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RIEMANNIAN COMPARISON AND LENGTH OF EXISTENCE
OF OPTIMAL CONTROLS

DACCAFFREY AND S.P.BANKS
Research Report No 671

ABSTRACT. In Riemannian geometry, there are various comparison theorems
which estimate the distance to conjugate points on manifolds and hence the
maximum length of an energy minimising extremal. \We apply this to optimal
control problems to estimate the maximum length of existence of an optimal
trajectory where energy is measured by the cost function. \We show this can
be done for control systems where the control part of the cost function can
be interpreted as a Riemann metric and the unforced dynamics satisfy an
integrability condition.

1. INTRODUCTION

A continuing problem in optimal control is the generalisation of the classical
notions from calculus of variations of conjugate points. Riccati equations and Ja-
cobi equations and the interpretation of the corresponding necessary and sufficient
conditions for optimality - see for instance [4. 12. 13).

In this paper we show that for a certain class of nonlinear optimal control prob-
lems it is possible to estimate the distance. in terms of the cost function. to the first
conjugate point and hence to estimate how far an optimal control exists. This is
done by showing that the Hamiltonian arising from the maximum principle can be
associated with a geodesic problem on a Riemann manifold whose metric is deter-
mined by the control problem. It is then possible to apply a comparison theorem
which estimates distance between conjugate points given bounds on the sectional
curvature of the manifold.

This approach is similar to [8. 9] where linear quadratic optimal control was
considered. There the control problem was interpreted as a Jacohi equation for
an underlving geodesic problem. Here. however. the nonlinear control problem is
interpreted directly as a geodesic problem.

2. SOME DIFFERENTIAL GEOMETRY

In this section we briefly describe those elements of Riemannian geometry re-
quired to state the comparison theorem. e will also describe the constant cur-
vature models used for comparison. More details can be found in [6. 10]. The
summation convention on repeated indices will be used.

Let M be an n-dimensional manifold with local coordinates z!.... ,z" in an
open set U C M. Then a Riemann metric g is a positive definite svmmetric
bilinear form on the tangent space T,(A) at p € Al which varies smoothly with
p. In other words. g is an inner product on T,(1!). Taking the coordinate vector
fields 8/8z'.... ,8/0z" as a basis for T,([). then dz!,....dz" form a basis for
the cotangent space T, (A{) and

g = g,dr'dr’
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RIENMANNIAN COMPARISON AND LENGTH OF EXNISTENCE OF OPTINMAL CONTROLS 2

where g,, 15 a svmmetric matrix of smooth funcrions on . We aim ro map the
control problem onto the open set U,
Tlie energy of the Riemann metric is rthe Lagrangian funcrion
1 ;
L ==gatat.
2 J
The corresponding Hamiltonian is the Legendre transformation of L

yi=0aLfer H=yt -L= -ag'“_l;_,,yi

where ¢/’ is the inverse matrix to g,;. ‘We will sometimes denote this induced inner
product on T (M) as =L We will also use < . | . > to denote the natural bilinear
pairing y,i* herween T;(.U) and T, ().

Geodesics are extremals of the energy L. They satisfv the Euler-Lagrange equa-

tions
d4(oLy _ oL
dt \ o) T du

ook i drtd e

—+ I ——
(2 Yot dt

o1 (B om0
L dri !

The arce length of a curve =~ (#) is the integral of /g(%. =) along = If the taugent
vectar < has fixed energy then = is parameterised proportional to are length. The
principle of least action of Maupertuis says rhat a geodesic of energy e extreimises are

which reduce to

(1)

wliere

=

lenuth amongst eirves parameterised to have rhe same fixed energy and. conversely.
that an exrremal of are lengrh is. np to reparaeterisation proportional ro arc
length. a geodesic,

The quantiries I'*
associated with g

", are the Churistotfel symbols detining the Levi-Civita counection

Najapdfor = l-,‘_,a/(')..':"".
XN = X0/ and Y =10/ are vector fields then the covariant derivative
of 17 with respect to X is
Ta(l) = (Ov(YF) + TH X)) 070"
where dy is the Lie derivative with respect to X. If Z is a third vecror field. f
is a function and [...] denotes the Lie bracket on vector fields then the connection
satisfies
V-_,r_\'.hzl' = f\_\) + \—zY
Sy(f Y+ Z2)=0x(f Y + fUxY +V 2
Tyl =V Y+ (X1
This last equation sayvs that the connection is torsion free. The Riemann metric is
parallel with respect to the connection in the sense that
Dzg(X. Y1) = g(VzX. 1) + g(X. N zY).
Wrirten covariantly. the geodesic equation (1) becomes
T." '.. = [].
Linearising this equation along a geodesic ~(#) nives Jacobi's equarion

TiV:J 4 R(E.DE =0
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where R is the curvature tensor associated with the Riemann metric. A solurion .J
along ~ is called a Jacobi feld. Let .J' = ¥:.J. Being solutions of a second order
linear differential ecuation. the space of Jacobi fields along =~ is 2n-dimensional and
is completely determined by its initial conditions .J(0) and .J'(0).

If .7 is orthogonal to ~, then so is .J'. It follows that the space of Jacobi fields
along - orthogonal to ~ '\\thh vanish at t = (0 is (n — 1)-dimensional. A Jacobi
field in this space describes an infinitesimal variation of ~ through neighbouring
geodesics starting from the same point p. Conjugate points to p along ~ correspond
to zeroes of non-trivial Jacobi fields in this family or. equivalently. to singularities
of the exponential map from T,(M) — /.

Note that it follows from V:4 = 0 and the skew-svmmetry of the curvature
tensor R(%.%)% = 0 that a Jacobi field parallel to ~ and vanishing at + = () is just
a linear field at4 for some constant a. Thus to determine the position of conjugate
points we can restrict attention to Jacobi fields orthogonal to the geodesic as the
parallel component vanishes nowhere apart from the initial point.

The components of the curvarure tensor are given by

ad a ad .
R(mm)aﬁ—f"wm

/ ar,r’ ari.’ - ' 1 7
1k = BTJ; = O.r-f #F Z (1—.‘-." 1- ) .

r=1

where

It ey and e, are nnit vectors in the directions = (1) awd J(t) at some point - (f) along
= then the sectional cnrvature of the plane spanned by < and Jis g(R(e . o0)e

Example 2.1. Consider the sphere +2 + 3° + =% = /% in Rs Take as coordinates

L measuring the angle of ldTlTIl(l(-‘ from the Norrh ]Jan and = measuring longirude.

Tle Riemann metric pulled back from R? is
g = r(de'y? + # sin’ () (d 2 ).
From the above formulae the only non-zero Christoffel svmbols are
T%: =T3, = vos{w' |/ sinfirt)

and

T ~ sinrt) cos(at).
The nou-zero components of the curvature tensor are
Ris=-Riy =1 Riy = —Rijy = sin’(+").

Consider a geodesic (1) starting from the North pole. It is a great circle given by

! = ¢ and 72 = const. The space of Jacobi fields orthogonal to ~(t) is generated
over R by the vector field 0/dx7 along = (#). It can be verified by direct calculation
that Jacobi's equation holds

VasanNama0/0rt = -9/8x* = —~R(8/9r'.8/0x%)a/0r".
The first conjugate point to the North pole occurs at the South pole when »! = 7.
a distance of r# in the Riemann metric. The sectional cirvarure of rhe plane
tangent to ~ at ~(f) spanned by the unit vecrors e = (1/r)d/dx! and ey =
(1/rsin(r'))d/007 is

1 0 1 : 1
q([‘?{lf1t‘f1)—q( 0>:,
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This calenlation ¢an he re-done in the orthonormal frame field ey.ea. Writing the
orthogonal Jacobi field as .J = f(t)es. Jacobi's equation becomes

with solution sin(t/r)e,. In this frame it is easy to see that the Jacobi field vanishes
ar t = xkhrw.ie. at the North and South poles. and that the sectional curvature of
a unit plane tangent to 5 is 1/r-.

Remark. For more complicated examples. the Christotfel svmbols and the curvature
can be calculated using the tensor package in Maple. The actual quantity calculated
in Maple is the covariant curvature tensor

Riun = Runjr = q (R (0/077.0/0.%) 0/0x' . 0/0x") .
The curvature tensor defined above can then be obtained as R}, = /" Ry, .

Example 2.2. The above generalises to the following constant enrvarure manifolds
which will he used for comparison.
1. The n-sphere of radius 7 in R"*! has sectional enrvarure 1/02 and conjngate
points r« apart.
2. The n-plane in R"*! has sectional curvature zero and no points conjugate to
A given point.
3. The n-hvperboloid in R"*! has sectional eurvature —1/r2 and no points con-
ngate to a given point.

We now consider geodesics starting orthogonal to a submanifold K of dimension
() < k < n rather than from a point. Note that the orthogonality is part of the
Euler-Lagrange necessary conditions. Snppose to hegin with that b = n—1. i.e. I
ix a hvpersuiface. Ler € be the positively orienred field of unit vectors orthogonal
to I\ and Y be a vector feld tangent to L. Then differentiating g(€.£) = 1 gives
MV xEE) = 0. So V€ is tangent to L. The linear mapping on vecror fields
rangent to I defined by ¥ y € is called the second fundamental form of I

Strictly speaking. the second fundamental form acting on vector fields X and 1°
tangent to i is defined as a(X.Y) = (=T x£.Y7) (see [6]). We take ¥ € to be the
second fundamental form in this paper hecause with the given sign it corresponds
to the Riccati matrix of the hyvpersurface i

To see this. consider the family of geadesics starting orthogonal to IV in the
direction of € and paramererised by arc length. Then € is the field of rangent
vectors to these geodesics at I and can be extended along the geodesics to a vector
field in a neighbourhood of K. Pick one of the geodesics and denote it by -,
Suppose .J is an orthogonal Jacobi field along ~ which is tangent to & at # = 0 and
which varies + throngh neighbouring geodesics in the same familv. Then .J can he
extended to Jacohi flelds on the neighbouring geodesics. This construction results
in fields £ normal to and .J tangent to the family of hypersurfaces equidistant to
I along the normal geodesics. It follows that the flow generated by .J and the
peadesic flow generated by £ commute and so [.1.£] = 0. (This can he proved more
formally by taking an exponential or normal coordinate syvstem in a neighbourhood
of I.) Then. since the Levi-Civita connection has no torsion,

(2) VE=Nel +[J€ =Vl

i.e. the covariant derivative of .J along ~ is given by the second fundamental form
of the relevant equidistant hvpersurface. Let .J' = V¢.J and let P be the matrix
vepresenting the second fandamental form Y& Then (2) gives J' = P.J. Thus P
is. by definition. the Riceati marrix. A further covariant differentiation of .J' = P.J
gives the Riceati equartion for P (see [3]).
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3. On the n-hyperboloid of radius . if P has all eigenvalues either
(a) equal to (1/r)cosh(c)/sinh(c) for ¢ € (=>.0) U (0.2c) then there is
no focal point along sign(e)s and one focal point at distance r || along
—sign(e)r. or
(1) equal to =1/r. (1/r)sinh(c)/ cosh(c) for ¢ € (=2c. x) or 1/r then there
is no focal point along 7 or —v. The limiting cases +1/r correspond to
asvmptotic stability/instability of .J and .J'.

We now state the comparison theorem. There are various comparison theorems
in Riemannian geometry. Corollary 2.6 below was essentially first stated by Bonnet
for zeadesics on a surface and can be viewed as a generalisation of Sturm’s theorem
on zeroes of scalar equations of the form Z+ f(t).r = 0. Rauch’s comparison theorem
(see [6]) mives a comparison of the lengths of Jacobi fields along geodesics starting
from points on two different manifolds under suitable eurvature and nonconjugacy
hvpotheses. This is generalised ro geodesics starting from submanifolds by Warner
in [11). We only require comparison with manifolds of constant curvarnre and so we
state the following which is Theorem 4.1 of [11]. although part 1 follows immediately
from Rauch's theorem. This avoids many of the technical details of the starement
of the most general comparison theorem. bur the reader should be aware that a
nore seneral theorem exists.

Theorem 2.5. Let M and N be Riemannian manifolds of the same dimension 1.
Let I and L be submanifolds of M and N of dimension 0 < k < n. Let g = ().
0 <t < b bheageodesic of M parameterised by its are length with ¢(0) € K and
gl0) € T, (K)*. Let h =n(t). 0 <1 < b be a geodesic of N parameterised by its
are length with h(0) € L and i1(0) € Ty (L)~ Assume that for each t € 0.0) and
for arbitrary planes S tangent to g at g(t) and T tangent to b at h(t). the sectional
curratures KW (8) and I (T) satisfy

Iy(S) € KA (T).
Also assume either

1. k=0 (i.e. K and L are points). Then if there are no conjugate points on h
for t € (0.D]. there are no conjugate points on g for t € (1. hl.
2. k>0 and

minimum eigenvalue of P > mazimwmn eigenvalue of ()

where P is the second fundamental form of K in the divection (0) and (Q is
the second fundamental form of L in the direction h(0). Then if there are 1.0
focal points on h for t € (0.h]. there are no focal points on g for £ € (0.1).

Our application of this theorem is described in the following corollary which can
e deduced by applying the above theorem to the manifold /. on which the con-
trol problem will be defined. and either the n-sphere. plane or hyperboloid. The
corollary is stated for initial points/submanifolds but applies equally to terminal
points /submanifolds by applying the theorem to —g. This changes the sign of rhe
cecond fundamental form and so the relevant inequalities below will be reversed.
Note also that g is parameterised by arc length and so the distance in the Rie-
mann metric to a conjugate/focal point is given by the parameter value of the
conjugate/focal point.

Corollary 2.6. Let M. K. g. S and P be as i Thearem 2.5. Further. let X and
i denote the manumum and marimum eigenvalues of P. In parts 1 to 3 of the
following. (a) describes the case k = 0 and (b) the case k > 0. Parts 4 and 5
deseribe the case bk > 0.

1. Let Ky(S) > 1/r? for some r > 0. Then
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(a) g has a conjugate point within distance r.
(h) if i < (1/r)cos(e)/sin(c) for some ¢ € (0.%) then g has a focal point
within distunce (7 — ).
. Let Ky (S) € 1/R? for some R > 0. Then
(a) g has no conjugate point within distance Rw.
(b)Y if A= (1/R)cos(d)/ sin(d) for some d € (0.57) then g has no focal point
urithin distance R(x — d).
3. Let N\(S) €0, Then
(a) g has no conjugate points.
(h) if A > 1/e for some e € (—2<.0) then g has no focal point within distance
—e. If A > 0 then g has no focal point.
4. Let Ky (S) € =1/r* for somer > 0. Then J.(b) can e improved as follows:
(a) if A > (1/r)cosh(c)/sinh(c) for some ¢ € (—oc.Q) then g has no focal
point within distance —re.
() if X > =1/r then g has no foecal point.
3. Let Kyp(S) > =1/R? for some B > 0 and jo < (1/R)cosh(d)/ sinh(d) for

some d € (=2c.0) then g has a focal pornt within distance — R,

1<

3. APPLICATIONS TO OpPTInAL CONTROL

Consider an oprimal control problem of the form: minimise
; .
(3) S= / T, et
Jba

subject to i = f(r.o) where r.u € R". In this section we deal with extremals
starting from a point p or orthogonal. in a sealar product ro he defined helow,
to a k-dimensional snbmanifold &' (0 < & < n). The results will also apply to
extremals ending at p or orthogonal ro K. Note thar the orthogonality is one
of the necessary conditions for an extremal of 5. NMore general initial or final
conditions involving a term of the form A (ta). f0) or B(r(tp). f5) in 5. aud heuce
non-orthogonal extremals. will be considered in the next secrion.

In this sertion it will be shown that a certain class of control problems wirh
the above initial or final conditions can. afrer applving Poutryvagin's maximum
principle. he counsidered as geodesic problems on manifolds where rhe Riemann
wetric is determined by [ and f.

The positive definiteness of the Riemann merric guarantees that the vesulring
extremals starting or ending on p or Ik are locally optimal i.e. that an optimal
control exists locallv. In cases where the resulting curvature is suitably hounded
Corollary 2.6 can be applied to determine distance bounds on the oceurence of the
first conjngate or focal point. This gives distance hounds on the existence of the
optimal control or implies that it exists indefinitelv. By indefinitely is meant as
t; = c or ty = —ac depending on which end of the optimisation is free.

The existence of optimal solutions satisfving borh initial and final conditions is.
in seneral. a difficult question. In this context it wonld involve determining firstly
whether the final point or manifold was equidisrant along all extremals from the
initial point or manifold and then whether it was wirhin the distance honnds for
optimality determined by the curvature.

\We begin with our basic class of geodesic control problems.

Theorem 3.1. Supposel{r.u) = __l,urg‘l(.r)n and fr.u) = g~ ) where g=! =
(9" ()] is an n x n matriz of differentiable functions on R" which is symmetric and
positive definite for each o € R". Then extremals of (1) are geodesics on a manifold
with local ecoordinates o+ = (ol ... r') € R" and Riemann metrie g = g, da'dr?,
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Proof. Take as Hamiltonian H(r.y.u) = yT flo.u) = 1. 1) where y € R" is a vec-
ror of Lagrange multipliers. Pontrvagin's maximum principle savs that an optimal
control u™ satisfies
H(ry.u®)y=sup H(r.y.u)
u

and the adjoint vector y satisties

j==0H/dr = —yT0f|0r + 0l/0u.
Now H(r.y.u) = ,v,t,;,u"fn_, - _-E,-n,.r;"'uj. So u* satisties 9H/Ou = 4,1 —u;g” =0 &
; = yj- Then H = %_q,g'lyJ. This is just the Hamiltonian associated with rhe
Riemann metric g as can be seen by applving the inverse Legendre transformation

xli= OH/O_!],; = _;;J_r}l' == .'f"_l],j

and

1 _ .
R o Babgped B, i DR R
L=y H =g S0t = g

=
which is the Lagrangian given by the energy of rhe metric. Similarly rhe adjoint
eouarion transforms into the Euler-Lagrange equation corresponding ro L

d (0L il d 0 JL
—|l=—= === =—(-H)=—(yi' - = —.
it (a.i") ft i dr! ( ) ! (s ] Al
Hence the extremals arve geodesics with respect ta g. O

Note the reference above ro extremals starting orthogonal ro a submanifold Iy
meant orthogonal in the Riemann metric g defined by / and f. In the Hamiltonian
setting this means that the adjoint vector v satisfies =(y) € N and < ¢ |y >=10
for all v € T, )() where 7 is the projecrion map T*(\) — /.

Example 3.2. Take

l:lr."'+1 .1 ";
2707 26t (at) ?
and
7 () = () = ()
of W= A5 T Nl
Then
H=!}f—n’=_r,'trf1+—---——!}-')“j —luj—l ”5

.2 £ 1 . v ) ¥:
sin“(al) 2 2sin~(r!)
For an optimal » Pontryagin's maximum principle gives
1., 1 4
= o s,
2 2sin-(.rl)
It can be seen that this is the Hamiltonian assoriated with the Riemann metric
on a 2-sphere of radius 1 (cf. Example 2.1). Hence u cannot he optimal bevond
distance 7 which is the maximum distance realisable in this cost funcrion. Basi-
cally. oprimality is equivalent to ' and .r* being rhe image of the so-called normal
coordinates on rhe sphere nnder rhe exponential map associated with the Riemann
wetric. This map has a singularity at r! = 7.

Example 3.3. In [3] Bloch and Crouch consider optimal control problems on the
adjoint orbits of left invariant Lie groups and on Grassmannian manifolds. Theyv
show that the oprimal tfrajectories correspond ro the geodesic flow on these man-
ifolds.  Examples include geodesic How on the n-sphere and on SO(n) which is
equivalent to the equations of motion of the generalised rigid body. Corollary 2.6
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can therefore he applied to determine the length of existence of optimal controls.
This involves translating the above coordinate based expressions into the invariant
notation of [3] hased on double Lie brackets and is related to the curvature and
ent loeus properties of distance spheres in complex projective space. This will be
considered in a future paper.

To extend this to control problems with unforced dynamics we need the following
rwo results from Hamiltonian mechanics.

Theorem 3.4. (Jucobi) Let g be o Rietnann metric and U be a function on R"
whieh is bounded above by a constant e on some vegion of R". Consider a La-
granginn L = LiT g+ — V() with corresponding Huamiltonian H = LyTg=ty + U
where y = OL/‘O_E". Then extremnals of L with total energy H = e are geodesics of
the Riemann metric § = (e — 17)g up to reparamneterisation with enerqy 1. i.e. they

nre extremals of L= il =TT pa.

Proof. Section 4534 of [2] or Theorem 3.7.7 of [1]. Note that Arnold uses the term
seodesic to mean extremal of arc length. g is known as the Jacobi metric. O

Theorem 3.5. Let (r.y) = (X.Y) be a change of variables in phase space R*"
satisfying yTdr —hedt = Y TdX — Hdt +dS where h(.r.y) is o Hamiltonian function.
H{X.Y) = h(r.y) is the same Hamiltonian in the new coordinates and S is some
function of X.Y and t. Then the trajectories of the phase flow:

. Oh . ah

! T T

arve represented in the (X.17) coordinates by the mtegral curres of the cononical
cquations

Ty

.. OH - OH
Y Eor Yoy
Proof. Section 43A of [2]. O

Theorem 3.6. Suppose in (3) that I(r.u) = U(r) + %HT{]WL(.F)H for some differ-
entiable function U and n x w matriz of differentiable functions g=% = [y'/ (1))
which is symmetrie and positive definite for cach o € R".  Suppose also that
b= flron) = ale)+ g~ ) for some vector valued function a satisfying the inte-
qrability condition [g(x)a(r))Tde = dS(x) for some function S. Define a potentiol

function 17 () = ——%n(.r)T.q(.r)rl(.r) — U(r) and a Hamiltonian h(r.y.u) = y7 f =1
where y € R" 15 an adjoint vector of Lagrange multipliers. Then extremals of (3)
with total energy h = e are qeodesics of the Jacobi metric § = (e — V)g up to

reparameterisation with energy 1.
Proof. We have
i ij - 1 i
hir.y.n)=ya" +yi9g9u; —=U — §H,g i
Maximising this with respect to u gives u; = y; and so for an optimal conrrol

1
hir.y) = §r}Trflu +yla-T.

Completing the square gives
1 1 ]
hir.y) = g(j}T + nTg)(]—L(_l} + ) — ;r:T_qn -

1
= 35"";,"'141'(.\')
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under the change of variables X' = ».1" = y + ga. Extremals of (3) sarisfv the
dynamic constraint equation + = f = dh /0y and the adjoint equation § = =ah/Or

Le. thex are trajectories of the phase flow for i. Now
YTdN = (y+ g9a)Tdr = yTdz + dS

by hyvporhesis. Hence hv Theorem 3.5 the extremals of (3) in X.1" coardinates

are integral curves of the phase How corresponding to H(X.Y) = 2175717 +
U(X'). Then by Jacobi's theorem those extremals with total enersy h = H = ¢ are
geodesics in the metric § = (e — 17)g.up to reparameterisation. O

Example 3.7. Svstems such as
Fy= s+ oy
l'_1 =+ s
Al
. 2 o
Ty =0y 4+ oy

Iy = 2.['1.!'-_) +

saristy rhe integrahility condition for a(.r) in Theorem 3.6. For the second svsreni.
for example. (&7 + r3)dey + 2epradey = d(Eed + 0 a3).

Remark. In [7] we studied dynamical systems which can be lifred to Clifford alge-
bras. The rwo svarems in the example above have unforced dvommies which ape
liftable to the nniversal Cliford algebra R — R of dimension 2 over R wirh ¢ua-
dratic form Q) = —r?, Theorem 3.6 can be applied to svstems lifrable to the
other Clifford algebras. but then it is necessary ro consider control cost marrices
g~ () which are indefinite or negative definite to rake account of the quadraric
form defining the Clifford algebra. For example. consider the svstrem
£yo= rf - 1:: + 11y

[h]

g =20 — g

with cost function (o) = U(r) + %uf - %ug. This system has unforeed dynamics

liftable to the universal Clifford algebra C of dimension 2 over R with quadratic
form Q(r) = 2. Forming the Hamiltonian and applving the maximum principle
as in the proof of Theorem 3.6 gives

B B I- - 1 B -
h=uy(ri —r3)+ 3,','1') + 2y — SY - ()

(y2 = 2ryaa)® + 17()

K| o=

1 9 S
5(!“ +.J"I — .I'.E)_ -
| S, N, g —
= 51 g7 Y+ T7(X).
This is a canonical change of variables because
-y 3 1 3 -
YTAX = ey + (ri — x3)drey + yadrs — 2ryracde, = ;J-Trl;r + ”‘{E-r]’ — ).

Allowing indefinite Riemann metrics would require distinguishing between time-like
and space-like trajectories in a pseudo-Riemannian manifold. We will consider this
in a furure paper.

Having shown rhar the extremals of (3) with the given [ and f are geaclesics
in the Jacobi metric. the next step is to apply Corollary 2.6 in cases where the
corresponding curvature is suitably bounded. However there are some points to he
addressed bhefore this can be done.

The first rhing to note is that the change of variables in the cotangent space in
the proof of Theorem 3.6 does not change the integral curves involved and so has
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uo effect on the position of conjugare points. However anv estimates of the distance
to conjngate points using Corollary 2.6 will be with respect to the Jacobi metric.
This will have to be rescaled to give the distance with respect to the original cost
funcrion. This is illustrated in Example 3.11 below.

The second point concerns the following question. Let ¢ be an extremal of
H = 1YTg=1Y + V'(X) with energy H = e starting orthogonal with respect to
¢ to a submanifold K of ) of dimension k. 0 < k < n. Let ¢ denote the field
of tangent vectors to ¢ and P he the second fundamental form of I with respect
to g in the direction ¢(0) if & > 0. If J is a vecror field along c. let .J' = V.J
where T is covariant differentiation with respect to the connection for g. Note rhat
orthogonality in g implies orthogonality in § = (¢ — 17)g. Note also that we have
included extremals starting from a point as case & = 0 for brevity in the following
discussion. In this case. when we say J(0) € T, (N) we will mean ./(0) = (. the
term focal point will mean conjugate point and the term involving P will vanish
from the initial condition below. Then the question is. can valid conclusions abont
focal points on ¢ be drawn from applyving Corollary 2.6 to ¢ as a geodesic of the
Jacobi metric g = (e = 17)gy?

The occurence of focal points to I\ on ¢ is determined. as in the geodesic case. hy
the vanishing of non-trivial Jacobi fields satisfving the relevant inirial conditions.
The Jacobi equation for H is the linearisation along ¢ of the canonical equations
for H (see [10]. Chapter IV). As in the geodesic ease. this is a second order n-
dimensional system of linear differential equations and so the space of Jacobi felds
along ¢ is 2p-dimensional. However. unlike the peodesic case. it cannot he assnmed
that rhe space of Jacabi fields can he decomposed into those parallel to and rhose
orthogonal to ¢ and rhat the parallel fields only vanish at one point. Hence the
initial condirions for ¥ are the same as in rhe geodesic case without the condition
that .J'(0) be orthogonal to c. namely J(0) € T, (L) and P.J(0) - ||r‘-((])|17l J0) e
T (R)*. The space of Jacobi fields determining focal points to K is rherefore
n-dimensional. Denote this space by L.

Suppose the level surfaces of 17 are (n — 1)-dimensional and gradl” is parallel to ¢
Then under these hypotheses. L does decompose into fields parallel and orthogonal
to ¢ and we will show rhe parallel fields do not vanish hefore 17 = ¢,

Cousider first the (n — 1)-dimensional subspace of L containing Jacobi fields
orthogonal to e which generate variations of e throngh extremals on the same energy
level surface H = ¢. By Jacobi's theorem these extremals are all geodesics in the
sime Jacobi metric g = (¢ = ) g after reparamererisation. Thus the distance along,
e to a focal point corresponding to this subspace is estimared by Corollary 2.6.

[t should be noted that the Jacobi metric has singularities on the houndary of
the region 1" < e. So. while the extremals may still be optimal for H. the estimates
from Corollary 2.6 for the (n — 1)-dimensional subspace above are onlyv valid up to
the boundary of this region. In general. however. for a control problem U(r) > )
and. by hyporhesis. a’ga > 0 for all z. Hencee—1" = ¢ + LaTga+U > 0fore >0
and so such singularities do not ocenr, )

Whar about the remaining 1-dimensional snhspace of solutions to Jacobi's equa-
tion? Denote this subspace by L. It is shown below rhat with the above hypotheses
on 17, there are no focal points on ¢ corresponding to Ly up to the honndary of the
region 17 < e. Thus the estimates from Corollary 2.6 cover the full n-dimensional
space L of Jacobi fields satisfving the initial conditions for A up to the houndary
of the region 17 < e.

Recall from Section 2 that geodesics corresponding to H = L1yT 9=y are integral
enrves of V=4 = 0 and the linearisation of this equation is the Jacobi equation
V:V:J+R(+.J)% = 0. Similarly it is shown in Theorem 3.7.4 of [1] that extremals
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of H = %_UTg“_r,r + 17(:r) are integral curves of

(1) Vei = —gradl (e(t))

where ¥ is again with respect to the connection for g. Note that gradl” is the
vector field satisfving dy 1" = g(gradl’ Y) for anyv vector field .\". Bv definition of
v

Oy glgradl’. X)) = g(Vy-gradl, X) + g(gradl”. Ty X).
Following [5]. define the Hessian of 17 to he
g(Vygradl . X) = Oy (Ox17) — O¢, v 10

The following generalisation of Jacobi's equation then holds true with essentiallv
rhe same proof in local coordinates. We indicate how it starts.

Lemma 3.8. The linearisation of (4) along an extremal ¢(t) is
(3) NNl + Re. J)e = =N pgradl
where R is the curnature tensor corresponding to .
Proof. In local coordinates (4) is
ort o i 7, ) Jh'ﬂ
s

kot
— — =T it =
(lt dt e 7
If o' [els vepresents a vector field along ¢ then the linearisation is
o [t i
dt \ods ) T s

dt \ s drt s s
_ 1 EE R N T S Ll
i b dr s d-1" _Og!t OV da .
ME s 00k ds Art dak ds
Using the definitions of ¥ and R in local coordinates from Section 2. adding and
subtracting the relevant terms and rearranging gives the result. O

Cousider a vector field along ¢ of the form J = f(#)¢ for some function f with
initial conditions f(0) = 0 and f'(0) = a for some constant a. Suppose .J is a
solution of the Jacobi equation (3). Then .J will be an infinitesimal variation of
¢ through extremals which have the same image as ¢ as curves in R" but which
have different magnitude tangent vectors with respect to g at + = 0. So .J will be
a variation of ¢ through extremals on energy level surfaces H # e. .J will therefore
span L. The next result gives conditions for .J to be a solution of (3).

Proposition 3.9. If grad\” is parallel to ¢ and f satisfies the differential equation

-t . -
fﬂ(t) = aexp (/ M_idf)
Jo ( )

e = 1(e(1)
f)y=0

then T is a solution of Jacobi’s equation (5).

Proof. By hypothesis

glaradl™e) . g

gradl” = O i
gl c) 2(e = 17)
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Also by rhe skew symmetry of the curvature tensor. R(¢.J)é = fR(é.¢)é = 0. Then
differentiating the expression for f' gives
f_” _ ylaradl’é)
ik e—1
f9(e.¢) = 2f'g(gradl”, ¢)
"o —2f'gradl’ =0
flé+2f' Vet — fVigradl = — f¥gradl”
VeVa(fe) = = fV cgradl’
VeVl + R(é, J)e = =N jgradl’

Il

(1 A T

O

Corollary 3.10. For t > 0. .J does not vanish before the boundary of the region
U < ¢ and hence there are no focal points corvesponding to the subspace Ly in this
TRGIOTL.

The conditions imposed on 17 in the above discussion are that its level surfaces
be (1 — 1)-dimensional and gradl” be parallel to ¢ If ¢ starts orthogonal to a
submanifold . then a necessary condition for this is that K be rangent to a
level surface of 17 ar (). We end rhis section with an example illustrating the
application of Corollary 2.6 to a problem involving the Jacobi metric,

Example 3.11. Consider a cost function of the form

1 1 3
I= §”f i 551113;.!'1] = (= vosl)
wirh dynamics
= o= -

2

sin”(.rt)

Forming the Hamiltonian and applving the maximun principle gives
1

h==y+
2./1

1

P — (08 .f'l
25in"(x!) 4 R0

which 1s the Hamiltonian corresponding to motion on a sphere of radius 1 in the
presence of a gravirational porential acting in the positive z-direction with #' and
£ interpreted as in Example 2.1. The corresponding phase trajectories are those
of a non-linear spherical pendulum with lowest point at ! = 0. They satisfv
= .9 12
£ =0 S =
sin~(r!)

y3 cos(rt)

g = — sin(z") i = 0.

sin® ()
There is a familyv of solutions. which we denote C, corresponding to motion in a
fixed vertical plane satisfving

bl

T il

= const. B = —sin(z!).

Intuitivelv. the first conjugate point to .r' = 0 along this family of solutions oceurs
at b = 7. We will verify this by applyving Corollary 2.6 to the Jacobi metric for
this problem.

The metric on the sphere corresponding to the kinetic energy is

g = (dx')? + sin® (") (dr?)?
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and so the arg length parameter with vespect 1o 4 along Cis ', For o fixed value
of ' =« the enrves in Care peodesics in the Jacobi metric

-~ IR LTI T R T S| 242

g=(c=1+cos(r ))({de’ ) = sin- (' ) edr™)")

after reparameterisation with energy 1. The tangent vertor field to these curves
under the reparameterisation is therefore

2 a
e —1+cos(r!) art”

The Christoffel symbols and curvature tensor components can he calenlated by
hand or in Maple. The relevant non-zero ones for this example ave

1 sin(art)
| - - Wil N
L= 20 =1+ cos(arl)
N 1 (sin? (') = 2cos(r! Jo+ 2cos(r!) = 2cos” (1))
rr‘] == e . ;
2 sin(ah (e = 1+ cos(s!))

B R 1sin? (') (3 = 4 + 262 + Geos(r')e = Greos(r!) + Jeast (1))
G = o g = = -
LS S 2 (¢ =1+ cos(r!))

If can be checked direct]ly that the eurves in Cwith tangent vector ) are gendesics

in g
- drl 9 drt 9 ! dr'\"| o
Vo "] = —— == ri —_— — =),
(4= =1) ( dr ! ) ( dr (').r") ( il ) + 2k ( i ) !

If o) =(1/V2)7 and ¢s denores the unit vector field
1 0
(0 =1+ cos(r! )2 sin(a!) On*

orthogonal to C. then the sectional curvature of the tangenr plane spanned by

|
and eo Qs

L
(¢ =1+ cos(r1))?sin (")

=

Riops.

It can be checked that the sectional eurvature of any other plane at the sine
point spanned by Voo + V1T =aes and =T —ar ) + Jaes is also equal to IV
Alternatively this follows from the observation that rhe spliere is svmmerric nnder
rotations and the Jacobi metric distorts the spherical metric by a factor depending
onlyv on the point in question. not on the direction.

For e < 2. the solutions in C have a singularity before r! = 7 and an argnment
similar to the following will show there is no conjugate point hefore this singulariry.
So suppose e = 2 which corresponds to those trajectories which just reach the
top of the swing of the pendulum ! = 7. ! = 0. The gradient of the potential
(1—cos(.r!)) is parallel to the curves in C. so to determine the position of conjugate
points to x! = 0 along these curves it is sufficient by Corollary 3.10 to apply
Corollary 2.6 to . For ¢ = 2

So anv conjngate point to ' = 0 has to he within disrance 27/V3in . If dp ix

the are length paramerer with respect ro g. then it is relared to dr! by

dp = 1+ cos(rt)dr! = \/5('05(.1'l J2)drt,
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So a distance 27/V/3 in 7 along a eurve in C starting from ! = 0 corresponds to a
distance ry in g given by

27 e xl g
— = V2cos [ = | da! = 2/2sin (—f) .
V3 a 2 2
This is unrealisable for .ry real. meaning that the upper bound on the distance to a
conjugate point to x' = 0 is bevond the maximum distance realisable in g. namely
To check that the lower bound is equal to 7. it is necessary to use a stepwise
approach.  Assume first that o' < 7/2. Then K < 3/2. By Corollary 2.6 any

conjugate point occurs after a distance /2/37 in g. This corresponds ro a disrance
rp=25in" M7/ 2V3) > 72

in 1. So any conjugate point ocenrs after r! = 7/2.
Assuming a larger bound on !, say ! < 25/3. produces a larger hound on

K < 3 which pushes the lower hbonnd on the distance to a conjngate poinr
rp = 2sin" (7/2V6) < 27/3

helow the original hound on rt.

The way to proceed is to calculate a lower hound on rhe distance to a focal point
along curves in C srarting orthogonal to the submanifold ! = =/2. The second
fundamental form of this submanifold with respect to g is

- 1 i 1
Pes =Y, 0 = —1_.':]#'» = ——py
2 s ===, kg
V14 vos(rt) g
at ol = /2. Take as the next bhound ' < 25/3 so that L' € 3. Ler d =
tan~ ! (=2v/3) where tan~! lias range [0.7). Then by Corollary 2.6. the focal poinr
tor! = 7/2 ocenrs after a distance (7 —d)/v/3 in §. This corresponds ra a distance

Jpoin g piven by

= R
20 il (2]
which is greater rhan 27/3. Since a focal point to ' = 7/2 along curves in C is
the same as a conjugate point to ! = 0 along rhe <ame curves. it follows that anv
conjngate point to .t = 0 ocenrs after ' = 27/3. Proceeding in this wav it can
he shown rhat rhe lower hound on rhe conjugate point is arbirrarily close to . In
fact. 7/2 is not big enongh for the first step. Taking. for instance. the intermediare
submanifolds to lie at #! = 1.8 .2.45. 2.85. 3.03. 3.12 and 3.13 radians shows that
rhie conjugate point cannot occur before r! = 3.14 radians.

For the above example. gradl” is parallel to all extremals starting from ! = 0.
For extremals starting from x! = #/2. r* = a for some a € [0.27) the above
argiument can only be applied to the extremal .r? = a as all the other extremals
starting from the given point are not parallel to gradl”.

Note the above example can also be realised with the cost function and dvnamics

Gl

| 1 - 1 a3
=—ui+ ——=
2 2 sin-(xt)
M= 4 2(1 + cos(el))
3 R
= —
sin= ()

althongh a trajectory on energy level e for the Hrse realisation will lie on level (¢ = 2)
in this realisarion. ’
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4. MoRE GENERAL INITIAL CONDITIONS

L the previons section we considered extremals starting from a point p or or-
thogonal to a submanifold K. More general initial conditions can he given by
considering a control problem of the form: minimise

(G) S5 =A(r(ta).to) + / ' (e )t

i
subject to - = f(r.u) where r.u € R". The necessarv conditions for an extremal
of this coutrol problem include the condition that the adjoint vector satisfies
a6
or
giving an initial condition for all of R™. If the initial point lies on a k-dimensional
siubmanifold of R™. (0 < k < n). given by M(r(tg). #0) = 0 where )M takes values
in R"~*_ then the adjoint vector satisfes

OH AVES
.U'(fn) = £

y(to) =

or or

where € € R"7* is a vector of Lagrange multipliers. This initial condition allows
extremals to start non-orthogonally to a submanifold.

The vesults of the preceding section can he applied to (6) provided there exists
some 1 <ty and some point p or submanifold A7 such that

o

Blr(ta)otn) = / Ear il

and rhe exrremals of (6) rraced hackwards start from p or orthogonal to K ar 7.
Ohvionsly. for this to be true. # has to satistv dd/dt = 1. A simple example will
llusrare rhis.

Example 4.1. Suppose I = %raf + %u_: the dyvnamical constraints are 1| = u and
doo= s and 8 = Lo/t + L3/t This gives the equations of geodesics i, = 7, = 0
in the Euclidian metric on the plane. i.e. srraight lines. # is the action funcrion
Ly + Lrays associated with / written in .t variables. As functions of . r, = it
and so clearly. df/dt = 1. The initial conditions on y; = i; are
T af iy

‘fj',( n) - 0.1'; - f—“
If we assiune these apply over all R" and that #, > 0. then the inirial conditions
simply assign to eacl point a tangent vector in the radial direction of the magnirude
required ro reach that point from the origin in time #g.

Similar comments apply to final conditions of the form #(.r(f;).#5) and the com-
wents made at the beginning of the previous section applyv to rhe existence of
extremals satisfving both initial and final conditions specified by A(.r(t).1).
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