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Abstract 

Focused ion beam (FIB) sample preparation in combination with subsequent transmission 

electron microscopy (TEM) analysis are powerful tools for nanometre-scale examination of 

the cell-mineral interface in bio-geological samples.  In this study, we used FIB-TEM to 

investigate the interaction between a cyanobacterium (Hassallia byssoidea) and a common 

sheet silicate mineral (biotite) following a laboratory-based bioweathering, incubation 

experiment.  We discuss the FIB preparation of cross-sections of the cell mineral interface for 

TEM investigation.  We also establish an electron fluence threshold in biotite for the 

transition from scanning (S)TEM electron beam induced contamination build up on the 

surface of biotite thin sections to mass loss, or hole-drilling within the sections.  Working 

below this threshold fluence nanometre-scale structural and elemental information has been 

obtained from biotite directly underneath cyanobacterial cells incubated on the biotite for 

three months.  No physical alteration of the biotite was detected by TEM imaging and 

diffraction with little or no elemental alteration detected by STEM energy dispersive X-ray 

(EDX) elemental line scanning nor by energy filtered TEM (EF-TEM) jump ratio elemental 

mapping.  As such we present evidence that the cyanobacterial strain of Hassallia byssoidea 

did not cause any measurable alteration of biotite, within the resolution limits of the analysis 

techniques used, after three months of incubation on its surface. 

 

Keywords 

FIB, TEM, cyanobacteria, weathering, cell-mineral interface, biotite 

 

 

1.  Introduction 

Over the past decade, understanding of the role of micro-organisms in mineral weathering has 

advanced considerably.  Numerous studies on microbe-mineral interactions have shown that 

micro-organisms substantially affect the process of mineral weathering (termed 

“bioweathering” hereafter) (Burford et al., 2003; Gadd, 2007; Hoffland et al., 2004; Hutchens 

et al., 2003; Kalinowski et al., 2000).  Despite this increasing evidence that microbial cells 

can play a major role in mineral alteration, the processes occurring at the cell-mineral 

interface remain poorly understood. 

Transmission electron microscopy (TEM) is a technique able to examine the cell-mineral 

interface because of its imaging capabilities and productive history in the analysis of minerals 

(for a recent review see Lee (2010)).  TEM requires the preparation of electron transparent 
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specimens and for geological materials this is typically achieved by grinding minerals to a 

powder, ion milling or ultra-microtome sectioning (Heaney et al., 2001; Lee, 2010).  

Nevertheless, these methods do not guarantee specimen preparation at specific sites of 

interest.  The introduction of focused ion beam (FIB) milling into the field of geoscience 

about a decade ago brought a solution to this problem.  FIB uses a high-energy gallium ion 

beam to cut thin-sections from a pre-imaged, and therefore site-specific, area of practically 

any material that is stable in the evacuated chamber of the instrument. 

FIB preparation of electron-transparent specimens, or “FIB sections”, from geological 

materials is becoming more commonplace (e.g., Wirth, 2009; Lee, 2010).  The site-specific 

nature of FIB milling has enabled the successful preparation of electron-transparent 

specimens across cell-mineral interfaces (first shown by Benzerara et al., 2005; 

Obst et al., 2005).  More recently, FIB milling in combination with scanning (S)TEM and 

scanning transmission X-ray microscopy (STXM) analyses has been used to measure the 

accelerated weathering of a sheet silicate (biotite) by ectomycorrhizal fungi (Bonneville et al., 

2011, 2009). 

In this study, FIB milling and subsequent TEM analysis were used to investigate biotite 

weathering by cyanobacteria.  Cyanobacteria are photosynthetic oxygen-evolving bacteria 

distributed in many environments worldwide (Madigan et al., 2003), including surfaces and 

internal spaces of rocks (Gorbushina, 2007).  It is known that cyanobacteria are capable of the 

alteration of some calcium containing minerals (Garcia-Pichel, 2006;  Garcia-Pichel et al., 

2010), however despite their common presence on rock surfaces in natural environments their 

potential role in silicate mineral weathering and nutrient release is at present poorly 

understood. Only a small number of laboratory-based studies on cyanobacterial bioweathering 

of silicate minerals exist and none of the studies specifically looked at the cell-mineral 

interface and the potential chemical changes occurring there (Brehm et al., 2005; Büdel et al., 

2004; Chizhikova et al., 2009; Gorbushina and Palinska, 1999; Olsson-Francis and Cockell, 

2010). As a result, here, we characterise, by analytical TEM, the physical structure and 

composition of the top few layers of a sheet silicate mineral, biotite with a cyanobacterium 

incubated on its surface for three months.  In addition, this work discusses the feasibility of 

using FIB milling and subsequent TEM to analyse the cell-mineral interface. As such we will:  

(1) identify any difficulties arising during FIB specimen preparation of bio-geological 

interfaces; (2) indicate a threshold electron fluence for the representative measurement of 

biotite composition by STEM-energy dispersive X-ray (EDX) spectrometry; and (3) report on 
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the nanometre scale structural and chemical impact of the laboratory incubation of 

cyanobacteria on biotite. 

 

 

2. Material and methods 

2.1. Experimental setup 

A laboratory experiment was performed with one cyanobacterial strain incubated on flakes of 

biotite, a common sheet silicate mineral.  The experimental set-up was designed to mimic the 

situation on rocks in natural environments, where cyanobacterial cells inhabit and colonise 

bare mineral surfaces with limited supplies of liquid water and essential nutrients. 

A filamentous cyanobacterial strain of Hassallia byssoidea (CCALA 823, HAUER 2007/1; 

termed Hassallia hereafter) was used in the bioweathering experiment.  The strain was 

isolated from biotite granite in the Czech Republic and belongs to the order Nostocales.  The 

strain was not axenic (~5% of cells in the culture were heterotrophic bacteria).  However, we 

accepted the presence of associated bacterial cells in the experiment because analysis by TEM 

would probe only the mineral regions in direct contact with the cyanobacterial cells (see 

details in Section 2.2. and 2.3.) minimising the possibility of identifying any weathering 

features caused by the associated heterotrophs.  The cyanobacteria were cultivated in 

Bold’s - Basal standard medium (BBM-st; Bischoff and Bold, 1963) while modified BBM 

medium (BBM-mod3) was used during their incubation on the biotite.  Magnesium and iron 

were excluded completely from this latter medium and ammonium sulphate (NH4)2SO4 was 

used to supply sulphate to the cyanobacteria.  The disodium salt of ethylenediaminetetraacetic 

acid (EDTA-Na2), typically contained in BBM-st, was omitted from the modified BBM-mod3 

medium to prevent possible dissolution of the mineral due to its chelating properties.  Purified 

agar (A6686, Sigma-Aldrich, UK) was used to prepare both the BBM-st and the BBM-mod3 

solid agar media. 

Biotite from Norway (departmental stock, Earth Sciences, University of Bristol) was cleaved 

parallel to the (001) crystal surface and cut into thin flakes (~8  8  0.2-0.5 mm) with 

scissors and razor blades.  Three biotite flakes were placed into a Petri dish (8 mm dia.) 

containing the BBM-mod3 medium (1.8% w/v agar).  The central topmost surfaces of the 

flakes were inoculated with cyanobacterial filaments using a soft plastic disposable 

inoculating loop, so as not to physically alter (scratch) the mineral surface.  The dishes were 

incubated in a unit fitted with fluorescent lights for 95 days (~3 months).  60 W fluorescent 

lamps provided 16/8 hours of light/dark intervals in the unit and a temperature of 221C was 
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maintained.  All equipment and materials used in the experiment were either obtained sterile 

from the supplier or sterilised by autoclaving (~120C for 15 min). 

 

2.2. FIB sample preparation 

FIB sections were prepared from a biotite flake obtained from the bioweathering experiment 

described above.  A FEI Strata FIB201 system with gallium source (at the Interface Analysis 

Centre, University of Bristol) and a FEI Nova200 NanoLab dual beam SEM/FIB (at Leeds 

Electron Microscopy and Spectroscopy (LEMAS) centre, University of Leeds) were used to 

mill sections.  The biotite flake was first sputter coated with gold (~100 nm).  This was for 

both charge reduction during SEM analysis and as a protective layer to stop irradiation 

damage from the focused ion beam during initial deposition of the ion-beam deposited 

platinum protection layer (for a description of this damage process, see Lee (2007)).  

However, for this study the cell itself acted as an additional protective barrier over the cell-

biotite interfaces of interest.  The FIB instruments were operated at 30 kV, and at beam 

currents between 5 and 0.05 nA.  Both ex-situ lift out using a glass needle outside the 

microscope chamber, and in-situ lift out using a Kleindiek micromanipulator inside the 

chamber were employed.  FIB sections were cut from different areas on the biotite flake such 

that they revealed a cross-section of the bacteria and mineral, and allowed the interface to be 

studied by TEM (Figure 1a).  Cross-sections that suffered damage during preparation (as 

discussed later in this paper), were not used for data collection.  One damage-free section was 

subsequently used for detailed chemical analysis of the interface.   

 

2.3. TEM analysis 

The FIB sections were examined using a Philips EM 430 TEM (School of Physics, University 

of Bristol), a Philips CM200 field emission gun (FEG-)TEM fitted with an Oxford 

Instruments ultra thin window (UTW) X-ray detector running ISIS software and a Gatan 

(GIF200) imaging filter, and a FEI Tecnai F20 FEG-TEM (both at LEMAS, University of 

Leeds).  The Philips EM 430 was used for initial structural examination of the samples, while 

the Philips CM200 was employed for subsequent elemental analysis by scanning (S)TEM and 

energy dispersive X-ray (EDX) spectroscopy and electron energy loss spectrometry (EELS).  

The FEI Tecnai F20 was used to assess the electron fluence threshold for beam induced mass 

loss in the biotite.  All image processing was carried out using Gatan’s Digital Micrograph 

software. 
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EDX spectroscopy was used to measure the elemental profile across the interface between the 

cyanobacteria and biotite by line-scanning in STEM mode.  This involves scanning the 

electron beam repeatedly over the same line, perpendicular to the interface, and collecting a 

signal for specific X-ray energies (corresponding to elements of interest) for each scan dwell-

point.  The cumulative data can then be used to measure any changes in composition. 

To establish an electron intensity threshold above which irradiation by the electron beam 

alters the biotite, a series of different probe configurations were scanned over the biotite 

(Table 1).  The electron intensity, or fluence, was calculated using the beam current 

(measured by the instrument) and the probe dimensions, with the high angle annular dark 

field (HAADF) imaging capability of the FEI Tecnai F20 being used for these measurements.  

Electron beam diameters were measured by taking an intensity profile across a HAADF 

image of the interface of the biotite and the cell (which can be assumed to be atomically 

abrupt), collected using each respective probe setting.  The diameter was taken to be the width 

of the interface in the image and this was averaged by integrating over approximately 300 

pixels along the interface.  Assuming a circular probe, the probe area could then be calculated. 

The optimum microscope configuration used for an electron beam to record the STEM-EDX 

linescans presented here (Probe 4, Table 1) was also tested on a region of the biotite away 

from the cell interface.  These test line scans involved scanning the beam over the same line, 

and collecting EDX spectra at time intervals up to 30 minutes total (the approximate time for 

an experimental dataset to be collected).  Elemental quantification of these spectra (using an 

Oxford Instruments standardless quantification routine) showed no composition change had 

occurred.  The linescan data were collected using a double tilt specimen holder so that the 

sample could be tilted 15o towards the EDX detector and then oriented around the other tilt 

axis so that the interface was imaged normal to the beam direction.  

EELS was used for further elemental characterisation of a section. Energy filtered TEM (EF-

TEM) jump ratio maps for C, Si and Fe were collected at the interface to investigate 

compositional variation.  Producing a jump ratio map involves taking two energy filtered 

images, one with an energy window that sits over a specific ionisation edge, and one just 

before (in the background region).  The post-edge image is then divided by the pre-edge 

image to give a background normalised, qualitative map of the elemental distribution. Jump 

ratios were collected using an objective aperture of 8 mrad collection semi-angle, a 20 eV 

energy selecting slit and pre and post edge window positions centred 10 and 10-15 eV before 

and after respectively the elemental edge onsets. 
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2.4. Processing of STEM-EDX data 

In order to identify the exact cell-mineral interface in the collected linescan data and to 

determine whether there was any elemental depletion in the mineral underneath the cell, the 

primary EDX data were further processed.  A normalisation procedure against the silicon KĮ 

X-ray intensity was undertaken to correct for any variations in sample thickness.  We 

presumed that the Si concentration in the mineral should likely not be changed by the micro-

organisms, since silicon is not an essential nutrient and the O-Si bond in sheet silicates is very 

strong.  Bonneville et al’s (200λ) STEM-EDX data from a fungi-biotite thin section supports 

this assumption.  The ratio of all the elemental X-ray counts to the counts for silicon should 

be constant in a non-altered biotite over the typical thickness range of a FIB section.  The 

onset of the bulk biotite normalised O/Si ratio was selected as the “cell-mineral interface 

indicator”. 

 

 

3. Results and discussion 

3.1. Identifying and avoiding sample preparation artefacts 

FIB preparation of a thin section for TEM is illustrated in Figure 1a.  Over-thinning with the 

ion beam and bending of the samples are major issues when preparing specimens of this size 

(Figure 1b, c and d).  Where a sample depth of 2 or even 3 ȝm needs to be investigated, thin 

sections with parallel sides can be successfully produced (Bals et al., 2007; Schaffer et al., 

2012).  However, with the samples here the bacteria sections themselves are anything from 4 

to 8 ȝm in depth, before the mineral surface is reached.  Making electron-transparent sections 

with parallel sidewalls this deep is extremely difficult, and can result in preferential thinning 

before the entire section is sufficiently transparent (Figure 1b and c).  This is because the 

profile of the ion beam itself is not parallel and this has to be accommodated by tilting the 

face of the section to be milled a few degrees off-axis from the incident ion beam, to get an 

approximately flat side to the section (Ishitani et al., 1994).  As the section gets deeper, it 

becomes more difficult to keep the sides flat, and over-thinning of certain areas occurs.  In 

addition, as deep sections such as these are milled thinner, they have less support, and 

non-rigid sections such as the cellular components of these samples can bend.  Once this 

occurs protruding “bulges” will be milled away more quickly than the rest of the section, 

potentially leaving holes (Figure 1d).  This can be avoided by leaving thicker sections (say 

100-150 nm); however, this should be balanced against the required spatial resolution of the 

(S)TEM analysis.  For example, the spatial resolution obtainable by EDX decreases with 
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increasing specimen thickness because of the increased interaction volume that generates X-

rays from the incident beam in the thicker sections (Williams and Carter, 1996). 

 

3.2. Identifying and avoiding electron beam damage in the STEM 

Biotite is sensitive to damage by the high energy electron beam of the TEM (Bell and Wilson, 

1981).  At 300 keV, mass loss occurs as an exponential function of accumulated electron 

fluence, with lower beam current, larger beam diameters and thicker specimens all reducing 

the loss of elements (Ma et al., 1998) and this is therefore a major concern when using the 

focused probe of a STEM (operating at 197 keV in our case).  Ma et al., (1998) show that the 

exposure of biotite to a focussed electron probe can result in hole-drilling, the rates of 

elemental loss are orientation dependent, with K-loss always significant and Fe, Al, Ti and 

Mg-loss only apparent when the specimen plane is perpendicular to (001) i.e., in the 

orientation used in our study, and that the rate of this element loss is not significantly reduced 

when the specimen is analysed in a liquid nitrogen cooled holder.  Thus, they suggest the main 

mechanisms expected for loss of elements in biotite are likely sputtering and ‘diffusion’.  

Sputtering is a surface process that would occur at incident energies above the threshold for 

the displacement of surface atoms but to the best of our knowledge there are no reports of an 

incident energy threshold for damage of biotite.  There are however reports of a threshold 

dose for (100 keV) electron beam induced damage of minerals such as vermiculite 

(Baumeister and Hahn, 1976) but again not, to the best of our knowledge, for the biotite used 

here.  We have therefore undertaken STEM line scans on a FIB section to explore whether 

there is a working electron fluence (at 197 keV) that does not significantly damage the biotite.  

We employed three beam conditions (Table 1) to record linescans at fluences between 1.2 and 

3  104 electrons nm-2 per pixel dwell point (probe settings 1, 2 and 3 in Figure 2). 

For one of these three electron beam conditions, a transition occurred from beam damage 

(evident by mass loss, or “hole-drilling”) to contamination build up (probe setting 3, 

Figure 2).  This could occur when the hydrocarbon contamination rate exceeds the rate of 

sputtering or mass loss such that contamination build up on the specimen surface provides a 

coating that inhibits further mass loss (Egerton et al., 2010).  EDX linescans were therefore 

recorded at a fluence rate below this transition threshold (using electron probe 4, Table 1).  

Under these conditions, EDX spectra were collected by scanning the same line on an area of 

biotite over a 30 min period without any detectable variation in the elemental composition of 

the biotite (as described in the methodology). 
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3.3. The cell-mineral interface 

A well prepared cell-mineral FIB section is shown in Figure 3.  Diffraction contrast is visible 

across the whole mineral section and does not show any obvious strain in the mineral 

underneath the bacteria.  Selected area diffraction shows the bulk of the mineral to be 

crystallographically intact and atomic lattice imaging of the mineral-bacteria interface shows 

the top surface of the biotite to be atomically sharp and unaltered (Figure 4).  A low loss 

EELS spectrum taken from the area at the interface used for the EF-TEM analysis gave a t/Ȝ 

value of 0.92, suggesting a specimen thickness of ~ 150 nm. 

STEM-EDX linescans collected with a contaminating rather than hole drilling electron beam 

(probe 4, Table 1) showed no elemental alteration of the biotite underneath the bacteria except 

in the case of Fe, where there was potentially some depletion in the first 5 nm into the biotite 

(Figure 5).  The other elemental counts do not exhibit any detectable depletion at the biotite 

surface.  It is possible that the activity of the growing cyanobacterial cells induced iron 

depletion of the surface layers of the biotite, but at this resolution the finite diameter of the 

electron beam should be accounted for as this could blur an elementally abrupt interface, i.e. 

the apparent Fe depletion may be an artefact.  One way to measure the effective width of the 

electron beam is to use the cumulative STEM annular dark-field image intensity profile that 

accompanies the elemental linescans collected using the Oxford Instruments ISIS software.  If 

we assume the bacterium-biotite interface to be atomically abrupt (consistent with Figure 4), 

any blurring of the STEM ADF image of the interface would purely be a result of the finite 

width of the electron beam and in this case the width of the transition from the cyanobacteria 

(low ADF intensity) to the biotite (high ADF intensity) is approximately 15 nm (intensity 

profile not shown).  Image features smaller than the total width of the beam still might be 

resolved because the beam itself has a Gaussian-like intensity profile (due to the emission 

profile of the electron source and the round condenser lenses); however, determination of 

elemental depletion is not then unequivocal.  Only further compositional data with a drop in 

Fe/Si ratio larger than three times the standard deviation of the “bulk” biotite ratio and across 

a width at least twice that of the working electron beam diameter would really confirm this 

depletion.  Here, improved counting statistics could be achieved with a finer probe size and 

closer dwell points or longer dwell times, provided any increase in electron fluence per dwell-

point remained below the contamination build up to mass loss transition already demonstrated 

for biotite. 

EF-TEM elemental jump ratio images of carbon (K-edge), silicon (L2,3-edge) and iron 

(L2,3-edge) were also collected from the same section (Figure 6).  Jump ratios were used 
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because of the increased elemental sensitivity over the more quantitative three window 

elemental maps and because of the difficulty in obtaining a reliable Si L2,3-edge three window 

map due to the presence of the Al L2,3-edge in the Si L2,3- pre-edge region (three window 

maps needing more space in the pre-edge region for two windows, to accurately measure the 

background contribution underneath the edge) (Brydson, 2001).  Once the images were 

collected, compositional gradients were measured using the technique outlined by Hellmann 

et al. (2003).  In our case intensity profiles were taken across the image of the interface, 

integrated over 300 pixels along the interface, using Digital Micrograph software and the 

width of the compositional gradient was measured between the two intensity plateaus in the 

profiles (insets in Figure 6).  Elemental gradient widths for carbon, silicon and iron were 

measured as 6.3, 7.2 and 6.2 nm respectively.  In theory, the spatial resolution of this 

technique can exceed that of the STEM linescan technique.  In practice though, the resolution 

will suffer from slight variations in focus of the image, the inherent poor signal to noise in the 

jump ratios and imperfect overlaying of the two filtered images.  The result gives carbon and 

silicon interfaces of similar breadth to iron suggesting an elemental resolution of no better 

than 6-7 nm for the current instrumental set-up. 

If weathering had occurred, the formation of vermiculite zones within the altered biotite 

would be one of the main structural changes expected.  This is easily observed through TEM 

lattice imaging, as it results in an expansion of the biotite (001) lattice planes from 

approximately 1 to 1.4 nm as well as the formation of distinctive banding resulting from 

diffraction contrast generated by the expansion (Banfield and Eggleton, 1998).  No such 

features were observed in the biotite underneath the cyanobacterial filament examined here 

(Figures 3 and 4).  Indeed, this observation is in stark contrast to a biotite incubated 

underneath an ectomycorrhizal fungi hyphal which shows clear evidence of crystallographic 

alteration by biomechanical forcing of the hyphal tip (Bonneville et al., 2009).  In addition, no 

chemical alteration of the biotite underneath the cyanobacterial filament was detected via 

EDX (Figure 5) or EELS (Figure 6) within the resolution limitations described above.  In 

other studies, weathering of biotite by lichen has been shown to result in a depletion of 

potassium (Wierzchos and Ascaso, 1998), and the study by Bonneville et al. (2009) showed 

depletion of potassium, iron, aluminium and magnesium.  The potential detection of iron 

depletion in the surface 5 nm of the biotite studied here (Figure 5) is below the resolution 

limits measured here (~15 nm for EDX linescan and ~6-7 nm for EF-TEM) and could also, 

arguably, be described as relatively insignificant in terms of the bioweathering of biotite 
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observed in incubation experiments with other microorganisms (Bonneville et al., 2009 and 

2011). 

 

 

4. Conclusions 

To the best of our knowledge, we present here the first bioweathering study employing FIB 

and TEM methods for investigations of the cyanobacterium-mineral interface to search for 

potential mineral alterations.  In more general terms, it represents one of the first reports on 

the role of cyanobacteria in bioweathering of sheet silicate minerals on the nanometre scale.  

The study shows that the FIB can be used successfully for preparation of thin specimens 

through a cyanobacteria-mineral interface for subsequent TEM examination.  Notably, this 

study has shown that above a STEM electron fluence threshold of between 1.2 and 

3 x 104 electron nm-2 per dwell-point, biotite mass loss occurs through electron 

“hole-drilling”. Below this threshold, mass loss is not detectable and only hydrocarbon 

contamination build-up is observed.  Consistent with this, no elemental alteration of the 

biotite is evident in this regime. 

 

TEM imaging and diffraction indicate the crystallography of a biotite underneath a 

cyanobacterial cell to be unaltered by the bacterium and the interface between the two to be 

atomically abrupt.  STEM-EDX line scan analysis showed that iron depletion may be present 

in the biotite over the first 5 nm from the bacterium interface, but the data were not 

sufficiently significant to be confident of this.  Similarly, EF-TEM jump ratio elemental maps 

did not show any elemental depletion beyond 6 or 7 nm from the interface, or any differences 

between the elements tested.  Consequently any observed depletion within the first 6 nm was 

considered to be a result of the mapping technique.  Overall therefore, the cyanobacterial 

strain of Hassallia byssoidea did not cause any substantial alteration of biotite after three 

months of incubation on its surface. More and longer time-scale bioweathering studies with 

cyanobacteria need to be undertaken in the future in order to elucidate the role of this group of 

micro-organisms in mineral weathering. 
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Figure 1.  A) SEM image of a FIB-prepared cross-section of a cyanobacterial filament-biotite 

interface. TEM images of ion beam damage of the mineral and cyanobacteria cross-sections 

by B) over-thinning the base of the lamella, C) over-thinning the whole section and D) over-

thinning protruding parts of the section. 
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Figure 2.  HAADF STEM image of a biotite-cyanobacterium interface after line-scanning 

across the interface with progressively lower electron fluence per dwell-point electron beams.  

A transition from hole-drilling to contamination build up on the biotite is seen when the 

electron fluence per dwell-point drops from that in probes 1 and 2 to that in probe 3 (fluences 

and probe sizes are detailed in Table 1). 

 
Figure 3.  Bright field TEM image of a well-prepared, FIB section of the biotite-

cyanobacterium interface.  The “even” diffraction contrast in the image of the biotite (B) 

indicates that there is little structural alteration of the mineral immediately next to the 

interface (cyanobacterial filament indicated by CF).  The region used for the collection of 

both the EDX linescan data presented in Figure 5 and the EF-TEM data presented in Figure 6 

is marked with a black square. 
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Figure 4.  TEM image at the interface of the biotite-cyanobacterium section in Figure 3.  The 

(001) lattice plane spacing of the biotite directly underneath the interface is a constant and 

unaltered 1 nm and this is confirmed by the inset electron diffraction pattern. 
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Figure 5.  STEM-EDX linescans across the interface of the biotite-cyanobacterium section in 

Figure 3.  The grey regions in the plots correspond to the cyanobacterium (CF) and the white 

to the biotite (B).  The elemental signals are normalised to the Si-KĮ X-ray count to 

accommodate for variations in specimen thickness.  Only the Fe/Si elemental profile shows 

any depletion at the surface of the biotite and it is only in the first 5 nm, which is less than the 

estimated diameter of the STEM electron beam (~15 nm). 
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Figure 6.  A) Zero loss filtered TEM image at the interface of the biotite (B)-bacterium (CF) 

section in Figure 3.  B) Carbon (K-edge) jump ratio map of the interface in A with an 

intensity profile across the interface inset and an estimated interfacial width of 6.3 nm.  C) 

Silicon (L2,3-edge) jump ratio map of the interface in A with an intensity profile across the 

interface inset and an estimated interfacial width of 7.2 nm.  D) Iron (L2,3-edge) jump ratio 

map of the interface in A with an intensity profile across the interface inset and an estimated 

interfacial width of 6.2 nm. 

 
Table 1.  The microscope conditions, electron beam diameters (measured by STEM annular 

dark field intensity profiles) and electron fluences per dwell-point (measured using the 

procedure outlined in Pan et al., 2006) for the three probe conditions used to establish the 

contamination build up to mass loss threshold for STEM analysis of biotite (probes 1, 2 and 

3) and the same for the probe (4) used for STEM-EDX linescan analysis across the biotite-

bacterium interface (Figure 5). 

 
 


