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1 SUMMARY -
This project was concerned with the motion optimisation of a SCARA robot subject to kinematics
constraints, where two methods are used, namely: genetic-based algorithms and the flexible
polyhedron search. Both methods use cubic spline functions to generate motion profiles. In

. formulating the GAs, tailor-fit operators and procedurés were used to seek an application-dependent
structure. In addition, an initial evaluation is reported in the form of comparisons between a
Pareto-based and weighted-sum (parametric) approaches to multi-criteria optimisation. Case study
results are summarised for the RTX robot with six joints.

2 INTRODICTION

The application of GAs in multi-objective optimisation is a major interest in GA research. Current
multi-objective GA approaches include the classical aggregation of the different objectives into a
single function, population-based non-Pareto approaches and the most recent work on the ranking
schemes based on the definition of Pareto optimalityl [1]. Pareto-based ranking was first proposed
by Goldberg [2], as a mean to assign equal probability of reproduction to all Pareto optimum®
individuals. However this is not the only technique required for the Pareto-based multiobjective
GAs. There are additional niche formation method that must be included to prevent the population
converge to one peak, a phenomenon know as genetic drift, as described below.

. A genetic optimisation for the PUMA 560 manipulator for various different optimisation criteria has
been reported [3], including minimum time, constraints on torque and end-point velocities is
presented. In studies with two 3-DOF PUMA like multi-arm robots [4], an evolutionary algorithm
has been proposed for three different objectives, namely, the minimum path length, minimum
uneven distribution of via-points and collision avoidance. The planning for an RTX robot [4] used
the weighted-sum approach when considering different objectives, e.g. minimum travel time,
collision avoidance, and compliance with the displacement constraints. The study made use of
customised operators to compensate the problem of large position jumps at the crossover sites.

The flexible polyhedron search’ is one of the unconstrained non-linear optimisation techniques [5].
It is used for the minimisation of a function of n variables and depends on the comparison of
function values at the n+1 vertices, followed by the replacement of the vertex with the highest value

' The name is derived from the Italian economist Pareto who introduced it in 1896. It is an important concept in
particular in the competitive equilibrium in economics and also optimal mixed strategies in statistical decision theory
[7].

? Also called efficient point, non-dominated or admission solution.

! Originally the simplex method by Nelder and Mead (1964) when they introduced the method, but the new name was
later used by Himmelblau [5] as being more descriptive.
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by another point. It has been chosen by researchers since it does not assume the function to be
differentiable and continuous over the range of interest, and has the additional advantage that the
user can be sure of the design variables taking only positive values. This method has been adopted
[6] to optimise the best (minimum) combination of time intervals subject to constraints on joint
velocities, accelerations and jerks for PUMA type robet with six joints.

3 MOTION PLANNING ESSENTIALS .

3.1 Motion based on Cubic Splines
The objective here is to construct joint trajectories that fit a number of joint displacements at a
sequence of time instants by using cubic polynomial functions. Consider a vector of via-points for
the jth joint along some initial path as [6;1(¢1), 6;2(t1), ..., 6ju (£x)], where f; <t <t3< 14 < ... <ty2 < fn
< I, is an ordered time sequence, indicating that the position of the jth joint at time ¢ = ¢; is 6;(#;). Let
vj; and wj; denote the velocity and acceleration of joint j at knot i. At the initial time ¢ = #; and the
terminal time ¢ = t,, the joint displacement, joint velocity, and joint acceleration are 6;;, vj;, w; and
0, Vin. W), respectively. In addition, joint positions 6. at t=f; for k=3, 4,..., n-2 are also specified.
. However, 0;; and 0, ,,..; are the two extra knots required to provide the freedom for solving the cubic
polynomials. For simplicity, the subscript j for jth joint is dropped since the result is the same for all
the joints. From [6], the acceleration vector w of knots is obtained as follows:

Aw=b (1

T
where: w = [w2,w3,w4,...,wn_3,wn_2,wn_l] .
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where i =1,..., n-1. The positions, velocities and accelerations can therefore be obtained provided
that each time interval A; is known.

The optimal time solution for the time interval vector X should be obtained with the corresponding
knot velocities and accelerations computed from the above equations, and the jerks are the rate of

2
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change for the corresponding accelerations. The resulting via-point velocities, accelerations and
jerks may or may not violate their limits and should be compared with their own limits to obtain the
time-optimal path satisfying the joint constraints.

3.2 Physical limits
Note that there are six joints that must be considered simultaneously and there are three constraints,
1.e. velocity, acceleration, and jerk limits for each joint. For convenience, let

VC; = velocity constraint for joint j
WC; = acceleration constraint for joint j
JC; = jerk constraint for joint j

Q; (t) = velocity for joint j between knot i and i+1.
Q%(r) = acceleration for joint j between kiot i and i+1.

Q7(r) = jerk for joint j between knot i and i+1.

X = (hy, ha,..., hy.1), the vector of time intervals.
Qji(t) = piece wise cubic polynomial trajectory for joint j between knot i and i+1, and
Wii = acceleration of joint j at knot i.

The acceleration in (3) can therefore be rewritten as
i ty —1 t—t,
04(1) =", + ©®
1
and also the velocity function in (4) can be rewritten as

% i+l
W WL 5 0 it ]?‘,I.W.J.Jr 6. hw.
Q;a(r):_z_]j;(t,ﬂ_I)z'f“#(fﬁf‘-) +( B 4 1]_( I j J (7)

h, 6 6

n—1
Following from [6], the objective thus is to minimise Zhj subject to constraints

i=1
0, (t)<ve,, |yt <wc,, and |@(r)< JC,, (8)
forj=1,2,.,Nand i=1,2,..., n-1.

(a) Velocity constraints
The maximum absolute value of velocity exists at #;, #i.; or f, , where f; satisfies (25 (ﬂ):O and is

in the interval [#;, #;+1], The velocity constraints then become
R 10 RS AR IACH 1A s
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(b) Acceleration constraints
The acceleration is a linear function of time between two adjacent knots. Hence, the maximum
absolute value of acceleration exists at either #; or f;;; and therefore equals to

maxﬂwﬂ|,|wj.2|,...,}wjn }SWCJ., forj = 1,...,N.

(c) Jerk constraints
The jerk is the rate of change of acceleration. The constraints are represented by

[Wj,m — Wy ]
h,

3.3 The feasible solution converter (time scaling)

If the correct time intervals are guessed, then wj; can.be uniquely determined from equation (1).
However, if constraints on joint velocities, accelerations, and jerks are not satisfied, then time
intervals [hy, ha,..., h,.1] should be expanded to bring the unsatisfied velocities, accelerations, and
jerks to their constrained values.

<JC,;, forj =12, .,Nand i = 1,2,...,n-1.

Foe example, let O,(¢) be the original spline function of the joint displacement defined on the time
interval [#;, t;+1] = [t;, ti+h]. If all the time intervals aré expanded according to T = Af so that the

new intervals are 4 = Ak, , then the new acceleration w; can be determined as w, /A* . Thus, the
new spline function Q(t) defined on the interval [At,, A(, +h, )] = [’C STt hf]can be shown to

have the same form as Qi(f). Therefore, the first, second, and third time derivatives of Q; (1:) will be
(%L)Q,-'(’t /7&), (%Lg )Q:(T / 7\.), and (%C )Qf’(”c / K), respectively.

Now let

L, = mjz_‘;lx[r max ‘Qﬂ (rj/VC } 9)

Hi vi

A, = max max \Q (t)‘IWC}
J :Er A ,Va (10)
=mjax mjzixle,‘/WCj]

A, = max A AR ‘Q”’IXIJC }
(11)
= max| max /JCJ,} .
i ’
with A =max(1,A,.3/A, .4 ) (12)

If the time interval A; is replaced by Ak, fori=1,2,..., n-1, then the velocity, acceleration and jerk

wj.r'+l —ij

will be replaced by factors of % ,yz ,y?, ,respectively. These changes assure the satisfaction of

constraints on velocities, accelerations and jerks.

4 THE GENETIC FORMULATIONS
The formulation of the multi-objective GAs are described in some details in the following sections.
The general procedure is depicted in Figure (1).




Initialisation of parameters

l

Generate Initial Population

l

Evaluate the initial population

do {
Selection
Recombination
Update-generation
Evaluate
Record the best-time trajectory
Pareto-Ranking
Fitness Assignment and Sharing

}

while (generation < maximum generation)
Report.

Figure (1): Outline of the Genetic Procedure
4.1 The objective functions

4.1.1 Pareto-Based GA
The objective vector is set as:
n—1
Minimise { Dk, , 1-A1, 1-A2 }
i=1
subjects to constraint: A; <1.
where h; is the ith time interval, 1-A, is the criticality to the velocity constraints, 1-A, is the
criticality to acceleration constraints. A; , A, and A3 are computed by equations (9-11) respectively.
The criticality is a measure of how close is a trajectory to the joints’ velocity and acceleration limits.

4.1.2 Weighted-Sum GA

Two types of weighting methods is considered in this case study, namely a normalised objective
function and a non-normalised function.

(a) The formulation of objective function in normalised form can be written as to

Minimise { w, f, + w, f, + w, f; }

subject to jerk constraints, i.e. A3 < 1, where f, =1-A, and f,=1-A,. The weight coefficients
w; operate on the ith objective function and can be interpreted as “the relative worth” of that
objective when compared to the other objectives. The weights are normalised so that the total is
equal to 1, and the two objective values for f, and f; are in the range of [0,1].




The objective function f is calculated as a relative value to the range of motion time [MIN, MAX].
Assume the upper bound of travel time MAX is the maximum trajectory motion time obtained from
the initial population, and the lower bound of the travel time MIN is the maximum time among the

six joints when they travel at their velocity limits between start and end points, 1.e. 0;; and 0;,.
Thus,

py=2x| 20 =00
J VL,
where j = 1,..., N represent the six joints and VC;is the velocity constraint imposed on joint j. Note
that the lower bound of the motion time calculation has not taken into account the zero velocity and
acceleration values imposed at the start and end positions. Hence, the function f is set as:

n—1

> b, — MIN
f] . i=1

MAX — MIN

(b) Some researchers have not adopted the concept of normalising the objectives when using
weighting method in their studies [3,4], and the objective functions are arbitrary weighted with
different values. To compare with the normalised formulation, the non-normalised objective
function is formulated as to

n-1
Minimise { (D,Zh;— +0,f; +©,f; }
i=1

subject to jerk constraints, where o; is the weight of objective fi.
4.2 Parameter initialisation

The definitions of the used genetic parameters are listed in Table (1), and these are referred to in the
following sections.

Table (1): The GA Parameters

Parameter Description

maxgen maximum generation

maxinterval/(n-1) maximum time interval

maxjoint maximum joint number

maxknot/n maximum knot number

maxpop maximum population size

SEED constant integer to initialise the random number generator

sp selective pressure

PCross crossover probability
pinject injection probability
pmutate BGA (Breeder Genetic Algorithm) mutation probability

pmutate_time time mutation probability

reserve_num

number of best trajectory to be kept, it is set to 1,(when perform BGA
with truncation scheme, it is also the number of selected parents)

cross_over_dis_meter

maximum distance to perform cross-over for joint 1 (Zed).

cross_over_dis_radian

maximum distance to perform cross-over for joints 2-6.

vl

velocity at the start position

al acceleration at the start position

vi velocity at the end position

an acceleration at the end position

sizeC the number of constraints

inc time step for generating motion profiles




4.3 Evaluating the population
The population performance is evaluated with each trajectory in the population receiving a fitness
value prior to the selection process.

4.3.1 Ranking

All trajectories are ranked based on its total travelling time and the criticality to the joints’” velocity
and acceleration limits based upon Pareto ranking.

Using the Pareto optimality definition, a point x is said to be non-dominated if it is not dominated
by any other point. Thus, an individual can be ranked by counting the number of individuals that
dominate it [1]. Hence, the non-dominated ones that are the best performers and will be assigned
with highest rank, i.e. zero. When all individuals in the population are ranked, the fitness values
will be assigned to them according to their rank. This can be done by interpolating some linear or
exponential function from the best individual (rank = 0) to the worst individual (rank<N). Following
that, same rank individuals will receive the same fitness values by averaging the total values
assigned to them.

Therefore, fitness values are assigned according to an individual’s rank in the population, thus
ensuring that the population will strive for all the three objectives: smallest travel time and
achieving the two limits allowable.

4.3.2 Fitness Assignment
The fitness of trajectories are obtained on the basis of their relative fitness in the population rather
than their raw performances. The trajectories are first sorted into a descending order based on their
Pareto rank. Then by interpolating between the best rank individual to the worst rank individual,
each trajectory fitness value can be calculated as follows:

F(x)=2-sp+2(sp— I)L,

Maxpop — 1

where x; is the position in the ordered population of trajectory i [8]. This rank-based fitness
assignment provides only a small bias towards the most fit trajectories so that no trajectory will
generate an excessive number of offspring and thus prevent premature convergence (Whitley,1989).
The ‘sp’, i.e. selective pressure, defines the maximum number of offspring that the best trajectory
can reproduce.

4.3.3 Sharing Scheme

Fitness sharing uses a sharing parameter to control the extend of sharing, or in other words, itis a -
measure of the maximum distance between individuals that could form niches [1]. The trajectory
fitness will be increased or decreased depending on the trajectory similarity with each other. After
calculating the share count, the new total fitness values in the population will be altered and the
value is usually different with the total fitness before share count.

4.4 Selection Scheme

Selection scheme is a process to determine the number of trials a particular individual is chosen for
reproduction. The selection technique adopted in this project is based on stochastic universal
sampling (SUS) [9]. This method uses a single spin and N equally spaced pointers, where N is the
number of population size. The actual selection process begins with generating a random number,
say p, from the range of [0, sum/N], of which sum is the total fitness values of the population. The N
trajectories are then chosen by generating the N pointers spaced by sum/N. Hence, N trajectories
whose fitness span the positions of the pointers will be selected. The selected trajectories are then
shuffled randomly before recombination. Note, however, that the number to be selected for this
particular problem is not equal to N and a modification has been introduced.

7
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4.5 Shuffling

After the selection stage, the selected individuals’ indexes are sorted because of the previous fitnesg
assignment procedure. It is therefore necessary to perform a shuffling procedure before the
recombination process. This can be done by using a set of randomly generated numbers. By using
the sorting procedure to sort the random number into an ascending order, the initially sorted indexes
will be randomised and the selected individuals will be rearranged according to the randomised
indexes.

4.6 Recombination Mechanisms

The selected trajectories will be paired up for crossover or recombination subject to their mating
distance and cross-over probability. Self-mating is not allowed in the program. Three different
genetic operators are implemented from the Breeder GA [10]. Considering two parents x = (x;,
«wXn) and y = (y;, ...,y,), then, the offspring z = (z;, ...,z,) may be composed in the following ways.

(a) Discrete recombination: z; = {x;} or {y;}, where x; or yi are chosen with probability 0.5.

(b) Extended intermediate recombination: 7z, = x; + o i(yi-x; ), i=1,....n, where o ; is chosen
. randomly in the interval [-0.25,1.25].

(c) Extended line recombination: z; = x; + o (y;.- x; ), i=1,...,n, where o is chosen randomly in
the interval [-0.25,1.25].

In addition, a fourth path redistribution/relaxation operator is used [4]. A robot trajectory consists
of joint angles that may produce large position jump in the offspring strings after conventional
crossover. Therefore, this operator is proposed where cubic splines are fitted to the offspring’s via-
points with each time interval set to unity. The path length is then computed as the Euclidean
distance between the start and end via-points along the splines as:

3 [i(@ Py ‘ef")zJ

1=0 j=1

where j =1, ..., m and At is chosen to be a small number, 7 is the number of via-points and m is the
number of robot joints. Each joint knots are then ‘redistributed’ evenly over these splines at equal
intervals. The paths are then ‘relaxed’ by moving each via-point with a small step towards the point
. that will bisect the line between its neighbouring points as:

6 i1 0 i+l
0, =8, +6[’—2L—_eﬁ)

where i =1, ..., n and & is a positive random number less than one.

4.7 Modified feasible solution converter

When a travel time is produced following the process of population generation or recombination,
the time value is evaluated using the feasible solution procedure, as described in section 3.3. Then,
the total time intervals are scaled such that the motion time of an individual trajectory is optimal and
does not violate the kinematics constraints. From section 3.3, equation (12) is rewritten as:

3 e max(?\,‘,{/z,ﬂ).

Thus, if A > 1 then A; should be increased to Ak; to satisfy the limits of the velocities, accelerations
and jerks. Also, If O< A <1 then h; can be contracted to Ak; to obtain the time-optimal joint paths.

The corresponding velocity, acceleration and jerk values are scaled by the factors of %L ,%2 ’%&3 ;

respectively.




4.8 Time intervals mutation

The offspring’s initial time is given from the parent and it will be passed through the modified
version of feasible solution converter for -1 times. Each pass, a time interval will be selected
randomly and increased or decreased depending on the criticality of that interval. If the interval is
critical, i.e. very close to the limit, the time will be increased (to slow down), otherwise the time
will be decreased (to speed up). The decrement and increment values are selected randomly between
ranges of [0.75, 1] and [1, 1.25] respectively. Only the smallest time intervals will be used as the
offspring travelling time. If n-1 trials are not successful, the offspring will accept the parent
trajectory travel time which has been scaled appropriately with the factor obtained the converter.

S SIMULATION RESULTS

The algorithms have been tested for the RTX robot with 6-joint motion planning in the
configuration space. The case study is listed in Table (2), with the model parameters and
constraints listed in Table (3) and (4). '

Table (2): Initial and final configurations

Column | Shoulde | Elbow | Yaw Pitch Roll
(m) r (rad) (rad) (rad) (rad)
(rad)
Initial configuration 0.4 -11/6 -11/3 -1/2 0 -1t/4
Final configuration 0.8 /6 /3 /2 -T/6 /4
Table (3): Link parameters
Joint { 0; o a; d; Lower Bound | Upper Bound
1 0° 0° 0 0 -61 mm +881 mm
2 0° 0° a -d, -90° +9OG
3 0° 0° a3 -d; -180° +151°
4 0° 0° 0 0 -110° +110°
5 0° 90° 0 0 -8° +94°
6 90° 90° 0 dg -132° +181°
gripper - - . = 0° +90°
Table (4): Velocity, acceleration and jerk constraints
Zed* | Shoulde | Elbow Yaw Pitch Roll
r
Velocity 0.1116 | 0.1654 | 1.2092 1.9715 1.3780 1.2412
Acceleratio | 1.7755 | 6.2018 | 14.081 31.055 28.063 26.180
n
Jerk 297.59 | 894.67 | 37189 3377.6 3933.1 4172.7

Note: The zed velocity, acceleration, and jerk are in m/s, m/sz, and m/s3, respectively.
The other joint angle velocities, accelerations and jerks are in rad/s, rad/s’, and rad/s’,
respectively.

4 3
zed is also known as column.




5.1 Case 1: Pareto-based GA

(a) Breeder Genetic Algorithm (BGA) operators

The three BGA recombination operators namely, discrete, extended intermediate and extended line
recombination operators are experimented to determine the best among them. Crossover probability
is set to (pcross = 0.9). The performance for BGA genetic operators are shown in Table 5.1. The
results are obtained by using a population size of 200 and 100 as the maximum number of
generations.

Table 5.1: Results From BGA Genetic Operators

Minimum Time(sec)
Discrete Recombination 4.3381
Intermediate Recombination 4.1497
Line Recombination 4.0854

(b) Path redistribution-relaxation operator

The path redistribution-relaxation operator is used with a different population size, and 0.9
crossover probability. The injection rate adopted [4] is 10% of the population size while in this
simulation, the injection rate is 2.5%. The results for 100 generations with different population size
are shown in Table 5.2.

Table 5.2: Results For Path Redistribution-Relaxation Operator

Population Size - Minimum Time(sec)
100 3.9530
200 3.9335
300 3.9049

(c) Comparisons

From the above case studies, one can conclude that the extended line recombination operator is the
best among the three BGA genetic operators and the path redistribution-relaxation operator
performs better than the BGA recombination operators. A further simulation is carried out for 300
population size and 500 generations with crossover probability of 0.9 and injection of 8 new
trajectories in each generation. The results are shown in Table 5.3, indicating improved optimisation
with larger population and generation for both BGA and redistribution-relaxation operators.
However the results also show that the redistribution-relaxation operator still produces the best
motion time (smallest) with bigger population and generation.

Table 5.3 Path Redistribution-relaxation operator.vs. BGA Recombination Operators

Path Redistribution- Line Recombination Discrete Intermediate
Relaxation Recombination Recombination
3.8743 sec 3.8894 sec 4.0144 sec 4.0404 sec

(d) Truncation selection

To complete the study of the BGA operators, truncation selection has been tested with the
consideration of sharing but without mating restriction. Hence, T % best rank individuals are
selected and mated randomly in each generation to produce the new population. The smallest time
trajectory will remain in the population. The results shown in Table 5.4 are obtained with a 200
population size and 100 maximum generation. 7% is chosen in the range of 10-50% [10].
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Table 5.4 Performance of the BGA Operators Without Mating Restriction

Truncation Discrete Intermediate Line
Threshold - | Recombination | Recombination Recombination
Percentage(7T %) (sec) (sec) (sec)
10% 4.0404 4.0884 4.0373
20% 4.4436 4.1031 4.0817
30% 4.2443 . 42164 4.0648
40% 4.2344 4.2160 4.1575
50% 4.7487 4.1698 4.1319

The results above show that by using truncation selection, the motion time is better than the ones
without it if the threshold percentage is small for recombination (note Table 5.1). However the time
obtained by redistribution-relaxation operator is still better than the one by truncation selection.
Table 5.4 also shows again that extended line recombination is indeed the best BGA operator for the
minimum time motion planning problem for non-mating environment.

. 5.2 Case 2: Pareto-GA vs. Flexible Polyhedron Search
The optimal paths reported in Table 5.3 are fed into the FPS program, and the outcome is given in
Table 5.5. While the GA yielded better optimisation of time, the procedure did require longer
computation time than the FPS.

Table 5.5 Pareto-based GA vs. Flexible Polyhedron Search

Operator Responsible for Minimum Time(sec) Results from Flexible
the Optimal Path Obtained from Section Polyhedron Search
5.1.2 Method(sec)

Path Redistribution- 3.8743 4.4870
Relaxation

Line Recombination 3.8894 4.1253
Discrete Recombination 4.0144 ~ 4.1325
Intermediate Recombination 4.0404 4.1141

5.3 Case 3: Weighted-Sum GA

(a) Normalised formulation

Several combinations of weights have been tried and the results for 200 population size for 100
maximum generation are listed in the following Table 5.6. Only path redistribution-relaxation
operator has been applied in the tests for weighted-sum GA.

From the results shown in Table 5.6, when compared to redistribution-relaxation operator of Pareto-
based GA (refer Table 5.2) under same population and generation size, the optimum motion time
produced by Pareto-based GA has a slightly more optimal (3.9335 seconds). Weighted-sum GA
using the weight of 0.1, 0.0 and 0.9 managed to obtain the best motion time of 3.9531 seconds.
However, this result actually considers only two objective functions, and can not be used to
compare with the results obtained using Pareto-based GA. In this case, the best motion time for
normalised weight is 3.9570 seconds, obtained using the weight of 0.3,0.3 and 0. 4 for w;, w, and
w3 respectively.




Table 5.6 Results for Normalised Formulation

Weights(w;.wo,w3) | Minimum Time(sec)
(0.1,0.1,0.8) 3.9804
(0.2,0.2,0.6) 4.01006
(0.2,0.6,0.2) 4.0044
(0.6,0.2,0.2) 40124

(0.05,0.15,0.8) 4.0121
(0.1,0.0,0.9) 3.9531
(0.1,0.8,0.1) 4.0109
(0.8,0.1,0.1) 3.9673
(0.3,0.3,0.4) 3.9570
(0.3,0.4,0.3) 3.9628
(0.4,0.3,0.3) 39875
(0.5,0.2,0.3) 3.9807

The effect of the different number of generations is indicated in Figure (2), while Table 5.7 shows
the effect of changing the size of the genetic population.

Figure (2): Generations size vs. motion time
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Table 5.7 Effects of Different Population Size*

Population Size Minimum Time(sec)
100 4.0149
200 3.9804
300 3.9630

* Results obtained are using weight of (0.1,0.1,0.8) and 100 generation size.

(b) Non-normalised formulation

A set of non-normalised weights are also simulated. The results obtained when considering
different combinations of weights are shown in the following Table 5.8, and show no motion time
improvement in comparison with the normalised approach.




Table 5.8 Results for Non-Normalised Formulation®

Weights(w,07,03) Minimum Time(sec)
(400,200,400) 3.9984
(0.01,30,4000) 4.0057

(0.001,0.008,0.001) 4.0075

(5,4,1) 1 4.0260
(5,4,20) 3.9881
(5,1,20) 3.9441
(5,10,20) 4.0000
(5,0,20) 4.0066
(5,2,20) 3.9485
(4,1,20) 4.0209
(6,1,20) 3.9847
(8,1,20) 4.0034

* Results obtained are using 200 population size and 100 generations

(c) Choice of weights

Moving from one set of weights to another may results in skipping a non-dominated point. In other
words, it is quite possible to miss using weights that would lead to an extreme point (optima).
Consequently, the most that should be expected from the weighting method is an approximation of
the non-dominated set. While this approach may yield meaningful results only when solved many
times for different values of weights, the results reported in this Case show the difficulty of realising
a solution. Normalised formulation has narrowed down the scope to search for the appropriate
combination of weights, but the range of joint travel time is only an approximation.

6 CONCLUSIONS
In comparing between the Pareto GA, Breeder GA, Weighted-Sum GA and the Flexible Polyhedron
Search, the following points were observed.

1. The customised path redistribution-relaxation operator has produced the best
performance in the case studies amongst all tested operators, supporting the opinion to
custom-build operators to the requirements of an application. '

2. Breeder GA operators can perform better in non-BGA environment (e.g. truncation
selection environment).

3. Results produced by weighted-sum GA depends on the weight given to the objective
function, generation size and population size. Hence there are too many parameters to be
tested to obtain an optimum solution. The difficulties with setting these initialisation
parameters are high and time-consuming.

4. Both GA methods, weighted-sum and Pareto-based, require significant amount of
processing time to obtain the optimum motion time, while FPS requires much less
computations.

5. Pareto-based GA appear to have an edge in optimisation over weighted-sum GA,
because it can produced a better optimum motion time (though small in comparison)
using smaller generation and population sizes.

6. The optimality of the motion time is improving with population and generation size.
However, a compromise is needed to ensure limiting processing time for complex cases.

Further investigations are in progress.
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