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Downlink Beamforming in Underlay Cognitive

Cellular Networks
Tuan Anh Le, IEEE, Member, and Keivan Navaie, IEEE, Senior Member

Abstract�We propose a novel scheme for downlink beam-
forming design in an underlay cognitive cellular system. The
beamforming design is formulated as an optimization problem
with the objective of keeping the cognitive base station transmit
power as well as the induced interference on the primary
users, below the predeÞned system thresholds. This is subject to
providing a certain level of signal-to-interference-plus-noise ratio
(SINR) to the secondary users. We then derive the corresponding
semi-deÞnite programming form for the formulated optimization
problem and propose an iterative algorithm to obtain the
beamforming vectors as the optimal solutions. Furthermore,
we analytically show the convergence of the proposed iterative
algorithm. Extensive simulations studies verify that the proposed
algorithm quickly converges to the optimal solution. We then
compare the proposed scheme with a benchmarking system
based on the previous methods. Comparisons show that the
proposed algorithm outperforms the benchmarking system and
induces lower interference at the primary service receivers. It is
also observed that comparing to the benchmarking system, the

proposed algorithm offers higher sum rate. Simulation results
further reveal that the proposed approach effectively works at
relatively high SINR level required by secondary users and
strict interference threshold set by the primary system while
the benchmarking system fails to do so.

Index Terms�Downlink beamforming, underlay cognitive cel-
lular networks, interference management.

I. INTRODUCTION

IN A COGNITIVE RADIO NETWORK, conditional usage

of the primary system spectrum is granted to the secondary

system. The secondary system1 users are then allowed to

communicate over the same spectrum without interrupting

normal communication activities in the primary system [1].

Various cognitive transmission strategies have been developed

to manage the access of the secondary system to the spectrum

without interfering the primary users (PUs), see, e.g., [2] and

references therein. One approach to the access strategy design

is to utilize the spectrum during the time in which it is not in

use by the primary system. In this approach which is referred

to as overlay strategy, the secondary system needs monitor

the amiability of the spectrum. In an alternative strategy the

secondary system utilizes the spectrum while it is in use

by the primary system subject to keeping the interference at

the PU receivers below a predeÞned interference threshold.

This approach is referred to as underlay strategy. In underlay
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1In this paper the secondary system is also referred to as cognitive system.

access, the more efÞcient the cognitive system interference

management, the higher is the system achievable throughput.

It has been shown that the transmit beamforming is an

efÞcient technique to manage the interference in multi user

wireless communication system, e.g., [3], [4], [5], [6], [7].

Beamforming employs an array of antennas to transmit radio

frequency signals to multiple users over a shared channel. The

phases and transmit power of the transmission across those

antenna elements are controlled such that useful signal are

constructively added up at a desired receiver while interfering

signal are eliminated at unintended user terminals. Phases and

power allocations across antenna elements corresponding to

each user terminal are then represented by a complex vector

which is referred to as the beamforming vector. In such

systems, the design problem results in obtaining the optimal

beamforming vectors.

Two common optimization strategies are usually adopted to

design beamforming vectors for cellular networks. The Þrst

strategy is to minimize total transmit power while maintain-

ing required levels of signal-to-interference-plus-noise ratios

(SINRs) for mobile terminal users, see, e.g., [4], [8], [9].

The second strategy is based on maximizing the minimum

SINR (or rate) among mobile users, subject to the transmit

power constraint, see, e.g., [10], [11]. Needless to mention

that these two optimization strategies are complementary and

it is impossible to minimize the total transmit power while

maximize the SINRs. This is because of the fundamental trade-

off between the total transmit power and SINR in a multi user

communication system [9].

For practical implementations, uplink-downlink duality is

usually employed to derive iterative algorithms for downlink

beamforming problem in cellular networks. One of the Þrst

iterative algorithms for the Þrst aforementioned downlink

optimization strategy is proposed in [3]. Further in [12] an

additional per-antenna-power constraint is also added to the

optimization problem and consequently an iterative algorithm

is proposed to solve that problem in a single cell setting.

Later similar problem is also considered in [5] for a multi cell

setting without power constraint for each individual antenna

elements, and an iterative algorithm is also proposed to obtain

the optimal beamforming vectors.

In one of our recent works, [7], we also introduce a

decentralized optimization problem for a multi-cell network.

This optimization problem minimizes a linear combination of

the two cost functions, capturing both the total transmit power

of the base station (BS), and the corresponding weighted sum

of the inter-cell interference. This is subject to maintaining

the required SINR levels for all intra-cell users. In addition to

deriving an iterative algorithm for this problem, in [7] we also
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propose a scheme to update the price for the interference-cost

function such that the decentralized algorithm approaches the

performance of its centralized counterpart.

Application of beamforming techniques in cognitive cellular

systems has been recently investigated in the related literature,

see, e.g., [13], [14]. The two aforementioned optimization

strategies in cellular systems are adopted in underlay cognitive

systems by introducing an additional constraint on the inter-

ference levels at PUs. An approach to solve these optimization

problems is to transform them into rank-one-relaxation semi-

deÞnite-programming (SDP) form as in, e.g., [15], [16], [17].

The other technique is to recast the problem as a second-

order-cone-programming (SOCP) form, as in [18]. In either

case interior-point algorithms [4], [9], [19] are then adopted

to obtain the optimal solution.

Conventionally in the related literature beamforming

schemes are adopted in the underlay system with the main

constraint of keeping the corresponding interference imposed

at the PUs below a predeÞned threshold. Here, however we

formulate the beamforming problem to further reduce the

secondary system interference beyond the threshold. Further

reduction of the imposed interference makes new radio re-

sources available to be allocated to the the secondary system,

thus results in higher secondary system throughput.

In this paper, we introduce a novel downlink optimization

problem based on two slack variables which minimizes the

cognitive BS transmit power and the induced interference

on the PUs and keeps them below the predeÞned system

thresholds. This is subject to providing a certain level of

SINR required by the SUs. We Þrst reformulate the proposed

optimization problem to the SDP form. Using Lagrangian

technique, we then show that the optimal solution to the

proposed downlink optimization can be obtained by solving

its corresponding dual-uplink problem, which is in fact a max-

min optimization.

The corresponding max-min optimization consists of an

inner and an outer subproblems. The allocated SUs transmit

power vector in the dual uplink problem, acts as the optimiza-

tion variable in the inner subproblem. In the outer subproblem,

the optimization variables include Lagrange multipliers associ-

ated with the interference and power constraints in the original

optimization problem. We then propose an iterative algorithm

to solve the max-min optimization. The inner subproblem is

solved by adopting the Þxed-point approach [20]. The solu-

tions to the outer subproblem are also obtained utilizing the

subgradient-projection method [21]. Further we analytically

investigate the proposed algorithm and show its convergence.

We carry out Monte-Carlo simulations to justify our pro-

posed scheme and compare it against the existing beam-

forming schemes. We deÞne a benchmarking system. As

the benchmarking system we considered the method in [16]

which has been widely used in the related literature. We also

investigate the convergence of the proposed iterative algorithm

using simulations. Simulation results conÞrm that the proposed

iterative algorithm converges quickly to the optimal solution.

Results also indicate that the proposed algorithm success-

fully implements both the transmit power and interference

constraints. Comparisons against the benchmarking system

also indicates that the resulting beamforming based on the

proposed algorithm has signiÞcantly deeper nulls towards the

PUs. This conÞrms our claim that the proposed algorithm

make new radio resources available to be allocated to the

secondary system. This can result in either having larger

numbers of SUs at a given SINR level, or having a higher bit

rate for the existing SUs in the network. Moreover, simulation

results indicate that the proposed algorithm effectively works

at relatively high SINR levels required by the SUs and low

interference threshold set by PUs. However, the benchmark

fails to maintain that interference threshold at much lower

SINR levels.

The contributions of this paper can be summarized as the

following:

• We propose a novel downlink optimization strategy for

underlay cognitive cellular networks;

• The proposed optimization strategy is then transformed

into SDP form which can be solved by convex optimiza-

tion packages;

• For practical implementation purposes, we further derive

an iterative algorithm to Þnd solution to the proposed

optimization problem;

• We then analytically show the convergence of the pro-

posed iterative algorithm.

The rest of this paper is organized as follows. Section

II describes the system model and introduces the downlink

optimization problem for the cognitive radio network. Section

III presents SDP form and the proposed iterative algorithm

to obtain the solutions of the original problem introduced in

Section II. Simulation results are presented and discussed in

Section IV following by concluding remarks in Section V.

Notation: The standard Euclidean norm, the absolute value,

the transpose, the complex conjugate, the complex conjugate

transpose, and the trace operators are represented by the

following notations, respectively: ‖·‖, |·|, (·)T , (·)∗, (·)H and

Tr (·). A positive semi deÞnite matrix is denoted as Y � 0. If

all elements of a vector are non negative it is shown by y � 0.
An identity matrix with a suitable size, and the expectation of

a random variable are denoted by I, and E (·), respectively.

Finally, the notation (yi)
U

i=1 designates
[

y1 y2 · · · yU
]T

.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a cognitive cellular system consiting of a cognitive

BS, U active SUs and K PUs as shown in Fig. 1. A secondary

(cognitive) BS is supporting a set of U secondary users

while not interfering with a set of K primary users. Let

Ss = {1, · · · , U} and Sp = {1, · · · ,K} be, respectively, the

set of indices of SUs and PUs. We assume that the cognitive

BS is equipped with M antenna elements and each SU or PU

has a single antenna. The received signal at the SU i, i ∈ Ss,

is

yi = hH
s,iwisi +

∑

j∈Sl,j �=i

hH
s,iwjsj + ni, (1)

where hH
s,i ∈ C

1×M is the channel of SU i as seen by the

cognitive BS.
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Fig. 1. Schematic diagram of the system model.

In the above, wi ∈ CM×1 and si are the beamforming

vector and the data symbol associated to the SU i, respectively.

Further, ni is a zero mean circularly symmetric complex

Gaussian noise with variance σ2, i.e., ni ∼ CN (0, σ2), at

the SU i. Without loss of generality, the average energy in

transmitting a symbol to the SU i is assumed to be unity, i.e.,

E

(

|si|2
)

= 1. Let Rs,i = E
(

hs,ih
H
s,i

)

, we then express the

SINR at any SU i as

SINRi =
wH

i Rs,iwi
∑

j∈Ss,j �=i w
H
j Rs,iwj + σ2

. (2)

Let hH
p,t ∈ C

1×M be the cross channel of PU t, t ∈ Sp, as

seen by the cognitive BS, and Rp,t = E
(

hp,th
H
p,t

)

. The total

interference power that the cognitive BS induces on PUs can

be written as
∑

t∈Sp

∑

i∈Ss
wH

i Rp,twi.

At a required SINR by SUs, the lower the interference

level imposed by the secondary system on the PUs, the larger

is the number of SUs which can be served. Therefore, our

objective is to design downlink beamforming vectors for the

SUs such that the required level of SINR is maintained for

every SU while the cognitive BS transmit power and the

induced interference at the PUs� receivers are both minimized

and kept below the given system thresholds.

Here to design the downlink beamforming vectors we

formulate the following optimization problem based on two

slack variables, α and β.

min
α,β,wi

α+ β

s. t.
wH

i Rs,iwi
∑

j∈Ss,j �=i w
H
j Rs,iwj + σ2

≥ γi, ∀i ∈ Ss

∑

t∈Sp

∑

i∈Ss

wH
i Rp,twi ≤ αIm,

∑

i∈Ss

wH
i wi ≤ βPm,

(3)

where γi is the required SINR level for SU i, Im and Pm are

Þxed values. Note that in (3) α and β are treated in the same

way. However, Im and Pm can be adjusted to highlight the

importance of keeping the interference below the acceptable

level. It is worth mentioning that the optimization problem in

(3) is a generalized version of the optimization proposed in

our previous work in [7] with unity pricing. Later in Section

IV, it is shown that the same result offered by [7] can be also

achieved by substituting a particular set of parameters in (3).

III. DOWNLINK BEAMFORMING

In this section, we Þrst reformulate problem (3) into a

semideÞnite programming (SDP). Then, we use Lagrangian

method to derive an iterative algorithm to Þnd the solutions

of (3). We further show that the solution to the Lagrangian

dual problem can be obtained by solving the corresponding

dual-uplink problem of (3). Finally, we propose an iterative

algorithm to Þnd optimal downlink beamforming vectors to

the original problem employing the Þxed-point algorithm [20]

and the subgradient-projection technique [21].

A. SDP Form

By setting Wi = wiw
H
i � 0, rearranging the constraints,

and using the fact that xHYx = Tr
(

YxxH
)

, the problem (3)

is then rewritten in the following form:

min
α,β,Wi

α+ β

s. t. fi (Wi) ≥ 0, ∀i ∈ Ss

αIm −
∑

t∈Sp

∑

i∈Ss

Tr (Rp,tWi) ≥ 0

βPm −
∑

i∈Ss

Tr (Wi) ≥ 0

Wi � 0, ∀i ∈ Ss,

(4)

where

fi (Wi) = Tr (Rs,iWi)− γi
∑

j∈Ss,j �=i

Tr (Rs,iWj)− γiσ
2.

The optimization problem in (4) is in fact an instance

of standard SDP form which can be solved by the existing

optimization packages, e.g., CVX [22], to obtain Wi. In

transforming (3) into (4), we implicitly assume that Wi

is rank-one, i.e., rank (Wi) = 1. Later using semideÞnite-

relaxation technique, e.g., [16] and [8], we relax this condition,

i.e., rank (Wi) is not required to be rank-one, to make (4) a

convex optimization problem. If the obtained solution Wi to

problem (4) is also rank-one than it means that this solution

is also valid for the original problem (3). Otherwise, the

randomization technique in [23] is adopted to generate a rank-

one solution to the original problem (3) from the obtained Wi.

Given a rank-one solution Wi, it can be shown that the

corresponding beamforming vector wi is

wi =
√
̺ibi,

where ̺i and bi are the non-zero eigenvalue and its corre-

sponding eigenvector of the rank-one matrix Wi, respectively.
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B. Uplink Downlink Duality

Here, we Þrst adopt Lagrangian technique to transform the

proposed downlink problem (3) to its corresponding uplink

domain. We then Þnd the optimal downlink beamforming

vector as a linear function of its optimal uplink counterpart.

1) Dual Uplink Problem: Lagrangian function correspond-

ing to (3) is given in (5) where λi ≥ 0 is Lagrange multiplier

associated with the ith SINR constraint, η ≥ 0 is Lagrange

multiplier associated with the interference constraint, and

µ ≥ 0 is Lagrange multiplier associated with the transmit

power constraint.

Straightforward mathematical manipulations results in

L(α, β,wi, λi, η, µ) = α (1− ηIm) + β (1− µPm)

+
∑

i∈Ss

λiσ
2 +

∑

i∈Ss

wH
i Aiwi, (6)

where

Ai =
∑

j∈Ss

λjRs,j−λi

(

1 +
1

γi

)

Rs,i+η
∑

t∈Sp

Rp,t+µI. (7)

If Ai � 0, 1 − ηIm ≥ 0, and 1 − µPm ≥ 0, then Lagrange

dual function is

g (λi, η, µ) = inf
α,β,wi

L(α, β,wi, λi, η, µ) =
∑

i∈Ss

λiσ
2, (8)

otherwise,

g (λi, η, µ) = inf
α,β,wi

L(α, β,wi, λi, η, µ) = −∞. (9)

Therefore, the corresponding Lagrange dual problem is

max
η,µ,pi

∑

i∈Ss

pi

s. t. Ai � 0, ∀i ∈ Ss

η ∈ Sη, µ ∈ Sµ,

(10)

where pi = λiσ
2, Sη � {η : 1− ηIm ≥ 0}, and Sµ �

{µ : 1− µPm ≥ 0}.
In the sequel, we introduce a lemma to Þnd the solutions

to the dual downlink problem (10).

Lemma 1: The solution to the dual downlink problem in

(10) is the same as the solution to the following dual uplink

problem.

max
η,µ

min
pi

∑

i∈Ss

pi

s. t. max
‖ŵi‖=1

piŵ
H
i Rs,iŵi

ŵH
i Bi (p−i) ŵi

≥ γi, ∀i ∈ Ss,

η ∈ Sη, µ ∈ Sµ,

(11)

where ŵi is the dual uplink beamforming vector for the SU

i, p−i = (pj)
U

j=1,j �=i
, and

Bi

(

p−i
)

=
∑

j∈Ss,j �=i

pjRs,j + ησ2
∑

t∈Sp

Rp,t + µσ2I. (12)

Proof: See Appendix A.

We have transformed the original downlink problem, (3),

into its uplink counterpart, (11), by introducing Lemma 1.

Details of the steps to solve the problem in (11) are given

in Section III-C. At this point, it is observed that ŵi, and pi
are the direct of transmission, and power allocation for SU i,
respectively. In the following, we obtain the expression for an

optimal downlink beamforming vector as a linear function of

its uplink counterpart.

2) Downlink Beamforming Vector: Once an optimal uplink

beamforming vector is obtained, the corresponding downlink

beamforming vector can be then attained as follows.

Corollary 1: The optimum downlink beamforming vector

for user i, i.e., w⋆
i , is

w⋆
i = ǫiŵ

⋆
i , (13)

where ŵ⋆
i is the corresponding optimum dual uplink beam-

forming vector and ǫi is the scaling factor associated with the

SU i.

Proof: See Appendix B.

In the following, we obtain ǫi for i ∈ Ss. First, we rewrite

the ith SINR constraint in (3) as

ki (wi) =
∑

j∈Ss,j �=i

γiw
H
j Rs,iwj + γiσ

2 −wH
i Rs,iwi ≤ 0.

Let λ⋆
i > 0 be Lagrange multiplier at the optimal point. Using

the complementary slackness condition, i.e., λ⋆
i ki (w

⋆
i ) = 0

[19, Chapter 5], results in
∑

j∈Ss,j �=i

γiw
⋆H
j Rs,iw

⋆
j + γiσ

2 −w⋆H
i Rs,iw

⋆
i = 0. (14)

Substituting w⋆
i in (14) with (13) yields

ǫ2i ŵ
⋆H
i Rs,iŵ

⋆
i −

∑

j∈Ss,j �=i

γiǫ
2
jŵ

⋆H
j Rs,iŵ

⋆
j = γiσ

2. (15)

Let us denote m =
(

γiσ
2
)U

i=1
, q =

(

ǫ2i
)U

i=1
and deÞne the

U × U matrix G with the (i, j)th entry, i.e., ∀i, j ∈ Sl, as

[G]i,j =

{

ŵ⋆H
i Rs,iŵ

⋆
i , if i = j

−γiŵ
⋆H
j Rs,iŵ

⋆
j , if i �= j.

(16)

We then write (15) as

Gq = m, (17)

where m � 0. The scaling factor ǫi, i ∈ Ss, can be obtained

through (17). A feasible solution for q exists if all elements

of q are nonnegative. To investigate the the existence of such

solution which depends on the structure of G we need the

following deÞnition. We also present the following theorems

for easy reference.

DeÞnition Z-matrix [24], [25]: A matrix A ∈ RK×K is

called a Z-matrix if all of its off-diagonal elements are non-

positive.

Theorem 1: [24, Chapter 6, Theorem 2.3]: If all the diag-

onal elements of a matrix A ∈ RK×K are positive and there

exists a positive diagonal matrix D such that AD is strictly

diagonally dominant, i.e.,

aiidii >

K
∑

j=1,j �=i

|aij | djj , i = 1, · · · ,K, (18)
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L(α, β,wi, λi, η, µ) = α+ β +
∑

i∈Ss

λi

⎡

⎣

∑

j∈Ss

wH
j Rs,iwj + σ2 −wH

i Rs,iwi

(

1 +
1

γi

)

⎤

⎦

+η

⎡

⎣

∑

t∈Sp

∑

i∈Ss

wH
i Rp,twi − αIm

⎤

⎦+ µ

[

∑

i∈Ss

wH
i wi − βPm

]

, (5)

then all the principal minors of A are also positive. In (18),

aii, and dii denote the (i, i)th entry of matrices A, and D,

respectively.

Theorem 2: [25, Theorem 3.11.10]: For a Z-matrix,

A ∈ RK×K , the following statements are equivalent:

• All principal minors of A are positive;

• A−1 exists and is nonnegative, i.e., all elements are

nonnegative.

The main result regarding the existence of the solution is

presented in the following lemma.

Lemma 2: If G, deÞned in (16), satisÞes

ŵ⋆H
i Rs,iŵ

⋆
i > γi

∑

j∈Ss,j �=i

ŵ⋆H
j Rs,iŵ

⋆
j , ∀i ∈ Ss, (19)

then there exists a unique feasible solution to (17) in the form

of q = G−1m.

Proof: If G satisÞes the conditions in (19), then GI is

a strictly diagonally dominant matrix. Therefore, according to

Theorem 1, all principal minors of G are positive. Considering

(16) indicates that G is a Z-matrix, therefore according to

Theorem 2, G−1 exists and all its elements are nonnegative.

Since all elements of vector m in (17) are also nonnegative,

then

q = G−1m � 0. (20)

C. Proposed Iterative Algorithm

The dual uplink problem (11) can be considered as two

independent optimization problems, i.e., inner and outer op-

timization problems. The inner problem is a minimization

problem over the set of variable pi and the outer problem

is a maximization problem over the set of variables µ and η.
Hence, the optimal solution to the dual uplink problem, (11),

can be obtained by iteratively solving the inner minimization

on pi and the outer maximization on η and µ. For given

η and µ, the inner problem can be solved using a Þxed-

point algorithm [20]. Finally, the optimal solutions to the

outer problem can be obtained by using subgradient-projection

algorithm [21].

1) The Inner Problem: Let us consider the following sub-

problem of (11) with Þxed values of η and µ

f (η, µ) =min
pi

∑

i∈Ss

pi

s. t. max
‖ŵi‖=1

piŵ
H
i Rs,iŵi

ŵH
i Bi (p−i) ŵi

≥ γi, ∀i ∈ Ss.

(21)

We denote ŵ⋆
i as the optimal solution to the optimization

problem in the left hand side of the constraint. In fact, ŵ⋆
i is

the dominant eigenvector, i.e., the eigenvector associated with

the maximum eigenvalue, of matrix B−1
i

(

p−i
)

Rs,i. Hence,

the ith constraint of (21) can be written as

pi ≥ γi
ŵ⋆H

i Bi

(

p−i
)

ŵ⋆
i

ŵ⋆H
i Rs,iŵ

⋆
i

. (22)

We also denote p = (pi)
U

i=1, d(p) =
(

di
(

p−i
))U

i=1
and

di
(

p−i
)

= γi
ŵ⋆H

i Bi

(

p−i
)

ŵ⋆
i

ŵ⋆H
i Rs,iŵ

⋆
i

. (23)

The optimization problem (21) is then rewritten in a com-

pact form as

f (η, µ) =min
pi

∑

i∈Ss

pi

s. t. p � d(p).

(24)

The optimal solution to (24), can be obtained through the

following iterative expression [20]:

p (n+ 1) = d (p (n)) (25)

where n indicates iteration index.

In order to show the convergence of the above sequence

{p (n)}, we Þrst introduce the following lemma.

Lemma 3: Function d (p), with elements deÞned in (23),

is a standard-interference function2.

Proof: See Appendix C.

Then using the contraction mapping [26], we continue with

the derivation of a condition that ensures the existence of a

Þxed point3 p⋆ for equation (25) in the following Lemma.

Lemma 4: Equation (25) has a Þxed point p⋆, if

c =
√
U − 1max

i

⎛

⎝

∑

t∈Ss,t�=i

γt
ŵ⋆H

t Rs,tŵ
⋆
t

ŵ⋆H
t Rs,iŵ

⋆
t

⎞

⎠ ∈ [0, 1), (26)

i.e., 0 ≤ c < 1.

Proof: See Appendix D.

If d (p) is a standard interference function, and equation

(25) has a Þxed point p⋆, then according to the results in [20]

that Þxed point is unique and the iterations {p (n)} generated

by (25) eventually converge to p⋆ from any initial vector p (0).

2A function is called standard interference if it satisÞes the positivity,
monotonicity, and scalability criteria, see, Appendix C.

3p (n+ 1) = d (p) has a Þxed point p⋆, if p⋆ = d (p⋆) [20].
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Therefore, under the condition stated in Lemma 4 the itera-

tion in (25) is guaranteed to converged to p⋆. The convergence

speed of the iteration is characterized in the following lemma.

Lemma 5: For any initial vector p (0), the number of iter-

ations n to obtain the accuracy of ‖ p (n)− p⋆ ‖≤ ζ is

n ≤ ln ζ − ln ‖ p (0)− p⋆ ‖
ln c

(27)

where c is deÞned in (26).

Proof: Under the condition that c ∈ [0, 1), the sequence

{p (n)} generated by p (n+ 1) = d (p (n)) converges lin-

early to p⋆ such that [26]

‖ p (n)− p⋆ ‖≤ cn ‖ p (0)− p⋆ ‖ . (28)

The iteration obtains the accuracy of ζ if

cn ‖ p (0)− p⋆ ‖≤ ζ. (29)

Using (28), (29) following with straightforward mathematical

manipulations result in (27).

Remark 1: Since ζ, c ∈ [0, 1) and ‖ p (0) − p⋆ ‖≥ 0, it

can be veriÞed from (27) that n is a monotonic function of U
and SINR level at SUs. Later in Section IV, this statement is

conÞmed by simulation results.

2) The Outer Problem: Having solved the inner problem,

the outer problem can be stated as

max
η,µ

f (µ, η)

s. t. η ∈ Sη, µ ∈ Sµ,
(30)

where f (µ, η) is deÞned in (24). We show that the objective

function is concave regarding to µ at a given value of η and

vice versa. Then the projection subgradient method [21] is

adopted to Þnd the optimal solutions for µ and η. We also

need to introduce the following lemma.

Lemma 6: For a given η = η0, f (η0, µ) is a concave

function of µ and its subgradient is
∑

i∈Ss
wH

i wi. For a

given µ = µ0, the function f (η, µ0) is concave in η and
∑

i∈Ss
wH

i wi is its subgradient.

Proof: See Appendix E.

To obtain µ we propose the following iteration

µ(n+ 1) = PSµ

{

µ(n) + τµ
∑

i∈Ss

wH
i wi

}

(31)

where PSµ
is the Euclidean projection on the constraint set

Sµ = {µ : 1− µPm ≥ 0} and τµ is the step size.

As it is seen in Lemma 6, f (η0, µ) is a concave function of

µ thus the Euclidean projection of the subgradient of f (η0, µ)
on the constraint set Sµ stated in (31) is guaranteed to converge

to the global optimum of f (η0, µ) [21].

Similarly, η can be found using the following convergent

iteration.

η(n+ 1) = PSη

{

η(n) + τη
∑

i∈Ss

wH
i wi

}

, (32)

where PSη
is the Euclidean projection on the constraint set

Sη = {η : 1− ηIm ≥ 0} and τη is the step size.

3) The Proposed Algorithm: The proposed iterative algo-

rithm is summarized in Algorithm 1.

Algorithm 1 Iterative Algorithm

1: DeÞne: a set of SUs, Ss, with their corresponding SINR

requirements, a set of PUs, Sp, Im, Pm and an iteration

stopping criteria, δ.
2: n = 1.
3: Initialize p (n) � 0, µ(n) > 0, η(n) > 0.
4: For all i ∈ Ss, Þnd ŵi (n) as the dominant eigenvector of

the matrix B−1
i

(

p−i (n)
)

Rs,i, calculate di
(

p−i (n)
)

=

γi
ŵH

i (n)Bi(p−i(n))ŵi(n)

ŵH
i
(n)Rs,iŵi(n)

, calculate G (n) using (16) and

form d (p (n)) =
(

di
(

p−i (n)
))U

i=1
.

5: if condition (19) is satisÞed for all SU i with its associated

ŵi (n) then

6: go to step 10

7: else if condition (19) is not satisÞed for a SU i then

8: either reduce the target SINR so that γ̃i <
ŵi(n)Rs,iŵi(n)∑

j∈Ss,j �=i
ŵj(n)Rs,iŵj(n)

, or remove SU i from Ss.

Then go to step 2.

9: end if

10: wi (n) = ǫiŵi (n), where ǫi is found as the square root

of the i-th entry of the vector q (n) = (G (n))
−1

m.

11: µ(n+ 1) = PSµ

{

µ(n) + τµ
∑

i∈Ss
wi (n)

H
wi (n)

}

.

12: η(n+ 1) = PSη

{

η(n) + τη
∑

i∈Ss
wi (n)

H
wi (n)

}

.

13: p (n+ 1) = d (p (n)).
14: n = n+ 1.
15: Repeat steps 4�14 until ‖ p (n+ 1)− p (n) ‖≤ δ.
16: ŵ⋆

i = ŵi (n+ 1), calculate G (n+ 1) using (16).

17: The optimal downlink beamforming vector for SU i is

w⋆
i = ǫiŵ

⋆
i where ǫi is found as the square root of the

i-th entry of the vector q (n+ 1) = (G (n+ 1))
−1

m.

IV. SIMULATIONS

Here we consider a cognitive cellular system, described

in Section II. To compare against the proposed optimiza-

tion scheme, we consider a popular optimization strategy in

cognitive systems, that minimizes the transmit power of the

secondary BS subject to SINR constraint for every SU, as

well as the interference constraint for each PU. In particular,

we compare our proposed algorithm against a benchmarking

system in [16] which develops the aforementioned strategy in

SDP form.

A. Simulation Setup

We randomly drop SUs and PUs and use Monte-Carlo

simulations over various number of user distributions. Fig. 2

illustrates an instance of the simulated user distribution con-

sisting of one cognitive BS and four randomly located users

(two PUs and two SUs). The channel covariance matrices from

the secondary BS to SU i , i.e., Rs,i, and to PU t, i.e., Rp,t,

are

Rs,i = ξs,iR (θs,i, σa) , (33)

Rp,t = ξp,tR (θp,t, σa) , (34)
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Fig. 2. An instance of the considered simulation scenario.

where ξs,i or ξp,t represents the channel gain coefÞcient, θs,i
or θp,t is the angle of departure, σa is the standard deviation

of the angular spread, and the (m,n)th entry of R (θ, σa) is,

[8], [27]:

e
j2π∆

λ
[(n−m)sinθ]e−2[π∆σa

λ
{(n−m)cosθ}]

2

. (35)

In (33) and (34), ξs,i and ξp,t capture the distance-dependent

path-loss according to 34.5+35log10(l), where l is the distance

in meters with l ≥ 35m, a log-normal shadow fading with 8dB

standard deviation and a Rayleigh component for the multi-

path fading channel. In (35), σa = 2◦ and the antenna spacing

at the BS ∆ = λ/2, where λ is the carrier wavelength. The cell

radius of the cognitive BS, the noise power spectral density, the

noise Þgure at each user receiver and antenna gain are assumed

to be 1.3km, -174dBm/Hz, 5dB and 15dBi, respectively.

B. Convergence Behavior
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Fig. 3. Convergence behavior of the proposed iterative algorithm.

In Fig. 3, the residual norm of ‖ p(n) − p⋆ ‖ is plotted

versus number of iterations n to show the convergence speed

of the proposed iterative algorithm to the optimal solution

p⋆. Fig. 3 conÞrms the statement in Remark 1, i.e., the

convergence speed of the proposed algorithm is a monotonic

function of number of SUs and required SINR level at SUs. It

can be seen from the Þgure that at the same target SINR and

number of antenna, the proposed algorithm converges faster

with less number of SUs. On the other hand, with the same

number of SUs and the same number of antenna elements, the

lower target SINR, the quicker the convergence is.

Results shown in Fig. 3 further reveal that the convergence

speed of the proposed algorithm is also a monotonic function

of the number of antenna elements. Finally, the Þgure indicates

that the proposed algorithm has a fast convergence speed. With

two SUs and two PUs, for instance, the algorithm approaches

the optimal solution, with the accuracy of around 10−16 after

19 iterations and around 10−15 after 31 iterations with 8 and

4 antenna elements, respectively.

C. Comparison on Transmit Power and ICI
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Fig. 4. Total transmit power of the cognitive BS and total interference
imposed on PUs versus equal SINR levels at SUs. The power constraint Pm

in problem (3) is set to 35dBm. The number of antenna elements at the
cognitive BS is 6.

In Fig. 4 illustrates the total transmit power of the cognitive

BS and total interference imposed on PUs versus equal SINR

levels at SUs for the proposed approach and the benchmark

with different interference constraints Im. In the proposed

approach, the power constraint Pm in problem (3) is set to

35dBm. Solution to optimization problem (3) is obtained by

the proposed iterative algorithm and CVX [22] for the SDP

form in (4).

As it is observed, the proposed algorithm in this paper

satisÞes all the interference constraints required by the primary

system, i.e., -10dBm and -20dBm, as well as the power

constraint at the BS. It is further seen that the stricter in-

terference constraint in the primary system, the higher is

the required transmit power of the cognitive BS. This is

an effect of narrowing down the feasibility region in the

optimization (3). Fig. 4 indicates that the solution to the

optimization problem (3) obtained by the iterative algorithm
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is the same as that offered by SDP algorithm. The proposed

approach outperforms the benchmark at high required SINR

level by SUs and stricter interference threshold given by PUs.

For instance, the benchmarking system fails to maintain the

interference threshold of -20dBm after the required SINR of

10dB while the proposed scheme effectively works up to 20dB.
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Fig. 5. Total transmit power of the cognitive BS and total interference
imposed on PUs versus equal SINR levels at SUs. The interference constraint
Im in problem (3) is set to -10dBm. The number of antenna elements at the
cognitive BS is 6.

In Fig. 5, the performance, i.e., total transmit power and

total interference power, of the proposed approach is shown

versus equal SINR levels at SUs with Þxed interference

constraint Im = −10dBm and various levels of transmit power

constraint. The Þgure indicates that the proposed algorithm

forces the total transmit power and total interference power

well below the given constraints. This shows the effectiveness

of introducing the slack variables α and β in the optimization

problem (3). Fig. 5 also shows that the proposed approach

imposes lower total interference on PUs when the transmit

power constraint increases. This is an effect of enlarging the

feasibility region of problem (3).
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Fig. 6. Total transmit power of the cognitive BS versus equal SINR levels
at SUs. The number of antenna elements at the cognitive BS is 6.

Fig. 6 shows the transmit power and total interference

power of the proposed scheme and the unity-pricing strategy

introduced in [7]. We set Im = 0dBm and Pm = 0dBm

in problem (3). Fig. 6 indicates that the proposed algorithm

provides the same performance as that of the scheme in [7]

with unity pricing. This is because of the fact that by setting

Im = 1 and Pm = 1 in (3), the proposed optimization (3)

becomes an epigraph form [19] of the unity-pricing problem

introduced in [7].

D. Comparison on Radiation Patterns

In order to have an insight on the interference management

ability of the two systems, we investigate their actual radiation

patterns. We repeat the experiment described in Example

1 of [16]. In that experiment, there are three SUs located

at −5◦, 10◦ and 25◦ relative to the BS�s array broadside.

The noise variance is set to 0.1 while the SINR threshold

values are set to 1 for SUs. In addition, there are two PUs

located at 30◦ and 50◦ relative to the BS�s array broadside

with their corresponding interference tolerable values of 0.001

(-30dBW) and 0.0001 (-40dBW). We then implement the

proposed algorithm in [16] for those PUs and SUs with the

total interference threshold level Im of 0.0011 (-29.6dBW).

It is worth emphasizing that in our proposed optimization

problem, a threshold is put on the total interference imposed

on all PUs while in the benchmark, the interference threshold

is set for each PU.
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d
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Fig. 7. Reproduction of the radiation pattern of the BS for the benchmark
[16, Fig. 3]. The number of antenna elements is 8. The required transmit
power is 19.05dBm

Figs. 7 and 8 show the radiation patterns of the BS for

the benchmark and proposed scheme, respectively. Comparing

Figs. 7 and 8 it is observed that both schemes are capable

of shaping interference, i.e., providing nulls, at the angles

that those PUs are located. It also can be also seen that

the proposed algorithm signiÞcantly outperforms the bench-

mark in terms of controlling interference towards PUs, i.e.,

around 140dB deeper nulls in comparison with the benchmark

are provided by the proposed scheme. The improvement is

achieved with the cost of an increase in the transmit power
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Fig. 8. Radiation pattern of the BS for the proposed iterative algorithm. The
number of antenna elements is 8. The required transmit power is 19.81dBm

from 19.05dBm to 19.81dBm. The superior performance of

the proposed strategy gainst the benchmark can be explained

as follows. First, by putting one constraint on the total in-

terference, the feasibility region of the proposed optimization

problem is larger than that of the benchmark. Second, by using

slack variable α, the proposed optimization forces the total

interference well below the predeÞned threshold.

E. Comparison on SUs� Sum Rate

In the following, we compare the proposed algorithm

against the benchmark in terms of secondary users� sum rate.

We need to protect a set of two PUs located at 30◦ and 50◦

relative to the cognitive BS�s array broadside with the distance

of 1.3km to the cognitive BS. In the meantime, we try to

serve a set of ten candidate SUs located at −5◦, 10◦, 25◦,
40◦, 55◦, 70◦, −20◦, −35◦, −50◦ and −65◦ relative to the

cognitive BS�s array broadside. The distance from SUs to the

BS is 0.13km. At a given SINR level, we start implementing

the proposed and benchmark approach with one SU and keep

increasing the number of SUs until the interference threshold

is exceeded. The sum rate shown in Fig. 9 is calculated as

U log 2(1 + SINR) where U is the number of admitted SUs.

The results shown in Fig. 9 indicates that the proposed

algorithm obtains higher sum rate than the benchmark in the

SINR range from 2 to 8dB. This is due to the fact that the

proposed approach can provide deeper nulls to ward the PUs,

hence, it can serve more SUs than its counterpart at a given

SINR level. The two approaches offer the same performance

at 10dB of SINR since at that point the interference gap

between them is not signiÞcant, i.e., see Fig. 4. However,

it is worth mentioning that the benchmark fails to operate,

i.e., maintaining the Im and Pm constraints, after 10dB while

the proposed approach still works effectively at higher SINR

levels.

V. CONCLUSION

In this paper, we proposed a novel optimization problem to

design downlink beamforming vectors for a cognitive cellular

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

SINR [dB]

S
U

 s
u
m

 r
a
te

 [
b
it
/s

/H
z
]

 

 
Benchmark

Proposed

Fig. 9. Sum rate obtained by SUs versus equal SINR levels at SUs.
The constraints Im and Pm in problem (3) are set to -30dBm and 35dBm,
respectively. The number of antenna elements at the cognitive BS is 6.

network. For the proposed optimization problem, we then de-

rived the corresponding SDP form and developed an iterative

algorithm to Þnd the solutions. Simulation results conÞrmed

that the proposed iterative algorithm has a fast convergence

speed. The results also indicated that the proposed algorithm

guarantees the transmit power and interference constraints.

Comparisons against the benchmark approach showed signif-

icantly lower interference levels are shaped by the proposed

algorithm towards primary users. This advantage leads to the

better performance in terms of higher secondary users� sum

rate offered by the proposed scheme at the SINR range from 0

to 8 dB. Simulation results revealed that the proposed approach

effectively works up to SINR level of 20 dB, required by

secondary users, and interference threshold of -20 dBm, set

by primary users, while the benchmark fails to do so beyond

SINR level of 10 dB.

APPENDIX A

PROOF OF LEMMA 1

Proof: Using (7), we can rewrite the problem (10) as

max
η,µ

max
pi

∑

i∈Ss

pi

s. t. Ki � λi

(

1 +
1

γi

)

Rs,i, ∀i ∈ Ss,

η ∈ Sη, µ ∈ Sµ,

(36)

where Ki =
∑

j∈Ss
λjRs,j + η

∑

t∈Sp
Rp,t + µI. Let ŵ⋆

i

be the optimal solution to the left-hand side of the SINR

constraints in problem (11). Substituting ŵ⋆
i into the SINR

constraints in (11) and rearranging the terms using (12) yields

ŵ⋆H
i

(

Ki − λi

(

1 +
1

γi

)

Rs,i

)

ŵ⋆
i ≤ 0. (37)

To obtain (37), we use the fact that pi = λiσ
2 > 0. From

(37), we can write

Ki � λi

(

1 +
1

γi

)

Rs,i. (38)
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Therefore, the problem (11) can be rewritten as

max
η,µ

min
pi

∑

i∈Ss

pi

s. t. Ki � λi

(

1 +
1

γi

)

Rs,i, ∀i ∈ Ss,

η ∈ Sη, µ ∈ Sµ.

(39)

By changing the maximization to minimization in the inner

subproblem and reversing the inequality direction of the con-

straints of the problem (36), we can obtain the problem (39).

Furthermore, it can be veriÞed that the constraints in both

problems hold with equality at the optimal solutions. There-

fore, (36) and (39) have the same solution. This points to the

conclusion that (10) and (11) have the same solution.

APPENDIX B

PROOF OF COROLLARY 1

Proof: Consider the left hand side of the SINR constraint

in (11), i.e.,

max
‖ŵi‖=1

piŵ
H
i Rs,iŵi

ŵH
i Bi (p−i) ŵi

.

The optimal solution to the problem denoted as ŵ⋆
i , is the

dominant eigenvector, i.e., the eigenvector associated with the

maximum eigenvalue, of matrix B−1
i

(

p−i
)

Rs,i. We can write

B−1
i

(

p−i
)

Rs,iŵ
⋆
i = χiŵ

⋆
i , (40)

where χi is the corresponding dominant eigenvalue.

The gradient of L(α, β,wi, λi, η, µ) in (5), i.e., the La-

grangian of the optimization problem (3), with respect to wi

vanishes at the optimal points λ⋆
i and w⋆

i . Therefore, setting

the gradient of L(α, β,w⋆
i , λ

⋆
i , η, µ) = 0, using algebra and

the fact that p⋆i = λ⋆
i σ

2, we have

B−1
i

(

p−i
)

Rs,iw
⋆
i =

p⋆j
γi

w⋆
i . (41)

Comparing (40) and (41) leads to the conclusion stated in

Corollary 1.

APPENDIX C

PROOF OF LEMMA 3

Proof: d(p) is a standard-interference function because

it satisÞes the following criteria for all p � 0:
1. Positivity: Since Rs,i � 0 and Bi(p

−i) is positive

deÞnite, ∀i ∈ Sl, it can be veriÞed from (23) that d(p) ≻ 0,
i.e., all elements of vector d(p) are non-negative, ∀p � 0.

2. Monotonicity: If p � p′, i.e., element-wise inequality,

then, using (23), it can be shown that:

di(p
−i)− di(p

′−i
) =

∑

j∈Sl,j �=i

(

pj − p′j
)

ŵ⋆H
i Rs,jŵ

⋆
i

ŵ⋆H
i Rs,iŵ

⋆
i

≥ 0,

for all i ∈ Sl. Therefore d(p) � d(p′).
3. Scalability: For all δ > 1, let us consider

δdi(p
−i) =

∑

j∈Sl,j �=i δpjŵ
⋆H
i Rs,jŵ

⋆
i + δŵ⋆H

i Ciŵ
⋆
i

ŵ⋆H
i Rs,iŵ

⋆
i

(42)

where

Ci = σ2

⎛

⎝

∑

t∈Sp

ηRp,t + µI

⎞

⎠ ,

is a positive deÞnite matrix. Since δ > 1,

δŵ⋆H
i Ciŵ

⋆
i > ŵ⋆H

i Ciŵ
⋆
i . (43)

Using (42) and (43), it can be seen that

δdi(p
−i) >

∑

j∈Sl,j �=i δpjŵ
⋆H
i Rs,jŵ

⋆
i + ŵ⋆H

i Ciŵ
⋆
i

ŵ⋆H
i Rs,iŵ

⋆
i

,

which implies δdi(p
−i) > di(δp

−i), for all i ∈ Sl. Therefore,

δd(p) ≻ d(δp), i.e., element-wise inequality.

APPENDIX D

PROOF OF LEMMA 4

Proof: Using (23), we can write

‖ d(p)− d(p′) ‖2=
∑

i∈Ss

(

di(p
−i)− di(p

′−i
)
)2

=
∑

i∈Ss

⎛

⎝γi
∑

t∈Ss,t�=i

(pt − p′t)

(

ŵ⋆H
i Rs,tŵ

⋆
i

ŵ⋆H
i Rs,iŵ

⋆
i

)

⎞

⎠

2

. (44)

Applying Cauchy-Schwarz inequality on (44), we get to (45),

then using algebra, we obtain (51), details are given at the top

of the next page. From (51), we can write

‖ d(p)− d(p′) ‖2 ≤ c2
∑

i∈Ss

(pi − p′i)
2

= c2 ‖ p− p′ ‖2 (52)

where

c �
√
U − 1max

i

⎛

⎝

∑

t∈Ss,t�=i

γt
ŵ⋆H

t Rs,iŵ
⋆
t

ŵ⋆H
t Rs,tŵ

⋆
t

⎞

⎠ . (53)

From (52), we have

‖ d(p) − d(p′) ‖≤ c ‖ p− p′ ‖ . (54)

According to [26, Chapter 3], if (54) holds for c ∈ [0, 1), then

d(.) is a contraction mapping and d(p) has a unique Þxed

point p⋆. It can be easily veriÞed from (53) that c = 0 is

satisÞed for U = 1, i.e., one user per cell. Furthermore, by

setting c < 1 in (53), one can arrive at (26) in Lemma 4.

APPENDIX E

PROOF OF LEMMA 6

Proof: Using the same technique to prove Lemma 1,

i.e., presented in Appendix A, we transform f (η0, µ) into the

downlink domain as

f (η0, µ) =min
wi

µ
∑

i∈Ss

wH
i wi,

s. t. g (wi) ≥ γi, ∀i ∈ Ss,

(55)

where

g (wi) �
wH

i Rs,iwi
∑

j∈Ss,j �=i w
H
j Rs,iwj + σ2 + η0σ2

∑

t∈Sp
Rp,t

.
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‖ d(p)− d(p′) ‖2 ≤ (U − 1)
∑

i∈Ss

γ2
i

⎛

⎝

∑

t∈Ss,t�=i

(pt − p′t)
2
(

ŵ⋆H
i Rs,tŵ

⋆
i

ŵ⋆H
i Rs,iŵ

⋆
i

)2
⎞

⎠ (45)

= (U − 1)
∑

i∈Ss

γ2
i

(

∑

t∈Ss

(pt − p′t)
2
(

ŵ⋆H
i Rs,tŵ

⋆
i

ŵ⋆H
i Rs,iŵ

⋆
i

)2

− (pi − p′i)
2

)

(46)

= (U − 1)
∑

i∈Ss

∑

t∈Ss

γ2
i (pt − p′t)

2
(

ŵ⋆H
i Rs,tŵ

⋆
i

ŵ⋆H
i Rs,iŵ

⋆
i

)2

−
∑

i∈Ss

γ2
i (pi − p′i)

2
(47)

= (U − 1)
∑

t∈Ss

∑

i∈Ss

γ2
t (pi − p′i)

2
(

ŵ⋆H
t Rs,iŵ

⋆
t

ŵ⋆H
t Rs,tŵ

⋆
t

)2

−
∑

i∈Ss

γ2
i (pi − p′i)

2
(48)

= (U − 1)
∑

i∈Ss

(pi − p′i)
2

(

∑

t∈Ss

γ2
t

(

ŵ⋆H
t Rs,iŵ

⋆
t

ŵ⋆H
t Rs,tŵ

⋆
t

)2

− γ2
i

)

(49)

= (U − 1)
∑

i∈Ss

(pi − p′i)
2

∑

t∈Ss,t�=i

γ2
t

(

ŵ⋆H
t Rs,iŵ

⋆
t

ŵ⋆H
t Rs,tŵ

⋆
t

)2

(50)

≤ (U − 1)
∑

i∈Ss

(pi − p′i)
2

⎛

⎝

∑

t∈Ss,t�=i

γt
ŵ⋆H

t Rs,iŵ
⋆
t

ŵ⋆H
t Rs,tŵ

⋆
t

⎞

⎠

2

. (51)

Let w⋆
i,1, and w⋆

i,2, respectively, be the optimal beamforming

vectors for f (η0, µ1) and f (η0, µ2), where µ1 and µ2 are two

positive numbers. Consider

f

(

η0,
µ1 + µ2

2

)

= min
{wi:g(wi)≥γi}

µ1 + µ2

2

∑

i∈Ss

wH
i wi

≥ 1

2
µ1

∑

i∈Ss

w⋆H
i,1 w

⋆
i,1 +

1

2
µ2

∑

i∈Ss

w⋆H
i,2 w

⋆
i,2

=
1

2
f (η0, µ1) +

1

2
f (η0, µ2) .

The above inequality conÞrms that function f (η0, µ) is con-

cave in µ. Now we consider

f (η0, µ2)− f (η0, µ1) = µ2

∑

i∈Ss

w⋆H
i,2 w

⋆
i,2 − µ1

∑

i∈Ss

w⋆H
i,1 w

⋆
i,1

≤ µ2

∑

i∈Ss

w⋆H
i,1 w

⋆
i,1 − µ1

∑

i∈Ss

w⋆H
i,1 w

⋆
i,1

= (µ2 − µ1)
∑

i∈Ss

w⋆H
i,1 w

⋆
i,1.

Therefore,

f (η0, µ2) ≤ f (η0, µ1) + (µ2 − µ1)
∑

i∈Ss

w⋆H
i,1 w

⋆
i,1.

This fact points to a conclusion that
∑

i∈Ss
wH

i wi is a

subgradient of f (η0, µ).
Following the same line of arguments, the second statement

of the lemma can be proven.
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