE’ package (Dalmasso et al., 2005), and bootstrap sampling used 

the R function sample(). 

 

Results 

Evaluation of a population of wheat crop models 
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In most cases, measured in-season LAI, PASW, AGBM, AGN, and NNI, and end-of-season 

GY and GPC values were within the range of model simulations (Fig. 2, 3). The main 

disagreement between measured and simulated values was for LAI at IN, where the median 

of simulated in-season PASW (Fig. 2g) and AGBM (Fig. 2k) were close to the measured 

values but most models underestimated LAI (Fig. 2c) and overestimated AGN (Fig. 2o) 

around anthesis. 

 

Even though measured GY ranged from 2.50 to 7.45 t DM ha-1 across the four sites, the 

ranges of simulated GY values were similar at the four sites with an average range between 

minimum and maximum simulations of 1.64 t DM ha-1 (Fig. 3a). The range between 

minimum and maximum simulations for GPC was also comparable at the four sites, 

averaging 7.1 percentage points (Fig. 3b). Model errors for GPC were in most cases due to 

poor simulation of AGN remobilization to grains. Most models overestimated GPC at AR 

because they overestimated N remobilization to grains, while at NL most models 

underestimated GPC because they underestimated N remobilization. 

 

The RMSRE averaged over all models was 29% (Fig. 4a and Table S2 in supplemental), 

and the RMSE average over all models was 1.25 t DM ha-1 for GY (Fig. 4b and Table 2 and 

Table S3 in supplemental). The uncertainty in simulated GY was large, with RMSRE ranging 

from 8% to 73% among the 27 models, but 80% of the models had an RMSRE for GY 

comprised between 14% and 47% (Fig. 4a). For the other end-of-season variables RMSRE 

ranged from 7% to 60% for HI (averaging 24%), 22 to 61% for GN (averaging 38%), 15% to 

52% for NHI (averaging 26%), and 8% to 122% for GPC (averaging 34%; Fig. 4a). For the 

in-season variables with multiple measurements per site, the RMSRE ranged from 48% to 

1496% for LAI, 37% to 355% for PASW, 41% to 542% for AGBM, 49% to 472% for AGN, 
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and 16% to 104% for NNI (Fig. 4a). The large variability between models occurs because the 

models have different equations for many functions (as shown in Asseng et al. (2013) Table 

S2 in Supplemental) and different parameter values (Challinor et al., 2014). 

 

Of the three models with the smallest RMSE for GY, only the second-ranked model had 

RMSE values below the average of all models for all variables considered (Table 2). The 

other two models had an RMSE substantially higher than the average for at least one variable. 

The first- and second-ranked models simulated GY closely because of compensating errors. 

They underestimated LAI around anthesis and final AGBM which was compensated for by 

overestimating HI. For instance, the first-ranked model simulated that the canopy intercepted 

83%, 74% and 51% of the incident radiation around anthesis in AR, IN and NL, respectively, 

while according to measured LAI values the percentage of radiation interception was close to 

93% at the three sites (assuming an extinction coefficient of 0.55, an average value reported 

for wheat canopies (Sylvester-Bradley et al., 2012)). This model compensated by having 

unrealistically high HI values that were 19% to 93% higher than measured HI. Theoretical 

maximum HI has been estimated at 62-64% for wheat (Foulkes et al., 2011), while this model 

had simulated values up to 69% (in NL). The third-ranked model showed no significant 

compensation of errors. This model overestimated LAI around anthesis by 16% in AR and 

NL, but this translated into only a small effect on intercepted radiation, since the canopy 

intercepted more than 90% of incident radiation based on observed LAI.  

 

 

 

Relation between the error for grain yield and that for underlying variables 
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There was little relation between the errors for different variables (Fig. 4a, b). There were 

some exceptions however. Notably, RMSE for AGBM was highly correlated with that for 

GY, and that for AGN was correlated with GN (Fig. 5). Similarly, RMSE for AGN was 

highly correlated with that for LAI, PASW, and NNI. Finally, RMSE for NNI was correlated 

with that for PASW, HI, and GN and to a lesser extent with that for NNI. RMSE for GPC 

was not significantly correlated with any other variable. Overall, the correlations between 

RMSRE for different variables were similar to that between RMSE for different variables 

(Fig. S1 in supplemental). 

 

Multimodel ensemble estimators 

Two multimodel ensemble estimators were tested. The first, the e-mean, uses the mean of the 

simulations of the ensemble members, a common practice in climate ensemble modeling 

(Knutti, 2010). The second, the e-median, uses the median of the simulations of the ensemble 

members. The e-median is expected to be less sensitive to outlier simulations than e-mean 

and therefore provide more robust estimates. 

 

The e-median and e-mean values gave good agreement with measured values in almost 

all cases, despite the fact that the simulations of the individual models varied considerably 

(Fig. 2, 3). For all responses, the RMSRE and RMSE of e-median and e-mean estimators 

were much lower than the RMSRE and RMSE averaged over all models (Fig. 4). For most 

variables, e-mean and e-median had similar RMSE and RMSRE values, and their ranking 

among all models was close (Table 2 and Supplementary Table S2, S3). The largest 

difference in ranks was for RMSE for GPC, where e-median was ranked 3 and e-mean was 

ranked 7. 
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For most variables, e-mean and e-median were comparable to the best single model for 

that variable (Fig. 4a, b). When e-median was ranked with the other models based on 

RMSRE, it ranked fourth for GY and third for GPC (Table S2 in supplemental); and first for 

GY and third for GPC when ranked based on RMSE (Table S3 in supplemental). One way to 

quantify the overall skill of e-mean and e-median is to consider the sum of ranks over all the 

variables. The sum of ranks based on RMSE for the 10 variables analyzed in this study was 

37 for e-median and 45 for e-mean, while the lowest sum of ranks for an individual model 

(among the 17 models that simulated all variables) was 53 (Table S2 in supplemental). If we 

only considered the four variables simulated by all 27 models (i.e. LAI, AGBM, GY, and 

HI), the sum of ranks for e-median and e-mean was 15 and 17, respectively, while the best 

sum of ranks for an individual model with these four variables was 28. 

 

In order to analyze the relationship between the number of models in an ensemble and 

the RMSE of both e-mean and e-median, we used a bootstrap approach to create a large 

number of ensembles for different multi-model ensemble sizes M’. For each M’, the RMSE 

of both e-mean and e-median in each bootstrap ensemble was calculated and averaged over 

bootstrap samples (Fig. 6). The standard deviation of RMSE for each M’ shows how RMSE 

varies depending on the models that are included in the sample. The bootstrap average for e-

mean followed very closely the theoretical expectation of RMSE (Fig. 6). The average RMSE 

of e-median also decreased with the number of models, in a manner similar to, but not 

identical to, the average e-mean RMSE. The differences were most pronounced for GPC (Fig. 

6j). 
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Discussion 

Working with multimodel ensembles is well-established in climate modeling, but only 

recently has the necessary international coordination been developed to make this also 

possible for crop models (Rosenzweig et al., 2013b). Here we examined the performance of 

an ensemble of 27 wheat models, created in the context of the AgMIP Wheat Pilot study 

(Asseng et al., 2013). Multiple crop responses, including both end-of-season and in-season 

growth variables were considered. Among these, GY and GPC are the main determinants of 

wheat productivity and end-use value. The other variables helped indicate whether models 

are realistic and consistent in their description of the processes leading to GY and GPC. This 

provides more comprehensive information on crop system properties beyond GY and is 

essential for the analysis of adaptation and mitigation strategies to global changes (Challinor 

et al., 2014). 

 

In only a few cases there were significant correlations between a model’s error for one 

variable and its error for other variables. Several individual models had relatively small errors 

for GY or GPC and large errors for in-season variables, including two of the three models 

with the lowest RMSE for GY. These models arrived at accurate simulations of GY or GPC 

without simulating crop growth accurately and thus got the right answer for, at least in part, 

the wrong reasons. That is, models can compensate for structural inconsistency. It has been 

argued that interactions among system components are largely empirical in most crop models 

(Ahuja & Ma, 2011) and that model error is minimized with different parameter values for 

different variables (Wallach, 2011), which would explain why a model might simulate one 

variable well and not others. However, it remains unclear whether such compensation will be 

effective in a wide range of environments. The lack of correlation between model errors for 

different variables shows that one cannot simply evaluate models based on a single variable 
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(response), since evaluation results can be quite different for other variables. It is important 

then to do crop model ensemble assessment for multiple variables (Challinor et al., 2014), as 

done in this study.  

 

Compensation of errors may be related to the way models are calibrated. If they are 

calibrated using only observed variable, e.g. GY, this may give parameter values that lead to 

unrealistic values of intermediate variables. The calibration insures that any errors in the 

intermediate variables compensate however, so that GY values are reasonably well simulated. 

If final results are not used in calibration, for example if GPC is not used for calibration, then 

there may be compensation or compounding of the errors in the intermediate variables that 

lead to GPC. 

 

There does not seem to be any simple relationship between model structure or the 

approach used to simulate individual processes and model error. Asseng et al. (2013) 

analyzed the response of the 27 crop models used in this study to a short heat shock around 

anthesis (seven consecutive days with a maximum daily temperature of 35°C) and found that 

accounting for heat stress impact does not necessarily result in correctly simulating that 

effect. Similarly we found that even closely related models did not necessarily cluster 

together and no single process could account for model error (data not shown). Therefore it 

seems that model performances are not simply related to how a single process is modelled, 

but rather to the overall structure/parameterization of the model. 

 

The behavior of the median and mean of the ensemble simulations was similar. Both 

estimators had much smaller errors and better skills than that averaged over models, for all 

variables. In comparing the sum of ranks of error for all variables, which provides an 
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aggregated performance measure, the e-median was better than e-mean, but most importantly 

both were superior to even the best performing model in the ensemble. Different measures of 

performance might give slightly different results, but would not change the fact that e-median 

and e-mean compare well with even the best models.  

 

E-mean and e-median had small errors in simulating not only end-of-season variables but 

also in-season variables. This suggests that multimodel ensembles could be useful not only 

for simulating GY and GPC, but also for relating those results to in-season growth processes. 

This is important if crop model ensembles are to be useful in exploring the consequences of 

global change and the benefits of adaptation or mitigation strategies. 

 

A fundamental question is the origin of the advantage of ensemble predictors over 

individual models. Two possible explanations relate to compensation among errors in 

processes descriptions and to more coverage of the possible crop and soil phase spaces. The 

first possible explanation is that certain models had large errors with compensations to 

achieve a reasonable yield simulation. In those cases, e-median can supply a better estimate 

when multiple responses are considered, since it gives reasonable results for all variables. In 

other cases, it is simply the fact that the errors in the different models tend to compensate 

each other well, that makes e-median the best estimator over multiple responses. The 

compensation of errors among models comes, at least in part, from the fact that models do not 

produce random outputs but are driven by environmental and management inputs and bio-

physical processes and therefore they tend to converge to the measured crop response. It is an 

open question however as to whether the superiority of crop model ensemble estimators 

compared to individual models extends to conditions not tested in this study. Will this still be 

the case if the models are used to predict the impact of climate change? Or, will multimodel 
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ensembles also be better capable than individual models to simulate the impact of interannual 

variability in weather at one site? 

 

The second possible explanation relates to phase-space coverage. For climate models, the 

main reason for the superiority of multimodel ensemble estimators is that better coverage of 

the whole possible climate phase space leads to greater consistency (Hagedorn et al., 2005). 

An analogous advantage holds as well for crop model ensembles, they have more associated 

knowledge and represent more processes than any individual model. Each of the individual 

models has been developed and calibrated based on a limited data set. The ensemble 

simulators are in a sense averaging over these data sets, which gives them the advantage of a 

much broader data base than any individual model and thus reduces the need for site- and 

varietal-specific model calibration. 

 

The use of ensemble estimators to answer new questions in the future poses specific 

questions regarding the best procedure for creating an ensemble. Several of these questions 

have been debated in the climate science community (Knutti, 2010), but not always in a way 

that is directly applicable to crop models. One question is how performance varies with the 

number of models in the ensemble. Here we found that the change in ensemble error 

( 'MSEM ) with the number of model in an ensemble ( 'M ) follows the expectation of MSE. 

Thus when planning ensemble studies, one can estimate the potential reduction in 'MSEM  

and therefore, do a costs vs. benefits analysis for increasing 'M . In the ensemble studied 

here, for all the variables, MSE for an ensemble of 10 models was close to the asymptotic 

limit for very large 'M . 
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Other questions include how to choose the models in the ensemble, and whether one 

should weight the models in the ensemble differently, based on past performance and 

convergence for new situations (Tebaldi & Knutti, 2007). In this respect the crop modeling 

community might employ some of the ensemble weighting methods developed by the climate 

modeling community (Christensen et al., 2010). There are also questions about the possible 

multiple uses of models. Would it be advantageous to have multiple simulations, based on a 

diversity of initial conditions (including ‘spin-up’ periods for models that depend on 

simulation of changes in soil organic matter) or multiple parameter sets from each model? In 

any case, the first step is to document the accuracy of multimodel ensemble estimators in 

specific situations, as done here.  

 

In summary, by reducing simulation error and improving the consistency of simulation 

results for multiple variables, crop model ensembles could substantially increase the range of 

questions that could be addressed. A lack of correlation between end-of-season and in-season 

errors in the individual models indicates that further work is needed to improve the 

representation of the dynamics of growth and development processes leading to GY in crop 

models. This is crucial for their application under changed climatic or management 

conditions. 

 

Most of the physical and physiological processes that are simulated in wheat models are 

the same as for other crops. In fact, several of the models in this study have a generic 

structure so that they can be applied to various crops, and for some of them the differences 

between crops are simply in the parameter values. It is thus reasonable to expect that the 

results obtained here for wheat are broadly applicable to other crop species. It would be 
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worthwhile to study whether these results also apply more generally to biological and 

ecological system models. 
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Additional Supporting Information may be found in the online version of the article: 

Table S1. Name, reference and source of the 27 wheat crop models used in this study. 

Table S2. Root mean square relative error (RMSRE) for in-season and end-of-season 

variables. 

Table S3. Root mean square error (RMSE) for in-season and end-of-season variables. 

Figure S1. Correlation matrix for Pearson’s product-moment correlation (r) between the root 

mean squared relative error of simulated variables. 
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Figure Captions 

Fig. 1. Weather data at the four studied sites. Mean weekly temperature (solid lines), 

cumulative weekly solar radiation (dashed lines), cumulative weekly rainfall (vertical solid 

bars) and irrigation (vertical open bars) in (a) Wageningen, The Netherlands, (b) Balcarce, 

Argentina, (c) New Delhi, India, and (d) Wongan Hills, Australia. Vertical arrows indicate 

(a) anthesis and (m) physiological maturity dates. 

 

Fig. 2. Measured and simulated values of five in-season wheat crop variables for four 

sites. (a-d) Leaf area index (LAI), (e-h) plant-available soil water (PASW), (i-l) total 

aboveground biomass (AGBM), (m-p) total aboveground nitrogen (AGN), and (q-t) nitrogen 

nutrition index (NNI) versus days after sowing in The Netherlands (NL), Argentina (AR), 

India (IN) and Australia (AU). Symbols are single measurements and solid lines are medians 

of the simulations (i.e. e-median). Dark grey areas indicate the 10th to 90th percentile range 

and light grey areas the 25th to 75th percentile range of the values generated by different 

wheat crop models. Twenty-seven models were used to simulate LAI and AGBM, 24 to 

simulate PASW, 20 to simulate AGN and NNI. In e-h the horizontal red lines indicate 50% 

soil water deficit. 

 

Fig. 3. Measured and simulated values of two major end-of-season wheat crop variables 

for four sites. Measured (red crosses) and simulated (box plots) values for end-of-season (a) 

grain yield (GY) and (b) grain protein concentration (GPC) are shown for The Netherlands 

(NL), Argentina (AR), India (IN) and Australia (AU). Simulations are from 27 different 

wheat crop models for GY and 20 for GPC. Boxes show the 25th to 75th percentile range, 
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horizontal lines in boxes show medians, and error bars outside boxes show the 10th to 90th 

percentile range. 

 

Fig. 4. Wheat crop model errors for in-season and end-of-season variables. (a) Root 

mean squared relative error (RMSRE) and (b) root mean squared error (RMSE) for in-season 

leaf area index (LAI), plant-available soil water (PASW), total aboveground biomass 

(AGBM), total above ground nitrogen (AGN), nitrogen nutrition index (NNI), and for end-of-

season grain yield (GY), biomass harvest index (HI), grain nitrogen yield (GN), nitrogen 

harvest index (NHI), and grain protein concentration (GPC). Twenty-seven models were used 

to simulate LAI, AGBM, GY, and HI, 20 to simulate AGN, GN, GPC and NNI, 24 to 

simulate PASW, and 19 to simulate NHI. In a for GY the models are sorted from left to right 

in the order of increasing RMSE and this order of models was used to plot all other variables. 

The horizontal solid blue line shows RMSE or RMRSE averaged over all models and the 

horizontal red line shows RMSE or RMRSE for the median simulation of all models (e-

median). 

 

Fig. 5. Correlation matrix for Pearson’s product-moment correlation (r) between the 

root mean squared error of simulated variables. In-season variables: leaf area index 

(LAI), plant-available soil water (PASW), total aboveground biomass (AGBM), total above 

ground nitrogen (AGN), nitrogen nutrition index (NNI). End-of-season variables: grain yield 

(GY), biomass harvest index (HI), grain nitrogen yield (GN), nitrogen harvest index (NHI), 

and grain protein concentration (GPC). Twenty-seven models were used to simulate LAI, 

AGBM, GY, and HI, 20 to simulate AGN, GN, GPC and NNI, 24 to simulate PASW, and 19 

to simulate NHI. The numbers above the diagonal gap are r values and the numbers below 
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are one-sided q-values (adjusted P-values for false discovery rate). The color (for r values 

only) and the shape of the ellipses indicate the strength of the correlation (the narrower the 

ellipse the higher the r value) and the direction of each ellipse indicates the sign of the 

correlation (a rightǦleaning ellipse indicates a positive correlation and a leftǦleaning ellipse indicates a negative correlation). 

 

Fig. 6. How the number of models in an ensemble affects error estimates. Average root 

mean squared error (RMSE) (± 1 s.d.) of e-mean and e-median for in-season (a) leaf area 

index (LAI), (c) plant-available soil water (PASW), (e) total above ground biomass (AGBM), 

(g) total above ground nitrogen (AGN) and (i) nitrogen nutrition index (NNI) and for end-of-

season (b) grain yield (GY), (d) biomass harvest index (HI), (f) grain nitrogen yield (GN), (h) 

nitrogen harvest index (NHI), and (j) grain protein concentration (GPC) versus number of 

models in the ensemble. Values are calculated based on 12,800 bootstrap samples. The solid 

line is the analytical result for RMSE as a function of sample size (equation (8)). The blue 

dashed line shows the RMSE for e-mean and the red dashed line the RMSE for e-median of 

the multimodel ensemble. The black dashed line is the RMSE for the individual model with 

lowest sum of ranks for RMSE. For visual clarity the RMSE for e-mean is plotted for even 

numbers of models, and the RMSE for e-median for odd numbers of models. 

 

 

Table 1. Details of the experimental sites and experiments provided to the modelers. 
Site 
NL AR IN  AU 

Site description 

Environment 
High-yielding 
long-season 

High/medium-
yielding 
medium-season 

Irrigated short-
season 

Low-yielding 
rain-fed short-
season 
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Regional 
representation 

Western and 
northern Europe 

Argentina, 
northern China, 
western USA 

India, Pakistan, 
southern China 

Australia, 
southern 
Europe, 
northern Africa, 
South Africa, 
Middle East 

Location name Wageningen
('The Bouwing')
The Netherlands

Balcarce
Argentina 

New Delhi
India 

Wongan Hills
Australia 

Coordinates 51° 58’ N, 05° 
37’ E 

37° 45’ S, 58° 
18’ W 

28° 22’ N, 77° 
7’ E 

30° 53’ S, 116° 
43’ E 

Soil characteristics 

Soil typea Silty clay loam Clay loam Sandy loam Loamy sand 
Rooting depth (cm) 200 130 160 210 
Apparent bulk density 

(m3 m-3) 
1.35 1.1 1.55 1.41 

Top soil organic matter 
(%) 

2.52 2.55 0.37 0.51 

pH  6.0 6.3 8.3 5.7 
Maximum plant 
available soil water 
(mm to maximum 
rooting depth) 

354 222 109 125 

Crop management 

Sowing density (seed 
m-2) 

228 239 250 157 

Cultivar     
Name Arminda Oassis HD2009 Gamenya 
Vernalization 

requirement 
High Little None Little 

Daylength 
response 

High Moderate None Moderate 

Ploughed crop residue Potato (4 t ha-1) Maize (7 t ha-1) Maize (1.5 t ha-

1) 
Wheat/weeds 
(1.5 t ha-1) 

Irrigation (mm) 0 0 383 0 
N application (kg N ha-

1)  
120 (ZC30 b) / 
40 (ZC65) 

120 (ZC00) 60 (ZC00) / 60 
(ZC25) 

50 (ZC10) 

Initial top soil mineral 
N (kg N ha-1) 

80 13 25 5 

Sowing date 21 Oct. 1982 10 Aug. 1992 23 Nov. 1984 12 Jun. 1984 
Anthesis date 20 Jun. 1983 23 Nov. 1992 18 Feb. 1985 1 Oct. 1984 
Physiological maturity 

date 
1 Aug. 1983 28 Dec. 1992 3 Apr. 1985 16 Nov. 1984

Growing season weather summary 

Cumulative rainfall 
(mm) 

595 336 0 164 

Cumulative global 
radiation (MJ m-2) 

2456 2314 2158 2632 

Average daily mean 
temperature (°C) 

8.8 13.8 17.5 14.1 

a Saturated soil water content, drainage upper limit and lower limit to water extraction were provided 
for 10 to 30-cm thick soil layers down to the maximum rooting depth. 
b ZC, Zadoks stage(Zadoks et al., 1974) at application is indicated in parenthesis (ZC00, sowing; 
ZC10, first leaf through coleoptile; ZC25, main shoot and five tillers; ZC30, pseudo stem erection; 
ZC65, anthesis half-way.  
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Table 2 RMSE for in-season and end-of-season variables. Ensemble averages and e-

mean and e-median values are based on 27 different models for LAI, AGBM, GY, 

and HI, 24 for PASW, 20 for AGN, GN, GPC and NNI, and 19 for NHI. Values for 

the three best models for GY (based on RMSE) simulation are also given. Data for 

each individual model are given in Table S4 in supplemental. The numbers in 

parenthesis indicate the rank of the models (including e-mean and e-median) where 1 

indicates the model with the lowest RMSE (i.e. best rank) for that variable. For each 

variable the model with the lowest RMSE is in bold type. 

Estimator 

RMSE for in-season variables 
 RMSE for end-of-season variables 

LAI 

(m
-2

 

m-2) 

PAS

W 

(mm

) 

AGB

M 

(t 

DM 

ha
-1

) 

AGN 

(kg 

N ha-

1
) 

NNI 

(-) 

 GY 

(t 

DM 

ha-1) 

HI 

(%) 

GN 

(kg 

N 

ha
-1

) 

NHI 

(%) 

GPC 

(% of 

grain 

DM) 

Average 
over all 
models 1.90 47 2.07 39 0.35  1.25 8.5 38 18.7 3.93 

Model 
ranked 1 for 
GY 

2.31 
(23) 

60 
(21) 

2.26 
(17) 

89 
(21) 

0.92 
(22)  

0.42 
(2) 

20.0 
(28) 

100 
(22) 

23.6 
(18) 

6.91 
(21) 

Model 
ranked 2 for 
GY 

1.24 
(7) 

36 
(9) 

1.71 
(13) 24 (8) 

0.26 
(8)  

0.56 
(4) 

7.2 
(16) 

27 
(9) 

9.1 
(2) 2.75 (9) 

Model 
ranked 3 for 
GY 

1.75 
(16) 

63 
(22) 

1.01 

(3) 22 (7) 
0.21 

(4)  
0.63 
(5) 

3.8 
(5) 

29 
(10) 

11.7 
(5) 2.13 (6) 

e-median 
1.20 

(6) 

27 

(3) 

1.20 
(6) 15 (3) 

0.25 
(7)  

0.41 

(1) 

2.8 
(2) 

22 

(5) 

8.8 

(1) 1.57 (3) 

e-mean 
1.29 
(8) 

27 
(5) 

1.19 
(5) 13 (1) 

0.24 
(6)  

0.49 
(3) 

2.2 

(1) 

23 
(6) 

9.8 
(3) 2.32 (7) 
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