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Abstract

- This paper presents a detailed analysis of a motion

planner based on genetic algorithms for collision free
motion planning of robotic manipulators through
simulation. The problem is formulated for a 2-DOF
planar manipulator moving in the presence of a static
circular obstacle in its operational space. The algorithm
is then extended to 3-DOF planar. manipulator moving
among multiple static obstacles. = -

Key words: Genetic algorithms, robotic manipulators,
optimised collision free motion planning.

1. Introduction

Robotic manipulators are used in the industry to achieve
more versatility than hard automation, which refers to
the use of special purpose machines built to perform
predetermined tasks. Once the robots are not needed for

a particular task any longer, they can be reprogrammed -

and used for another task. Most of the tasks in industry
are repetitive pick-and-place operations. At the present,
in most of the cases the reprogramming of robots is done

by the operator by guiding the robot through a sequence
of points in its workspace and storing this sequence in
the memory. However, for an intelligent robotic system,
it is desirable that the robots work within a certain
degree of autonomy without human supervision. For this
purpose, an algorithm for evolutionary optimisation of
robot paths is presented.

The planning of geometric path for a manipulator in the
presence of obstacles in the environment is a search
operation. Monte-Carlo techniques have proved to be
very powerful methods in searching for good solutions in
large, complex search spaces, such as the motion
planning of a high degree-of-freedom (DOF) robotic
manipulator moving in an environment filled with
obstacles (Barraquand and Latombe, 1990). Genetic
Algorithms (GA's) are also a guided random seaxzh
technique, and they show better results than conventional
hillclimbing methods when applied to this problem
(Chen and Zalzala, 1995; Cleghorn et al.. 1988).

Generations of trajectories for robotic manipulators is an
order dependent process. Therefore, the representation of
the path of the robot using GA's is slightly different from
conventional coding to preserve the order of the process.

The details of the neural networks-based collision
detection engine and evolutionary algorithm being
analysed in this paper can be found in Rana and Zalzala
(19935, 1996). These details will not be repeated here, but
a brief discussion of the evolutionary algorithm will be
given only.

2. Problem Formulation

The path planning is carried out in configuration space
of the manipulator. The entire path of the robot is
considered simultaneously as a string of via-points
{Py:Pys---Pys----Py} Joining the initial configuration p, and
the final configuration p,, where p, is the ith via-point
given by the ordered pair (8,.6,) and N is the total
number of via-points on the path. These via-points are
then fitted with parametric cubic-splines. Repeated
modification is carried out to the position of the via-
points through an evolutionary search to find a collision
free path.

3. Collision Detection

In order to determine collision between the manipulator
and the static obstacles, both the manipulator and the
obstacles are approximated with touching circles
(Beaumont and Crowder, 1989). The distance between
the centres of these circles and the static obstacles is
checked. If this distance happens to be less than the sum
of the radii of the circles, the manipulator is colliding
with the obstacle. Otherwise, it lies in the free space. An
altzrnative to this is to use neural networks for collision
detection (Rana and Zalzala," 1996). The input to the
neural networks is the joint-angles of the manipulator,
and the output varies between O and 1, depending upon
whether the manipulator lies in free space or is colliding
with the obstacle.




4. Evolutionary Program for Motion
Planning of a 2-DOF Planar Manipulator

The details of this algorithm can be found in Rana and
Zalzala (1995). However, a brief discussion is given for
the benefit of the reader.

4.1 Encoding of Paths as Strings

For N via-points, the paths are encoded directly as
chromosomes of the evolutionary program as

DIEPZE Epl-lzplsphl.: EF’N-x (M

where p; is the vector forming the ith gene in the
chromosome, and represents the ith via-point on the path
in the configuration space of the manipulator, and : is
the concatenation operator. Thus, each gene in the
chromosome consists of a vector with floating point
components.

4.2 Fitness Function

Different objectives to be minimised by the evolutionary
algorithm are

C,= penalty on the length of the path in
configuration space.

C,=  Penalty on the uneven distribution of via-points
on the path.

C,= Penalty on collision with the obstacles.

The penalty on collision between the manipulator and
the obstacles is given by -

G, =max(K,); i=1,2,..,(N-1); @

is generated by using the neural networks, it is referred
to as neural networks collision function, and is given by

N=l

C=2.K @
where K is the output of the neural networks for ith via-
point.
The fitness function is formulated in two ways:

(i) Linear combination of objectives

(ii) Prioritization of objectives
(i) Linear Combination of Objectives

The objective function which is to be maximised is given
by a linear combination of objectives as
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where k,, k, and k, are positive constants and EYT—
Comerage A4 g, are the averages of the penalties on
path length, the uneven distribution of via-point on the
path and collision with the obstacles, respectively,
calculated for the initial population at the beginning of
the search. The fitness f.action is again formulated in
two ways. In the first case, the fitness function is
formulated as

C .~ ifg<C
0 otherwise
where C__, is a positive constant. It may be pointed out

that if the hard threshold collision detection is chosen,
then the maximum value of C, would be 1, so the value
of C is taken to be equal to 1 in order to give it the

2average

. _where

) _ . _ same weight as the other objectives. The normalisation
if the manipulator collides with the of all the penalties by dividing them by their respective

obstacle in the ith configuration 3)

-\\\- K_ . 1
\ i 0

otherwise

This function is referred to as hard-threshold collision
furiction. The reason for this is that it only tells whether -
the manipulator is colliding with the obstacle or not, and
does not give any information as to how far the
manipulator is from the obstacle. The value of the
function steps from 0 to 1 when the manipulator moves
from free space into the c-obstacle without a gradual
slope. If neural networks are used to map the collision
between the manipulator and the obstacle in
configuration space, they provide not only the
information about whether the manipulator is colliding
with the obstacle or not, but also give a gradual slope
when the manipulator moves from the c-obstacles to free
c-space. If this component of the entire objective function

initial averages provides with a way to visualise the
weight associated with each penalty easily, thus making
it easy to choose the values of k,, k, and k; The value of
k, is kept relatively higher, since collisions are to be
avoided at all costs. The value of k, on the other hand is
kept very low, since the via-points are redistributed
evenly by one of the operators (the redistribution
operator) in the algorithm. The value of C_,, is chosen so

that it is higher than the expected value of g at all times.

One protlem associate with the selection based on this
type of fitness function is that a string with a relatively
higher fitness could entirely fill up the entire population
very quickly, thus resulting in a premature convergence
of the algori.am to a sub-optimal solution. To counter
this problem, a ranking of the population has been
investigated, in which the strings in the population are
not chosen according to their fitness value, but according
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- Where C,

to their rank among the population. This rank of an
individual depends upon its fitness in a descending order
in the population. A linear ranking has been used, in
which the rank varies from a maximum value to a
minimum value linearly (Chipperfield et al., 1994).

(ii) Prioritization of Objectives

Among the three objectives defined which are to be
minimised by the algorithm, the collision avoidance is a
constraint, whereas the other two objectives, i.e. penalty
on the path length and penalty on the uneven distribution
of via-points are the objectives which are to be
minimised. One way to handle these two different types
of objectives is to formulate a fitness function which
depends on the priority of the objectives. Highest priority
is assigned to the collision avoidance, and minimisation
is performed first on this objective. The other objectives
are minimised at a lower priority. The fitness function is

defined as
kl Ci - Cﬂ' + k: Cz kz C!
Cla-remge = C.n C:a'nrage Csavemge

(™)

is the length of straight line path in
configuration space between the initial configuration and
the final configuration. Fitness function F is defined by
(6). The value of %, is kept higher than that of both %,
and k, to give it a higher priority.

3
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4.3 Generation of Initial Population

The initial population is generated at random for the

__evolutionary algorithm to work with. This is done by

fitting Bezier curves between the initial and the final
configuration at random, and then distributing the via-
points over these curves-at equal distance.

4.4 The GA Operators

The following four operators are used in the evolutionary
algorithm:

a. Reproduction: The strings are reproduced for the
next generation based on their fitness function. A
weighted roulette wheel is used to select the strings from
an old population for a new population.

b. Cross-over: The individuals in the population
reproduced from the old population based on their fitness
are grouped at random into pairs of parent strings. Same
cross-over site is chosen at random among two parent
strings. A cross-over is then performed by switching
position of the via-points between this site among the

two parent strings to produce two off-spring strings. This
operation is carried out with a certain probability and
only if the distance between the cross-over sites is less
than a certain value.

c. Redistribution: The via-points are fitted with
parametric cubic splines and then redistributed over
these splines at equal distance to make the distribution
gven.

d. Relaxation: The path is then made to behave like a
stretched string and relax under the strain.

e. Mutation: In order to carry out the mutation (which is
done at a probability of mutation_probatility) any gene
(via-point) in the chromosome is selected, and random
values within a specific range are added to all the
components in the gene.

f. Regeneration: New trajectories are generated and are
injected into the population after every generation,

5. Simulation Results

Different simulations were carried out for the path
planning algorithm. Detailed tests were performed to
analyse the performance of the algorithm for the simple
case of a single 2-DOF planar manipulator fiist, and
effect of variation of different parameters in the
evolutionary program were observed. Then the
simulations to the extended case of a 3-DOF planar
manipulator were performed. This section gives the
results of these simulations.

5.1 An Analysis of Results to Evaluate the
Performance and Working of the Evolutionary
Program

It is possible in conventional GA's to explain their
working through a 'schemata theorem'. But this is only
possible in very simple cases. If the GA becomes
complex, its working cannot be explained in terms of the
schemata theorem. For evolutionary program presented
here, which does not work in a binary space but directly
in the problem space of the manipulator, this theorem
cannot be applied at all. Hence the only way to evaluate
the performance of the program is through experimental
analysis. This section presents the results of the
experimental tests to which the evolutionary program has
been subjected.

The problem is checked for a single 2-DOF manipulator
in the presence of a static circular obstacle first. The
length of each link is considered t¢™oe 2 units, with the
base of the robot located at (3.0, 0). The centre of the
circular obstacle with a radius of 0.25 units is located at
(3.0, 2.75).




Table 1. Parameters for the evolutionary program to
plan motion of 2-DOF planar manipulator.

Population size | 18
Number of via-points ‘ 30
Number of strings passed on to the next generation 1
without cross-over

Number of new individuals generated during each 2
generation

Number of iterations for which the 4
redistribution/relaxation operator is applied

k, -Weight associated with penalty on length 1.5
k,-Weight associated with penalty on uneven distribution 1.0
of via-points over the path

kq-Weight associated with penalty on collision 0.1
C,...-Constant used in linear combination of the 5.0
objectives

Cross-over distance 1000.00
Cross-over probability 1.0
Mutation Probability 0.01
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Fig. 2. Paths of—the manipulator planned in
configuration space by using hillclimbing
technique, heuristic method and evolutionary
algorithm.

Performance and Working of the Evolutionary
Program

The evolutionary program is examined to find out
whether it works for different random walks for a set of
parameter values given in Table 1. Figure 1 shows the
best fitness and average fitness for the same problem (for
the path planned betveen the initial configuration of (45
°,225°) and final configuration of (135°135°) in
configuration space) for 20 different random walks. It
has been observed that the standard deviation is less than
5.6% of the total change in the value of fitness function,
indicating that the experiments are repeatable. Thus it

fitness value
w
L

S . i . L " i L .
0 10 20 30 40 50 60 70 80 20 100
generations

Fig. 1. Profile of best fitness and average fitness for the
collision free path of a single 2-DOF manipulator
in the presence of a static circular obstacle.
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3. Path of the manipulator in operational space
planned by using the evolutionary algorithm.

can be said that the algorithm is abie to find out the
solution successfully.

Figure 2 gives the planned paths in configuration space
for the same problem by using the hillclimbing
technique, the heuristic method (Rana and Zalzzla,
1996) and the evolutionary program for the sake of
comparison. It can be observed that the hill-climbing
method fails to find a solution. The length of the path
planned by using the heuristic method is 302.9° and the~
length of the path planned by using the evolutionary
program is 281.74°, since the path planned by the
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evolutionary algorithms is optimised in terms of path
length. Figure 3 gives the path of the manipulator in
operational space.

Experiments for Parameter Optimisation

The parameter set given in Table 1 is chosen and
variation in the value of different parameters is made.
The following tests have been carried out:

TEST #1; Different formulations of fitness function and

the effect of variation in different parameters in the’
fitness function. '

Two different formulations for the fitness function as
described in section 4.2 were tried out to check the
performance of the path planning algorithm. Both the
ranked population and un-ranked population was
considered in linear combinations of the objectives as
well as the prioritazation of the objectives. The results of
the simulations are shown in Table 2. The problem
chosen was the same as that given in the previous
section. The results represent the average taken over
twenty trials for different random walks. They show the
final fitness function after 100 generations, the standard
deviation and the number of generations it takes to get to
90% of the value of fitness to which the aigorithm finally
converges. The objective representing the penalty on
collision with the obstacles is formulated in two different
ways, and the true fitness values used in the algorithm
cannot be compared with each other under different
formulations. Instead, a performance measure is
formulated. Its value can go up to 100, and represents a —
linear combination of the path length and the uneven

distribution of the via-points over the path.

performance=100-| k, i +k, G %100
Clamage Ccherage

(8

TEST #2; Variation in population size

The effect of variation of number of individuals in the
population was considered. The results have been
tabulated in Table 3.

TEST #3; Variation in the number of new trajectories
generated

" The third test that was carried out analysed the effect of

variation of number of new trajectories imported into the
population. The simulation results are given in Table 4

TEST #4: Number of cross-over poin

Effect of the number of cross-over sites during each
cross-over operation was considered. Three different
cases were considered. In the first case, only a single
cross-over point during a cross-over operation was
considered. In the second case, two cross-over points
were considered. In the third case, the number of cross-
over sites was not fixed, but it could vary randomly from
one to a maximum of N-/, where N is the number of via-
points in the string. The results after 150 generations are
given in Table 5.

TEST #S5: Variation in the cross-over distance

Variation in the cross-over distance was considered in

Table 2, Results of simulations for different combinations of objective functions

Linear combination of the objectives Prioritization of the objectives
- Hard threshold Neural networks Hard threshold Neural networks
unranked | ranked unranked | ranked unranked | ranked | unranked | ranked
Fitness 29.87 31.52 30.47 30.71 31.01 31.16 32.79 31.20
L Standard deviation | 5.96 3.64 3.20 1.79 4.09 2.66 191 2.51 - -
9&?2;%? Btl?u 37 28 32 30 28 22 21 23

Table 3, Results of simulations with a varation in the number of individuals in the ulation
Population Size 4 . 6 8 10 12 18 24 30 40 50 76
Fitness 4052 | 4266 | 4272 | 4340 | 4295 | 4.294 | 4308 | 4344 | 4377 | 4.382 | 4399

Standard Deviation + 0119 | 0.084 | 0.084 | 0.062

0.072 | 0.073 | 0.042 | 0.020 | 0.031 | 0.018 | 0.024

Convergence to 90% | 49 26 35 22
of the final value

26 37 30 32 25 27 36
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Table 4, Results of simulations with a variation in the

Table S, Simulation results for variation of number of

number of new trajectories generated in each generation. CrosS-OVer sites,
.Number of new 2 4 6 8 12 18 Single cross- | Double cross- Multiple
trajectories generated over over cross-over
Fitness 4294 | 4257 | 4233 | 4186 | 4087 | 4.106 Fitness function 4.344 4.264 4283
Standard Deviation 0.073 | 0.057 | 0079 | 0.108 | 0.166 | 0.070 Standard deviation 0.020 0.042 0.056
Convergence to 0% | 34 15 24 10 10 3l Convergence to 90% 32 4 a6
of the final value of final value
obstacles and the manipulator was checked by

the fifth test. The results showed that the only difference
that increasing the cross-over difference had was that the
algorithm converged to the final value earlier (40
generations for a cross-over distance of 1000 as
compared to 65 generations when this distance is 10).
There is no significant difference in the final value of the
fitness reached or the standard deviation from the
average value.

TEST #6: Variation in the cross-over and mutation
probability

Variation in the cross-over probability and the mutation
probability was considered in the sixth test. The results
indicated that if the cross-over probability was decreased,
there was no effect on the final fitness, but the number of
generations it took the algorithm to reach the final value
was increased with a decrease in this probability (35
generations with a probability of 1.0 as compared to 45
generations with a probability of 0.5). The mutation
probability did not have any considerable effect on the
performance of the algorithm at all.

5.2 Simulation Results for 3-DOF Planar Manipulator

with Five Static Obstacles in the Workspace

Finally, the behaviour of the algorithm was checked
when extended to 3-DOF planar case with five obstacles
in the workspace. Each link of the manipulator was
considered to be of unit length. The rectangular obstacles
were enclosed by circles, and the collision between the

a

. Table 6, Parameters for the Evolutionary Program for
a 3-DOF planar manipulator moving in the presence of

static obstacles.
k, 1
k, 0.25
k. 1.0
G 6
population size 100
new trajectories 2 -
keep best 7 1
cross over distance unlimited
cross over probability 1.0+
mutation probability 0.01

determining the minimum distance between the centre of
the circles and the links of the manipulators. Different
parameters of the evolutionary program are given in
Table 6. Figure 4 shows the motion of the manipulator in
which the path planning algorithm fails to find a
collision free path when the penalty on the uneven

y-axis

Fig. 4. A case showing the failure to plan collision free
path when penalty on uneven distribution of via-
points on the path is not considered.

y-axis
o
T

i T R B
Fig. 5. A collision free path for a 3-DOF planar
manipulator moving in the presence of multiple
static obstacles in the operational space.




distribution of the paths is neglected. This case occurs in
one in twenty runs of the evolutionary program. Figure 5
shows a sample collision free path of the manipulator in
operational space when this penalty is taken into
account. The success rate in this case is 100%. This
compares to a success rate of only 60% for twenty tnal
for a similar evolutionary algorithm (Doyle, 1995).

5.3 Analysis of the Results

The simulation results highlight the effect of variation of
different parameters of the algorithm. It is indicated that
formulation of optimisation problem subject to
constraints as Pareto-based optimisation (Fonseca and
Fleming, 1995) using neural networks shows better
- results than that in which it is posed as a non-Pareto
based optimisation, i.e. when hard-threshold collision
detection function is used. Moreover, ranking of the
population gives better results. Prioritization of the
objectives also gives better results than that in the case of
linear combination of the objectives, but ranking the
population when neural networks are used actually
decrease the efficiency of the algorithm. The variation in
population size indicates that even though better results
are achieved by increasing the population size, the
algorithm works quite well with even very small
population sizes. Increase in the number of new
trajectories imported into the population after every
generation decreases the value of final fitness achieved,
but not using this operator altogether decrease the
flexibility of the algorithm, and hence it does not show
good results for small population sizes. By limiting the

cross-over distance, the convergence to the final value -

becomes slower, but the effect on the final value of
fitness achieved is not significant. The mutation rate
does not have any effect on the algorithm at all, showing
“that this operator is not needed, since the importing of

new trajectories into the population fulfils the purpose of

this operator. —_

6. Conclusions

The analysis of an evolutionary algorithm for optimised
motion planning of robot manipulator is presented. It is
indicated that even though the variation in different
parameters of the algorithm have some effect on the
efficiency, this is not significant. This shows that the
algorithm is quite robust to the variation in the values of
these parameters. Problem-domain knowledge has been
incorporated in the genetic-based search, and operators
have been introduced (the redistribution and the
relaxation operators) which do not directly correspond to
any operator in natural evolution. The algorithm can
work quite well with very low population sizes, and
converges more quickly than conventional GA's. Hence

it is computationally less intensive. It has also been
indicated that this algorithm can be extended to more

~complex cases by extending it to the case of a 3-DOF

planar manipulator moving amongst multiple static
obstacles.
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