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Abstract

Current systems for speech recognition suf-
fer from uncertainty: rather than delivering
a uniquely-identified word, each input seg-
ment is associated with a set of recognition-
candidates or word-hypotheses. Thus an in-
put sequence of sounds or images leads to,
not an unambiguous sequence of words, but
a lattice of word-hypotheses. To choose the
best candidate from each word-hypothesis set
(i.e. to find the best route through the lat-
tice), linguistic context needs to be taken into
account, at several levels: lexis and morphol-
ogy, parts-of-speech, phrase structure, seman-
tics and pragmatics.

We believe that an intuitively simple, naive
model will suffice at each level; the sophisti-
cation required for full Natural Language Un-
derstanding (NLU) (e.g. Alvey Natural Lan-
guage Toolkit (ANLT)) is inappropriate for
real-time language recognition. We describe
here models of each linguistic level which
are simple but robust and computationally
straightforward (hence ‘pragmatic’ in the ev-
eryday sense) and which have clear theoretical
shortcomings in the eyes of linguistic purists,
but which nevertheless do the job.

1 Background

Output from an English recognition system whether it
is speech, handwriting or optical character) is typically
a sequence of candidate sets, referred to as a recognition
lattice. For example, on ‘hearing’ the sentence “Stephen
left school last year”, an English speech recognition sys-
tem may produce the following lattice of candidates in
order of decreasing similarity to the input speech signal:

stephen —-- stiffen

left -—— 1lift —-—- loft
school ——— scowl ——- scull
lest ——— last —-—- least
yearn —--- your ——-— year

This i1s in fact an oversimplification, as several varia-
tions are possible on this pattern using lattices. Lattices

Paul Mc Kevitt
Department of Computer Science
Regent Court, 211 Portobello Street
University of Sheffield
GB- S1 4DP, Sheffield
England, EU.

E-mail: p.mckevitt@dcs.shef.ac.uk

can have varying numbers of candidates. For example
‘DragonDictate! 30K’ may produce only one candidate
when it is sure of the spoken word, or many more (up to
10) when there are many close matches to the acoustic
signal. The ordering, in terms of decreasing similarity
to the acoustic signal, is based on a confidence value at-
tatched to each candidate. These are not displayed to
the user, but may be accessible internally to be used by
a language model. In some speech recognisers, lattices
are first built at a sub-word level, with candidate-sets
of phonemes, syllables, triphones etc. To apply syntac-
tic and semantic linguistic constraints, sub-word lattices
must first be converted into word lattices via lexical anal-
ysis. With a continuous speech recogniser, word bound-
aries are not pre-ordained, and alternative candidates
may overlap or have unassigned gaps between them, sig-
nificantly complicating the application of linguistic con-
straint models. However, for our initial experiments, we
assume the simplified model where word-boundaries are
known as is the case with a discrete-word recogniser, and
candidates are words rather than sub-word units.

To disambiguate lattices, a standard technique is to
use a language model to constrain the possible choices, so
that the chosen sequence of words is the most linguisti-
cally plausible. Most language models for lattice disam-
biguation provide only a limited coverage of the linguis-
tic knowledge available, restricted to word or wordtag
n-grams [Jelinek 90]. Analysis of recognition lattices in-
volves traversing a much larger search space than when
analysing sentences; and the necessity of real-time com-
putability acts as a constraint on language model com-
plexity. Because of this, sophisticated language analy-
sis systems have not been successful in disambiguating
recognition lattices. [Keenan 92] found that the ANLT
parser [Phillips and Thompson 87] was too powerful for
such a task, requiring long computation times to dis-
cover a very large number of ambiguous analyses of even
simple sentences. There is a clear need for a language
model incorporating a broader range of linguistic knowl-
edge than word and wordtag n-grams, while remaining
computationally feasible.

N-grams or Markov Models are a conceptually simple
mathematical means for representing an observable, real-

!DragonDictate is developed by DragonSystems Inc.,
USA.



world sequence of events or symbols. They are equivalent
to a non-deterministic finite automata, where the tran-
sition from the current symbol to the next is determined
by probability, based upon a small fixed-size window of
previous symbols. Markov theory is computationally ef-
ficient and provides simple but very general and power-
ful models for applications throughout science. In NLP,
common applications of Markov theory are in speech-
processing where symbols are acoustic chunks such as
phonemes and in grammatical tagging where symbols
are part-of-speech wordtags. However, Markov models
might not be readily applicable to higher levels of linguis-
tic analysis (e.g. semantics/pragmatics) involving links
between units beyond a small fixed-size window. With
respect to language modelling collocations are a varia-
tion on Markov models or n-grams. An n-gram model
records all n-length symbol-sequences in a given train-
ing set. For example, a word bigram model records all
pairs of words in the training set and their frequencies of
occurrence, while a word trigram model records all word-
triples. A word collocation model records combinations
which occur together significantly more frequently than
predicted by their probabilities in isolation using some
application-specific measure of significance. As only sig-
nificant combinations and their frequencies are recorded,
a much larger window can be used than for a strict n-
gram model of equivalent size.

One attraction of n-gram and collocational models is
that they are not compositional. [Gazdar and Mellish 89]
state that ”...one principle attributed to the philosopher
Frege stands out in just about every approach that has
been made...known as the principle of compositionality,
the meaning of a sentence can be expressed in terms of
the meanings of the phrases within it.” (p. 280). Most
NLP researchers, like Gazdar and Mellish, see sentence-
understanding as the natural goal of NLP. However, for
speech and handwriting recognition, as distinct from un-
derstanding, non-compositional models of syntax and se-
mantics are not merely adequate, but more efficient and
effective.

N-gram and collocational models also have the advan-
tage of being automatically extractable from appropri-
ate training data [Atwell 87a,b, 88a,b, 92, Souter and
Atwell 92, Atwell et al 93]. Each model will be automat-
ically extracted using a variety of large-scale linguistic
resources such as tagged corpora, treebanks and machine
readable dictionaries. N-gram and collocational models
can be learnt even for minority languages without rich
NLP resources or expertise, e.g. Slovene [Gros et al 94],
Basque [Agirre et al 94]. This is in contrast to many
other NLP systems, where linguistic knowledge is sup-
plied from expert introspection. We recognise that each
individual model is theoretically and practically inad-
equate as a model of linguistic knowledge, but believe
that taken as a combination they will provide a holis-
tic model of constraints sufficient for the application we
propose. The optimal analysis is not required to be fully
correct at all levels; its purpose is to indicate the correct
words. Furthermore, an integrated collocational model
allows a wider variety of knowledge types to be combined
straightforwardly, in a clean, simple holistic model; this

contrasts with many of the complex architectures devel-
oped to integrate disparate knowledge sources since the

ARPA SUR projects [Lea 80].

2 Pragmatic linguistic constraints

We briefly outline a selection of ‘sub-optimal, linguis-
tically naive’ yet robust models of a range of types of
linguistic knowledge: word-sense overlap, semantic tags,
Markovian parse-trees, wordtag n-grams and word col-
locations. These are not necessarily models of pragmat-
ics, but pragmatic models in the everyday sense of this
word. For example, the following definition of pragmat-
ics 1s given in Collins English Dictionary:

PRAGMATIC: advocating behaviour that is
dictated more by practical consequences
than by theory or dogma

Each linguistic knowledge type is represented by a
form of minimalist sub-context-free collocational model,
rather than a truly compositional model. The linguistic
knowledge sources to be integrated are:

2.1 LDOCE semantic primitives

All word sense-definitions in the Longman Dictionary Of
Contemporary English (LDOCE) are written in terms of
the Longman Defining Vocabulary. This is a closed set
of approximately 2000 words which effectively constitute
semantic primitives. [Demetriou 93], [Demetriou and
Atwell 94], [Guthrie 93], [Guthrie et al. 91], [Rose and
Evett 92], have shown that the LDOCE text defining a
word can be used as the basis for semantic constraints by
maximising semantic overlap between words in a recog-
nition lattice. In analysing the earlier illustrative lattice,
Demetriou’s algorithm looks up the LDOCE definition of
each candidate, to calculate a semantic overlap score for
every possible path through the lattice (every possible
sequence of candidates, e.g. stiffen lift scowl last year).
For example, the LDOCE definition of last includes:
“...(in time) one or ones before the one mentioned or
now...”

and the LDOCE definition of year includes:

“...a measure of time equal to about 365 days...”

These definitions both contain the word time, indicat-
ing a semantic overlap favouring coocurrence of these
two candidates; so the score of all sequences including
last year is incremented. This procedure is applied to
all candidate-pairs in a sequence to evaluate each possi-
ble sequence, and the highest-scoring candidate sequence
should be the most semantically consistent.

2.2 Semantic tagging

LDOCE also has a set of semantic field markers which
provide a hierarchical taxonomic semantics at a higher-
level of abstraction than the sense-definitions. Words
have associated a small number of semantic field mark-
ers and [Jost and Atwell 93] has shown that these can
be used as semantic tags in a Markovian disambiguation
algorithm. An alternative semantic tag set has been pro-
duced at Lancaster University [Wilson and Rayson 93]
and we hope to investigate its applicability.



2.3 Non-compositional phrase structure

A Markovian collocation model parser derived from the
Spoken English Corpus (SEC) Treebank has been devel-
oped at Leeds [Atwell 83, 87, 93, 94, Pocock and Atwell
93], for the M.O.D. funded Speech-Oriented Probabilis-
tic Parsing (SOPP) project. The model used is a variant
of standard Markov theory, in that both the training set
and desired output are required to be an alternating se-
quence of wordtags and labelled bracket combinations.
The parser implementation uses this adapted model for
a “bracket-insertion” procedure, augmented with a col-
locational “tree-closing” procedure to ensure parse trees
are correctly balanced. With experiments in parsing lat-
tices, using equivalent sized training sets, [Pocock and
Atwell 93, Atwell 94] found that the Markov Model based
parser is much faster and more robust than a probabilis-
tic chart parser developed as part of the SOPP project.
Its optimal parsetree is unlikely to be structurally cor-
rect, but it dominates the correct word-sequence which
is adequate for lattice disambiguation.

2.4 Wordtag n-grams

These are widely used in handwriting, speech and opti-
cal character recognition (e.g. [Jelinek 90], [Keenan 92]).
They have also been successfully used for the automatic
part-of-speech tagging of corpora [Atwell 83, Owen 87].
[Leech et al. 83, Atwell et al. 84] describe the CLAWS
system for tagging the LOB Corpus [Johansson et al.
86]. CLAWS was the first NLP system to go beyond a
Markov model to wider collocations. The “augmented
first-order model” [Atwell 83] added only significant tri-
grams to the core bigram model, avoiding the size and
computational problems of a full trigram model. Other
variants of wordtag n-gram models, useful for specific
tasks, are discussed in [Jost and Atwell 94a,b, Hughes
and Atwell 93, 94a.b, Arnfield and Atwell 93].

2.5 Word-collocational preferences

Word collocations are recognised within English Lan-
guage Teaching (ELT) and applied linguistics as indica-
tors of the naturalness of native speakers [Howarth 93].
Lexicographers have long known that word-collocations
are an alternative source of lexical semantic patterns or
constraints (see [Sinclair 87]). More recently, speech and
handwriting researchers [Rose and Evitt 92] have used
word-collocations as a readily trainable surrogate for tra-
ditional NLP semantics in disambiguation of handwrit-
ing lattices.

3 Intention modelling

The above models apply to unconstrained large-
vocabulary ” data-capture” tasks such as automated dic-
tation. Many NLP researchers are more concerned with
NL interfaces and dialogue systems; for these, ‘low-level’
syntactic and semantic constraints are still important,
but we also need to model dialogue structure. There has
been little work in Al on looking at the empirical side
of modelling intentions such as goals, plans and beliefs
in dialogue or text (see [Mc Kevitt 92], [Mc Kevitt et
al. 92a]). Most of the work has been looking at how

formal and intuitive models of intentions can be con-
structed (see [Allen 93], [Cohen et al. 82], [Grosz and
Sidner 86], and [Litman and Allen 84]). However, there
has been a history of looking at adjacent pairs of utter-
ances in dialogue, called adjacency pairs, and analysing
these empirically (see [Heritage 86, 88]) and little or none
of this work has been carried across from Sociology into
AL

[Mc Kevitt 91] has conducted Wizard-of-Oz experi-
ments to collect data on the types of questions people
ask about computer operating systems. Questions were
categorised into a number of basic intention types, such
as requsts for information, confirmation, elaboration and
so on. One experiment showed that there was a signifi-
cant difference in the frequencies of intention types un-
der y? and t-test’s between two groups of subjects, one
experienced and the other unexperienced. The subjects
were asking questions about the UNIX? operating sys-
tem. Unexperienced subjects asked many more requests
for explanation, guidance, elaboration and confirmation
that experienced subjects. Graphs of the frequencies
of pairs of subject questions or intentions showed that
unexperienced subjects had a tendancy to move from
standard requests for information o explanations, elab-
orations, etc. and also tended to repeat those intention
types. Even more interesting was the fact that particu-
lar subjects had high frequencies of particular intention
pairs in their dialogues. Details of the experiments are
given in [Mc Kevitt and Ogden 89a, 89b].

A theory of intention analysis (see [Mc Kevitt 91]) has
been proposed as a model, in part, of the coherence of
natural-language dialogue. A central principle of the the-
ory is that coherence of natural-language dialogue can be
modelled by analysing sequences of intention. The the-
ory has been incorporated within a computational model
in the form of a computer program called the Operating
System CONsultant (OSCON) (see [Guthrie et al. 89],
[Mc Kevitt 86, 91], [Mc Kevitt and Wilks 87], and [Mc
Kevitt et al. 92b, 92¢, 92d]). OSCON, which is written
in Quintus Prolog, understands, and answers in English,
English queries about computer operating systems.

The computational model has the ability to analyse
sequences of intention. The analysis of intention has at
least two properties: (1) that it is possible to recognise
intention, and (2) that it is possible to represent inten-
tion. The syntax, semantics and pragmatics of natural-
language utterances can be used for intention recogni-
tion. Intention sequences in natural-language dialogue
can be represented by what we call intention graphs. In-
tention graphs represent frequencies of occurrence of in-
tention pairs in a given natural-language dialogue. An
ordering of intentions based on satisfaction exists, and
when used in conjunction with intention sequences, indi-
cates the local’ and global degree of expertise of a speaker
in a dialogue.

The architecture of the OSCON system consists of
six basic modules and two extension modules. There

2UNIX is a trademark of AT&T Bell Laboratories.

®By local expertise we wish to stress the fact that some-
times experts can act as novices on areas of a domain which
they do not know well.



are at least two arguments for modularising any system:
(1) it is much easier to update the system at any point,
and (2) it is easier to map the system over to another
domain. The six basic modules in OSCON are as fol-
lows: (1) ParseCon: natural-language syntactic gram-
mar parser which detects query-type, (2) MeanCon: a
natural-language semantic grammar (see [Brown et al.
75], and [Burton 76]) which determines query meaning,
(3) KnowCon: a knowledge representation, containing
information on natural-language verbs, for understand-
ing, (4) DataCon: a knowledge representation for con-
taining information about operating system commands,
(5) SolveCon: a solver for resolving query representa-
tions against knowledge base representations, and (6)
GenCon: a natural-language generator for generating
answers in FEnglish. These six modules are satisfac-
tory if user queries are treated independently, or in a
context-free manner. However, the following two exten-
sion modules are necessary for dialogue-modelling and
user-modelling: (1) DialCon: a dialogue modelling com-
ponent which uses an intention matrix to track intention
sequences in a dialogue, and (2) UCon: a user-modeller
which computes levels of user-satisfaction from the inten-
tion matrix and provides information for both context-
sensitive and user-sensitive natural-language generation.
A diagram of OSCON’s architecture is shown in Figure
1.

ParseC! Understanding
MeanCon
ENGLISH
SO]VGC 1 INPU I\
Know(
DialCon
Dat
ataC Extension
UCon
Solving
ENGLISH
GenCo OUTPUT

Figure 1: Architecture of the Operating System CON-
sultant (OSCON) system

Hence, by integrating the processing of higher level
information such as intention sequences in dialogue with
lower level information such as semantic primitives, se-
mantic tagging and wordtag n-grams we hope that holis-
tic models of integrated speech and language processing
can emerge.

4 Conclusion and future work

As previously alluded, an advantage of an integrated col-
locational model is that it allows a wide variety of knowl-

edge types to be combined straightforwardly, in a clean,
simple holistic architecture. This approach is particu-
larly appropriate to parallel architectures, and to Con-
straint Logic Programming (CLP). At present, only one
component [Demetriou 1993] utilises ICL’s CLP software
development environment DecisionPower/CHIP (Con-
straint Handling In Prolog); others are coded in Popll
and Quintus Prolog, so we clearly need to translate sub-
models to a common implementation language. The dif-
ferent linguistic constraint models will be integrated in a
parallel lattice disambiguation model. Dynamic lattice-
traversal modules for each level, with separate windows
on the same section of the lattice, will map a search
space for CLP optimisation. Each word-hypothesis will
be annotated with a set of probabilities, one with respect
to each level, and these probabilites are then combined
into an overall cost function used by inbuilt Decision-
Power /CHIP optimisation procedures.

As a resource for evaluating the success of the imple-
mented lattice disambiguation system, we propose to col-
lect together recognition lattices, along with the correct
sequence of words for each lattice, from the NLP/Pattern
Recognition research community. As the lattices will be
gathered from many different sources, we have proposed
a standard format, to which all lattices will be converted
[Modd and Atwell 94]. We will consult with the research
community via SALT (UK) and ELSNET (European)
networks for language and speech, both in the gathering
of lattice data and in formulation of formatting stan-
dards; these must also conform to Text Encoding Ini-
tiative (TEI) Guidelines. The Lattice Corpus will be
the first of its kind. To be reasonably representative a
large sample is required. Initially we aim for a num-
ber of recognition lattices equivalent to 50,000 words,
which is comparable in size to current richly-annotated
parsed corpora such as the Spoken English Corpus (SEC)
[Atwell et al 94a,b]. The Corpus will become a stan-
dard test resource, and we will distribute it through
text archivers and file servers, including the Interna-
tional Computer Archive of Modern English (ICAME)
at Bergen University, and the Oxford Text Archive at
Oxford University.

When we have a prototype integrated linguistic con-
straints system and Lattice Corpus, we propose to em-
pirically test and evaluate the system against the corpus,
extensively assessing and comparing different weightings
and combinations of the component knowledge sources.
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