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Abstract. Detection and tracking of carried objects has been of great
interest, especially with respect to activity analysis and surveillance. This
paper proposes a novel approach for carried object detection and track-
ing by characterising carried objects given that only the carry event
occurs i.e. that these objects follow a person’s trajectory with a tem-
porally continuous and characteristically consistent spatial relationship
with respect to the person. In addition, we incorporate the use of ge-
ometric shape properties such as convexity to detect a generic class of
carried objects together with other properties such as track continuity
and overlap with protrusions on a person silhouette. We formulate the
carried object detection and tracking task as finding the most likely set
of tracks associated with a person that has these properties. The pro-
posed approach significantly outperforms a state-of-the-art approach on
two challenging datasets PETS2006 and MINDSEYE2012.

1 Introduction

Detection and tracking of carried objects is an important component of vision
systems whether these are surveillance systems that aim to detect events such
as leaving, picking up or handing over a luggage, or robots that learn to perform
better in indoor environments by analysing events where humans manipulate
carried objects. Despite significant progress in object detection and tracking,
the task of detecting and tracking carried objects well enough to be able to use
them for activity analysis is still a challenging problem. This task is elusive due
to the wide range of objects that can be carried by a person and the different
ways in which carried objects relate to the person(s) carrying it e.g. carrying,
dropping, swinging, picking it up, occluding etc.

An early approach [2] demonstrated that pre-trained object-class models for
specific types of objects may be useful in domains where the variety of carried
objects is relatively small and is known in advance, the objects are of sufficient
size and there is limited clutter in the background. In order to generalise to a
more realistic setting, much of the later work on carried object detection has
carved out an alternative strategy that does not depend on pre-trained object
models. Instead researchers have focused on indirect ways of characterising car-
ried objects, which first aim to identify the person region and background and



then attempt to explain the remaining regions in terms of carried objects. The
first of these approaches looked for carried objects in protrusions which are re-
garded as the part of foreground that is different from the person region. This
approach evolved starting from an early work - Backpack [6] - that proposed
temporal templates as a way of characterising the person region. Subsequent
researchers have extended this approach by introducing refinements - such as
modelling variances from the temporal templates [1] and 3-D exemplar tempo-
ral templates corresponding to different viewpoints of a walking person together
with spatial priors in a very recent work [4]. Other indirect approaches have
built a pre-trained appearance model of persons without carried objects and they
detect person carrying objects as anomalies [9] and used gait analysis to differ-
entiate persons carrying objects from other persons [12].

We propose a novel approach for carried object detection with the following
contributions. Firstly, we perform object detection by using geometric shape
models to characterise carried objects. In this way, we avoid using specific pre-
trained object class models as in [2]. Secondly, our approach integrates detection
and tracking by incorporating normal motion properties that apply generically to
most carried objects such as spatio-temporal smoothness that have been widely
used in the object tracking literature, but have not been exploited for the carried
object task.

Thirdly, and most importantly, this paper proposes a novel approach for car-
ried object detection and tracking by characterising carried objects given that
only the carry event occurs i.e. that these objects follow a person’s trajectory
with a temporally continuous and characteristically consistent spatial relation-
ship with respect to the person. Accordingly, we introduce an optimisation strat-
egy that starts with a small set of detections with possibly several false positives
and increasingly incorporates a learned person-object spatial relationship that
characterises the carry event. This procedure starts building longer tracks that
tend to approximate the true carried object trajectory, while also rejecting the
false positivies. The learned spatial relationship leads to significant improvement
compared to using a static spatial prior as in [4]. Section 5 shows that the pro-
posed approach significantly improves the performance over a state-of-the-art
carried object detector [4] on the PETS2006 and MINDSEYE2012 datasets 1.

2 Proposed Formulation
We consider a video I which is a time series of images {I1, ..., It, ..., IN}. For
this video, we obtain a corresponding sequence of foreground regions F =
{f1, ..., f t, ...fN} and a set of person tracks P = {p1, ..., pM}. Here a person
track pi ∈ P is a time series of segmented person regions {..., pt

i, ...}. In addi-
tion, we define R as a set of candidate object regions, from which a set O of all
possible candidate object tracks may be sampled. We describe the procedure for
obtaining the foreground and person tracks in section 5 and candidate object
regions in section 2.1.

In this work, we make the simplifying assumption that carry is the only
event that governs the relationship between a person pi and an associated set of
carried object tracks O ⊆ O i.e. the carried objects are not picked up, dropped

1 Mind’s Eye videos are hosted at www.visint.org. The Year 2 videos used in this
paper will be uploaded during 2013.



or given to another person. That is, if a carried object track oj ∈ O is associated
with a person track pi, then there exists a bijective relationship between the
corresponding regions ot

j ∈ oj and pt
i ∈ pi. We also assume that the carried

object tracks are independent of each other.
Under these assumptions, our task is to find a set of carried object tracks

O associated with each person track pi. Accordingly, for each person track pi

we formulate our task as finding an optimal set of carried object tracks Ô that
maximises the following objective.

Ô = arg max
O⊆O

∏

oj∈O

P(oj |ΘO)P(oj |pi, F, ΘC)P(oj |ΘS) (1)

In the above equation, the probability distribution P(oj |ΘO) prefers tracks
that consists of regions which correspond to certain geometric shapes, as de-
tailed in section 2.1. The second probability distribution P(oj |pi, F, ΘC) models
the person-object relationship that is characteristic of the carry event as de-
scribed in section 2.2. The third probability distribution P(oj |ΘS) parametrised
by the smoothness model ΘS in the above equation regards a track oj being more
likely, if the sequence of carried object regions constituting this track are first
of all smooth with respect to motion and apperance and secondly if it has other
desirable properties such as minimum overlap with other tracks, minimum gap
and maximum possible length. We compute each of these measures similarly to
[15].

2.1 Geometric Object Shape Models P(oj|ΘO)

We regard a candidate object track oj ∈ O as more likely to be a carried object
if the shape of the region is likely to be any of the pre-defined generic geometric
shapes. The distribution P(oj |ΘO) in equation 1 measures this likelihood with
respect to a set of geometric shape models ΘO. Assuming independence between
an object region ot

j and the rest of the object regions in an object track oj , we fac-

torise the likelihood P(oj |ΘO) as P(oj |ΘO) =
∏

ot
j
∈oj

P(ot
j |ΘO). We marginalise

across each of the object shape models θ ∈ ΘO and assume a uniform prior distri-

bution P(θ) across these models to obtain P(ot
j |ΘO) = 1/|ΘO|

(

∑

θ∈ΘO
P(ot

j |θ)
)

.

In this work, we consider a convex shape model with parameter θc ∈ ΘO

and an elongated shape model with parameter θe ∈ ΘO since many carried
objects have a shape that is approximately convex (e.g. briefcases, suitcases,
petrol cans) or elongated (e.g. objects with an elongated part - shovels, guns,
brooms). We evaluate the probabilities P(ot

j |θc) and P(ot
j |θe) for the convex

and elongated model as an exponential distribution 1/z0 exp(θcC(E(ot
j))) and

1/z1 exp(θeE(E(ot
j))) over a convexity measure C(E(ot

j)) and a parallel measure

E(E(ot
j)) respectively. Here, E(ot

j) refers to the set of edges that form the bound-

ary of the object region ot
j . In section 4, we describe our novel level-wise mining

approach for extracting the set R of candidate object regions, where each such
region is formed by a set of edges. We compute the degree of convexity C(E(ot

j))

for a region ot
j , using the method in [16]. In order to compute the degree of

parallelism, E(E(ot
j)), we only consider those candidate sets of contour segments

E(ot
j) which can be partitioned into two non-overlapping proximal groups of

nearly co-linear contour segments, that are roughly parallel to each other. We



combine a measure of co-linearity [13] within each group with the degree of
parallelism across the two groups.

2.2 Person-Carried Object Relationship P(oj|pi, F, ΘC)
We regard a candidate object track oj ∈ O as more likely to be a carried
object associated with a person pi if: (i) the track oj follows pi’s trajectory
with spatio-temporal consistency characterised by the carry event ; (ii) the ob-
ject regions ot

j ∈ oj overlaps with protrusions corresponding to the person re-

gion pt
i ∈ pi. Both these person-carried-object relationships are modelled by

the probability distribution P(oj |pi, F, ΘC) with carriedness parameter set ΘC .
Given model parameters θr for protrusions, θs for spatio-temporal consistency
and the foreground regions F , we factorise this distribution as P(oj |pi, F, ΘC) =
∏

ot
j
∈oj

P(ot
j |p

t
i, θs)P(ot

j |p
t
i, f

t, θr), whose two terms that capture person-object

spatial relation and protrusions respectively, and are explained below.
Person-Object Spatial Relation. Another more significant way of character-
ising carried objects given that only the carry event occurs is that they follow
a person’s trajectory with a temporally continuous and characteristically con-
sistent spatial relationship with respect to the person. In order to quantify this,
we propose a voting measure that counts the number of times the relative po-
sition of a pixel with respect to the centroid of a person’s region falls within a
detection.

Let dxpt
i
, dypt

i
be the offset of a pixel relative to the centroid (xpt

i
, ypt

i
) of

the i’th person’s bounding box pt
i at time t i.e. (xpt

i
+ dxpt

i
, ypt

i
+ dypt

i
) is the

absolute position of the pixel relative to the image frame It. We define a function
δ(dxpt

i
, dypt

i
, ot

j) as follows.

δ(dxpt
i
, dypt

i
, ot

j , i) =

{

1, if (xpt
i
+ dxpt

i
, ypt

i
+ dypt

i
) ∈ ot

j

0, if (xpt
i
+ dxpt

i
, ypt

i
+ dypt

i
) 6∈ ot

j

Using the above definition we define the heatmap H of a relative offset
(dxpt

i
, dypt

i
) position as H(dxpt

i
, dypt

i
) =

∑

oj∈O

∑

ot
j
∈oj

δ(xpt
i
+dxpt

i
, ypt

i
+dypt

i
, ot

j , i).

Given a set of tracks O associated with a person pi, the intensity values in the
heatmap measure the number of votes for each relative offset pixel (dxpt

i
, dypt

i
)

given by the tracks in O. Since we expect carried objects to have a consistent
relative location with respect to the person and noise to be more randomly
distributed, the heatmap captures the locations relative to the person where
carried objects is most likely to exist. This is as a result of these locations
receiving higher votes in the heatmap due to the repeated presence of potential
carried objects even though they may be sparsely detected in the video.

We regard a detection ot
j as more likely to be a carried object if it covers

pixels with high intensity values in the heatmap. We model the relative positional
probability P(ot

j |p
t
i, θs) as follows.

P(ot
j |p

t
i, θs) =

1

z3
exp

(

θs

∑

(x,y)∈ot
j

H(x − xpt
i
, y − ypt

i
)
)

(2)

This distribution tends to get closer to the true distribution of the carried objects
relative location with respect to a person with the increasing number of true
detections compared to false detections, as further described in section 3 and
illustrated in Fig 1.



... ... ... ...

Fig. 1: An illustration of the learned spatial distribution of the object relative to the
person approximates the true relative position in the leftmost figure.

Protrusions. Areas corresponding to protrusions have been shown to be likely
carried object regions with respect to the region of the person carrying it. For
each person region pt

i, we obtain a protrusion region αt
i by subtracting the per-

son region pt
i from the foreground region f t in frame It and considering only

a subregion of αt
i in the vicinity of the person (defined by the detected person

bounding box). We regard a region ot
j as more likely to be a carried object if

it overlaps significantly with αt
i. Accordingly we compute the degree of over-

lap V(αt
i, o

t
j) = (αt

i ∩ ot
j)/(αt

i ∪ ot
j) and then evaluate P(ot

j |p
t
i, f

t, θr) using an

exponential model 1/z2 exp(θr(V(αt
i, o

t
j)).

3 Event Driven Optimisation.

We now describe the main novelty of the paper which is an event driven optimi-
sation. According to this scheme, the optimal solution of the objective function
in equation 1 emerges as a result of iterations which involve cyclic interactions
between the two components of the objective function. We define the first com-
ponent, P(oj |ΘO)P(oj |ΘS), as a product of the probability distributions corre-
sponding to the detection strengths and spatio-temporal continuity respectively.
The second novel component P(oj |pi, F, ΘC) is the relative positional proba-
bility distribution that models the person-object spatial relationship which is
characteristic of the carry event.

We first describe the basic search procedure in the optimisation process be-
fore discussing the role of these two components. For each person track pi, the
optimisation involves starting with an initial set of tracklets O0 and then apply-
ing a sequence of moves to iteratively obtain a sequence of hypothesised tracklets
(O1, ..., Ok, ...). The objective function given in equation 1 is used at each step k
in the iteration to decided whether to accept the new hypothesis Ok or to persist
the previous hypothesis Ok−1. We adopt two simple moves, the first of which
forms larger tracklets from smaller ones by randomly choose a tracklet and then
linking this tracklet to a neighbouring tracklet, which is chosen uniformly at
random (u.a.r) from the set of neighbouring tracklets. The reverse move is to
split larger tracklets into smaller ones by choosing a tracklet u.a.r from the set
of tracklets and then selecting a location along this chosen tracklet u.a.r and
finally breaking it into two smaller tracklets at this location. After a relatively
large number of iterations, we terminate the optimisation process and regard the
final set of tracklets of length more than one as the optimal set of carried ob-
jects Ô. In the following we first introduce the basic tracking system to which we
add the contribution of the heatmap and an attention-like mechanism leading to
three variants of the optimisation process. We evaluate each of these variations
in the experimental section.



Basic Tracking System. When this procedure is used only with the first
component, it tends to result in carried object tracks have higher detection
probabilities P(oj |ΘO) and are smooth with respect to the properties captured
in P(oj |ΘS). We call such a system as the basic tracking system, that we refer
to in our experimental section.
Heatmap Driven System. The introduction of the second component i.e. the
relative positional probability distribution P(oj |pi, F, ΘC) tends to favour the
formation of object tracks whose objects firstly overlap with protrusions, and
secondly (more importantly) those tracks that overlap with the heatmap given
in 2. That is these tracks tend to accumulate higher values of the positional
probability distribution and therefore have the characteristics of a carried object,
as described in section 2.2.
Attention Driven System. To further capitalise on the potential of this rel-
ative positional probability distribution, we introduce an attention-like mecha-
nism into the optimisation process, where we start by considering only those
object detections that have high detection likelihoods and we call these initial
tracklets of length one as initial seed tracklets. At each iteration, the link move
forms larger seed tracklets by focussing on connecting only seed tracklets to
other seed tracklets or non-seed detections (tracklet of length one). Similarly the
split move operates only on the seed tracklets.

At each iteration, only the seed tracklets contribute to the computation of
the heatmap. As the heatmap becomes more well defined with further iterations,
some of those non-seed tracklets with higher positional probability distributions
(although they may have relatively lower detection likelihoods) tend to be in-
cluded as seed tracklets. These updated seed tracklets are used for applying
moves in the next iteration. In this manner, an attention-like mechanism begins
to evolve with a tendency to select object tracklets that correspond to the true
carried objects, against other false positive candidate tracks.

Due to the cyclic interactions between the two components of the objective
function, the optimisation procedure often starts with a sparse set of detections
with possibly several false positives and starts building longer tracks that tend
to approximate the true carried object trajectory, while also rejecting the false
positivies.

4 Object Detection
In order to obtain a set of detections R as an input to the optimisation, we start
by computing a sequence of foreground regions for a video using an off the shelf
foreground extraction technique [11]. We then obtain person tracks by detecting
a set of person regions in each frame and then we track all these detections using
a dynamic programming based tracker [10]. The person regions in each frame
are obtained in three steps. First we detect bounding boxes corresponding to the
person detections obtained using a standard object detector with a trained per-
son model [5]. Second, we obtain bounding boxes that are body part estimates
inside each of the person bounding boxes using articulated pose estimation code
[14]. Finally we take the union of the regions circumscribed by each of the parts
to be a segmentation of the person inside that bounding box.

In order to find likely candidates for carried object detections, we first remove
a majority of line-segments that form the boundaries of persons but not of the
objects using a procedure illustrated in Figure 2 (a-f). This approach drastically



(a) (b) (c) (d) (e) (f) (g)
Fig. 2: The process of obtaining candidate carried object detection. (a) We first obtain
the image corresponding to the person detection; (b) We then apply the method in
[8] to enhance edges corresponding to natural boundaries; (c) We apply foreground
extraction on b with background shown in green; (d) We obtain regions after applying
colour based segmentation to c; (e) We identify the two largest segments (given in red)
in d, which tend to correspond to regions on the person. The carried object is more
likely to be present in the green region; (f) Using the regions identified in e, many of
the line segments belonging to the person are removed, as coloured with cyan; (g) The
result of applying level-wise mining to the remaining edges (coloured yellow in f ) to
obtain candidate carried object regions, as an input to the event driven optimisation
procedure.

reduces the set of line segments enabling us to generate a smaller set of candidate
object regions from the remaining set of line segments. We then search this set
for candidate object detections ot

j , where each detection is just a subset of line
segments forming a fully or partially connected chain (Figure 2.g), that are likely
to belong to any of the geometric shapes under consideration. In order to search
efficiently, we use a level-wise mining procedure, where two candidate k − 1
subsets are merged if they share k − 2 segments and accepted as a k candidate
set ot

j , if the likelihood score P(ot
j |θ) of ot

j , with respect to a geometric shape
model θ ∈ ΘO is above a minimum conservative threshold.

5 Experimental Setup

The experimentation consists of two aspects, first of which is a comparison be-
tween the proposed approach and the state-of-art Damen and Hogg’s carried
object detector (protrusion based) [4], which has been shown to outperform
previous systems based on periodicity analysis [3, 7]. Secondly, we would like
to further explore the true potential of our approach, by alternating certain
key components and identifying their effects in terms of detection performance.
As a result, a benchmark dataset, namely the PETS2006 dataset is used for
the first aspect of baseline comparison. On the other hand, a much more com-
plex dataset, the MINDSEYE2012 dataset, is used in a set of more extensive
experiments, which are aimed at the exploration of key components of the pro-
posed approach. The corresponding evaluation is concentrated on the detection
performance of the compared approaches and thus it is done with respect to
spatio-temporal localisation of each carried object per frame by computing the
standard overlap ratio also used in [4], except that we also vary the overlap
threshold and report results for each value.
Datasets. All seven videos of the third camera were chosen, due to its view
angle, for PETS2006, similar to [4]. Overall 70 video clips were created by a third
party from the MINDSEYE project year 2 dataset, with an average length of 200
frames. The complexity of this dataset results from variations in camera settings,
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Fig. 3: Result plots of compared methods in terms of F1 scores as the threshold of
overlap increases on both PETS2006 and MINDSEYE2012.

environmental factors, e.g. changes in light conditions (e.g. brightness due to
weather), moving trees and grasses in the background, as well as a greater variety
of carried object types. The ground-plane homography estimation of PETS2006
was provided as part of the sample set, while that of MINDSEYE2012 is done
for each camera setting. Human tracks of both datasets are generated through
first applying basic background subtraction to obtain foreground segmentation
and then using an off-the-shelf tracker [10].
Parameter Settings. In our experiments, we tune the parameter set ΘO (cor-
responding to the geometric shape models), ΘS (modelling smooth trajectories),
and θr ∈ ΘC (concerning the overlap between the protrusion and the object mask
respectively), on a separate subset of the Mindseye project. Values of these pa-
rameters are independent from any particular selection of subset, containing a
reasonable number of videos. This is because general geometric properties ΘO

(e.g. convexity) are invariant across samples from any dataset. As focus of this
work is to prove a concept, only the convex shape model is investigated. Simi-
larly ΘS are generic due to similar motion patterns in the datasets (e.g. people
walking). Finally, for θr ∈ ΘC, irrespective of the dataset and the perspective, it
is reasonable to assume that the protrusion mask corresponds to a part or whole
of the object. This is due to the assumption that the person and the carried ob-
ject together constitute the foreground mask. In addition, we set the parameter
θs ∈ ΘC equal to one over the length of the person track in consideration, acting
as a normalisation factor. Default parameter settings of the detector [4] are used
for both datasets, as it is often considered most suitable for general uses.

6 Results and Analysis

Results. In both Fig 3a and Fig. 3b, three F1 score curves correspond to the
Damen and Hogg’s detector [4], raw detections of our approach without any op-
timisation, and the basic tracking system (BTS), as defined in Section 3. First of
all, the performance of the raw detections obtained by using our object detector is
generally better than that of the Damen and Hogg’s approach, which contribute



(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q)
Fig. 4: Illustration of the successes and the failures of our approach and also a com-
parison with [4]. For images (a)-(m), boxes coloured in green correspond to ground
truth, red to [4] and blue to those obtained using the proposed approach. Note that
the ground truth is sometimes imperfect eg. (l). Images (n)-(q) illustrate the obtained
contour of the detected object using the proposed method.

to the performance improvement of the following systems. The reason for the
high starting point of the Damen and Hogg’s detector on MINDSEYE2012 is due
to the fact that the detector tends to produce large bounding boxes of the de-
tections, which could be regards as true positives when the threshold of overlap
is low. However, such detections should be in fact considered as false positives,
which becomes obvious as the overlap condition becomes more strict. It is also
obvious the BTS significantly out-perform the Damen and Hogg’s detector on
both datasets. Moreover, in Fig. 3b, two additional curves are presented, cor-
responding to two variants of our approach where the optimisation process is
altered accordingly. These two variants are heatmap driven system (HDS) and
attention driven system (ADS). It is clear the use of heatmap and attention
like mechanism, in addition to BTS, further significantly improves the detection
performance.

Qualitative Analysis. In this section we also present a qualitative analysis
of the results on the PETS2006 and MINDSEYE2012 datasets by summarising
successes and failure cases illustrated in Fig 4. Examples (a)-(f) illustrate how
our approach is able to detect different types of objects such as boxes, bags, plas-
tic bags and suitcases. This highlights the merits of performing generic object
detection without specific object models. While examples (g)-(i) show few cases
where our approach’s performs poorly, as the edges do not sufficiently demarcate
the object from the person. The (c,d,n,o) images illustrate that our approach is
also able to detect objects that are not protrusions. (a,b,c,f,j,k,l) highlight some
typical cases where the protrusion based approach [4] fails whilst ours succeeds.
(d) illustrates a situation when multiple persons are close by, or when the per-
son’s bounding box is displaced. (f) illustrates a case where the influence of a
relatively strong prior on the position of the object in relation to the person can
hinder the detection of an object (e.g. basket) above a person’s head. (n,o,p,q)
also illustrate that our approach can localise an object accurately with a contour
around it. This contour is the result of using edges and looking for perceptually
salient regions that correspond to generic object shapes.



7 Summary and Future Work

We have introduced a vision system that performs carried object detection and
tracking. Our approach characterises carried objects in terms of generic shape
properties such as convexity, whilst taking account of the fact that they are
often, but not always, protrusions on a person silhouette, and exploiting the
property that they have continuous and spatially consistent trajectories relative
to the person carrying them. In addition, an iterative event driven optimisation
process, which could use heatmap and attention like mechanism, is introduced
to obtain an optimal set of object detections. Experimental results show that our
approach significantly outperforms a state-of-the-art technique [4], especially the
system where both heatmap and attention like mechanism are employed, on two
challenging datasets. A future extension of this work would be to include other
geometric shapes. Another future direction is to build on the existing framework
by incorporating more carried object events such as drop, pick-up, give, take etc.

References

1. C. Benabdelkader and L. S Davis. Detection of people carrying objects: A motion-
based recognition approach. Proc. Intl Conf. Automatic Face and Gesture Recog-
nition, pages 378–384, 2002.

2. A. Branca, M. Leo, G. Attolico, and A. Distante. Detection of objects carried by
people. Proc. Intl Conf. Image Processing, 3:317–320, 2002.

3. R. Cutler and L. Davis. Robust real-time periodic motion detection, analysis, and
applications. PAMI, 22(8), 2000.

4. D. Damen and D. Hogg. Detecting carried objects from sequences of walking
pedestrians. PAMI, 34(6):1056–1067, 2012.

5. P. F. Felzenszwalb, R. B. Girshick, D. A. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-based models. PAMI, 32(9):1627–
1645, 2010.

6. I. Haritaoglu, R. Cutler, D. Harwood, and L. S. Davis. Backpack: Detection of
people carrying objects using silhouettes. CVPR, 1:102–107, 1999.

7. D. Harwood I. Haritaoglu and L.S. Davis. W4: Real-time surveillance of people
and their activities. PAMI, 22(8), 2000.

8. D. Kroon and C. H. Slump. Coherence filtering to enhance the mandibular canal
in cone-beam ct data. In Proceedings of the 4th Annual Symposium of the IEEE-
EMBS Benelux Chapter, pages 41–44, 2009.

9. H. Nanda, C. Benabdelkedar, and L. S. Davis. Modelling pedestrian shapes for
outlier detection: A neural net based approach. Proc. Intelligent Vehicles Symp,
pages 428–433, 2003.

10. H. Pirsiavash, D.Ramanan, and C. C. Fowlkes. Globally-optimal greedy algorithms
for tracking a variable number of objects. In CVPR, pages 1201–1208, 2011.

11. C. Stauffer and W. E. L. Grimson. Learning patterns of activity using real-time
tracking. PAMI, 22:747–757, 2000.

12. D. Tao, X. Li, S. J. Maybank, and W. Xindong. Human carrying status in visual
surveillance. CVPR, 2006.

13. K. Tsuda, M. Minoh, and K. Ikeda. Extracting straight lines by sequential fuzzy
clustering. Pattern Recognition Letters, 17(6):643–649, 1996.

14. Y. Yang and D. Ramanan. Articulated pose estimation using flexible mixtures of
parts. CVPR, 2011.

15. Qian Yu and Gerard Medioni. Multiple-target tracking by spatiotemporal monte
carlo markov chain data association. PAMI, 31, 2009.

16. J. Zunic and P. L. Rosin. A convexity measurement for polygons. PAMI, 26:173–
182, 2002.


