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Comparisons of Case Studies for Optimised Robot Motion

A.M.S. Zalzala and Q. Wang
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Abstract: The purpose of this report is two fold. In addition to addressing the
formulation of a dynamic scaling approach for use in a genetic-based robot motion
planner, the report presents comprehensive comparisons between genetic motion
planners and other heuristic/dynamic control methods.  The simulations show
favourable efficiency and motion optimality in applying the genetic approach for both
two and six degree-of-robot arms.

1. INTRODUCTION

A well established approach for robot motion planning employs an exhaustive heuristic technique to
search the work space of the arm. The main idea of the algorithm is to tessellate joint space into a grid of
possible motion nodes where at each option node, given the position and velocity at the previous node,
possible velocity values are constrained by the dynamics of the arm. The most comprehensive
formulation is reported by Sahar and Hollerbach (1986), where the full dynamic model of a manipulator
and actuator torque limits were both taken into consideration in arriving at the time-optimal trajectory.

However, the complexity of this approach is O(4"), n being the grid size, which results in very heavy

computational burden for on-line operation. This estimation is given for 2-joint arms only with a simple
tessellation (only three directions are allowed to move from each node). Therefore, the complexity of the
approach increases exponentially with the number of joints. Another shortfall of the method is that it
neglects the important effects of path curvature (Shiller and Dubowsky (1989)). Here the authors solved
the problem by a new scheme to generate the paths. Like Sahar and Hollerbach (1986), tessellation of
the joint space is used. However, there is no intention to snap to the grid. Smooth path is generated with
brief reference to the tessellation grid with respecting to zero initial and final velocity requirements.

The Robotics Research Group at the University of Sheffield has been involved in extensive
investigations of the potential use of genetic algorithms in the motion planning of robotic systems (both
off-line and on-line) [1-9]. In an initial assessment [1,2] it was reported that for a grid size of 10x10, the
search time for the exhaustive method took more than twenty hours on a Unix based workstation while
GAs only took about one hour. Past work by the authors has led to the formulation of an efficient genetic
optimisation method implemented for the PUMA 560 arm. The formulations are reported earlier [7-9]
including an actual implementation in real-time [6].

In this report, simulation results of the genetic-based motion are compared to results given by earlier
published work by other researchers. In addition to [...] above, the work of Dissanayake et al (1991) is
considered where a theoretical control approach with some computational techniques is used. Like many
conventional numerical methods, the technique proposed takes up an excessive amount of computing
time. Much better results with much less computational cost can be achieved using the genetic-based
search method with a simple heuristic. technique, as reported here.

2. THE MATHEMATICS MODEL OF THE ARM
In Fig. 1, [, and , are the mass centre distances, /,and I, are the inertia of link 1 and link 2 around

their mass centres respectively and m, is the payload which is zero in this simulation. The Lagrange-
Euler equations can be expressed by a simplified formula as follows:




7, = (d, +d, cos(8,)) 81+ (d, + d, c0s(6,)) 0z d, sin(6,) 82— 2d, sin(6,)6, B2+ d, cos(8,) + d, cos(4, + 6,) )

1, = (d, +d, cos(6,)) 0+ d, 02+ d, sin(6,)0, + d, cos(8, +6,)

In equation (1), 7, and 7, are joint torques, &, and &, are joint angles (please note that g is also used as
joint angles in this paper). Where d, to d, are constant parameters. Both Coulomb and viscous friction

are not taken into account for each joint. Table 1 shows two set values for the parameters in equation (1),
as reported by Sahar and Hollerbach (1986) and Dissanayake et al (1991).
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Fig.1. The 2 DOF manipulator used for simulations

Table 1. Parameters of two arm models

d, d, d, d, d, d,

Sahar et al (1986) 20.5 1.5 4.875 3.75 269.5 733

Dissanayake 0.32 0.08 0.12 0.04 0.0 0.0
(1991)

3. THE DYNAMIC SCALING SCHEME

First formulated in Hollerbach (1984), this is a scheme which makes most out of the joint actuator’s
capability. When torque values are smaller than their assigned bounds, motion should be speeded up,
whereas when any one of the torque values exceeds its bound, motion should be slowed down to avoid
violating the actuator’s limitations. Thus, by intuition, one can deduce that at least one of the joints is at
its bound all the time to obtain the quickest motion. A corner smoothing heuristic technique to help the
time-optimal search was presented in Sahar and Hollerbach (1986) by which the direction, but not the
magnitude of the velocity vector at the corner point was re-defined. This technique contributed to some
extent to forcing a nearly straight-line solution in joint space, which is particularly true if an additional i
penalty were placed on the redefinition of the velocity at a corner point. i

A heuristic is introduced in this report in order to speed up the search. The technique is based on the
assumption that, during the whole motion, the joint torque only switch once. This is true for free motion
where the shape of the Cartesian space trajectory is of no particular concern. A population of trajectories

is generated by the formulated genetic method, forming the trajectory chromosomes. From these § l
o . . . . . ]

trajectories, it is possible to calculate the travel time required for each of them by the dynamic scaling v |
scheme, as summarised by the following steps. a
i

1. For a particular trajectory, the average velocity and acceleration of the jth segment are
calculated as
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where A, is the joint angular displacement of jth segment, h, is the time interval chosen before
the dynamic scaling (equals 1 for sake of simplicity), while v _, is the final velocity of the

previous segment (not the average speed). These calculations are carried out for all joints.

2. The joint torques 7 can then be calculated using the dynamics equation (1) for the two DOF
arm (or higher such as the PUMA). The'dynamic scaling scheme is then used to find the more
suitable time interval:

(h)) (7, —@)+h,QHv, )=[(h ) (r-g)+2h, Hv ]=0 4)
where 7, is the vector of given torque bounds and g is the gravitational torque but not the
gravity constant (refer to Sahar and Hollerbach (1986)).

3. Solve for each of the bounds (for all joints) to find all possible new time intervals Caution is
in order in the solving of quadratic equation (4) where if both solutions are valid (i.e. larger
than zeros), the smaller value should be chosen. The bound is deemed not possible if both
solutions are invalid.

4. The new torque 7 for the new time interval can be found out by scaling the old torque 7 as

follows:
s

h h —h,
r=| L] (r=g)+ gud=——2Hay (5)

h (h,)*

)

5. From the time/torque combinations that do not exceed the bounds, choose the shortest time
interval for jth segment if / is smaller than the switch position for acceleration. Ifj is larger, the
largest time interval should be chosen among the possible time intervals to indicate deceleration.
This heuristic approach, in the authors' experience, is necessary in helping to bring down the end-
velocity to near zero and increase the search speed, as there is no time spent in a sorting loop.

6. Recalculate the average velocities and accelerations from equations (2,3) using the new time
interval.
7. The new permitted velocities at the end of the current segment can be calculated based on the

previous value of the former segment v _,, current segment acceleration 6, and the new time

interval A,

248

s hj
8. Repeat the above steps until j=n-1.

=

Y= O, hi+v,, = Vi (6)




For the last segment, special attention should be paid in order to bring down the end velocity to zero.
From equation (6), the last time interval should be

- 2A68

hn =—2=

v

n-1

to ensure v, to be zero. If A, is larger than zero, and the resulting torques are within their bounds, no
dynamic scaling is necessary for the last segment.

4. SIMULATION RESULTS

Detailed simulation results are presented for Dissanayake et al (1991) case 1, Sahar and Hollerbach
(1986) case 1 and a real industrial robot arm, the PUMAS560. Since the available literature reports results
for the 2-joint robot only, no comparisons are included for the PUMA.

4.1 Detailed results for Dissanayake — case 1

In this simulation case, gravitation is not taken into consideration. ~ The joint actuators’ bound torques
are: (+£10;+10). The maximum generation size was chosen as 600. The best objective found was
0.4046 seconds at iteration 462. The best switch position was found to be near the middle of the time
axis of the grid. Total search time was around ten minutes on the Unix workstation.
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Fig. 8 shows the joint accelerations, while Fig. 9 shows the joint velocities. Note that the end speed are
all almost zeros.

Initial positions Final positions
& By 8, 0, Reported Authors'
(RAD) (RAD) (RAD) (RAD) results results
Case 1 0.00 -2.00 1.00 -1.00 0.6711 0.4046
Case 2 1.00 -1.00 0.00 -2.00 0.6732 0.4123
Case 3 1.32 -2.64 2.80 -2.37 0.6404 0.3970
Case 4 2.80 -2.37 1.32 -2.64 0.6185 0.3927

Table 2. Comparison between the authors' results and Dissanayake (1991)

As indica.ted in Table 2, the proposed GA method provided enhanced planning results for all the cases.
Table 3 lists the numeric values for the near time-optimal motion for the two DOF arm, as presented by
the Matlab plots. Interested readers may verify this results by using the Runge-Kutta routine in Matlab

to calculate 6,6,,6,,6,,6,,6, from the dynamic model (equation (1)) by inputting torques 7, 7.




Sahar & Hollerbach Case 1
time 7, T,
(sec)

0.0000 342.596 | 100.000
9 0

0.0904 342.596 | 100.000
9 0

0.1726 350.000 | 9].3407
0

0.2499 340.402 | 100.000
6 0

0.3226 317.927 | 100.000
4 0

0.3908 293,877 | 100.000
8 0

0.4543 338.864 | 100.000
7 0

0.5144 350.000 | 19.6761
0

0.5634 350.000 | -61.0798
0

0.6148 350.000 | -67.0696
0

0.6684 350.000 | -46.8678
0

0.7256 350.000 | -9.6502
0

0.7856 350.000 | 11.6812
0

0.8457 350.000 | 33.0049
0

0.9003 -350.000 | -41.2388

0.9552 -288.104 | -36.8233

1.0218 -288.104 | -36.8233

Table 3. Numeric values of the optimal motion

Dissanavyake et all Case 1
time % 7,
(sec)
0.0000 10.0000 | 1.1693
0.0327 10.0000 | 2.4618
0.0633 10.0000 | 3.1359
0.0918 10.0000 | 4.7744
0.1182 10.0000 | 5.7809
0.1425 10.0000 | 7.8743
0.1649 10.0000 | 9.0302
0.1855 7.9105 | 10.0000
0.2045 -10.0000 | -0.8503
0.2236 -10.0000 | -3.3573
0.2444 -10.0000 | -4.5338
0.2669 -10.0000 | -6.1837
0.2912 -10.0000 | -6.6723
0.3173 -10.0000 | -7.6511
0.3451 -10.0000 | -8.0005
0.3745 -10.0000 | -9.1439
0.4046 -10.0000 | -9.1439

4.2 Detailed results for Sahar and Hollerbach — case 1

The joint actuators’ bound torques are set at (£350;

+100) and the dynamic model is presented earlier.
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Initial positions Final positions
8,y &y a,, 6, Reported Authors'
(RAD) (RAD) (RAD) (RAD) results results
Case 1 -0.50 -1.00 0.50 1.00 0.8360 1.0218
Case 2 0.00 0.00 -1.05 2.10 0.5250 0.5170

Table 4. Comparison between the authors' results and Sahar & Hollerbach (1986)

Figs. (8-13) show the simulation results for two DOF robot arm but with different dynamic parameters
from the last section, and Table 4 lists simulation results for two cases. It can be noted from the figures
that the near minimum-time motion is searched at generation 240, which only takes about five minutes on
the workstation. Fig, 10 shows that the time-optimal motion is far from a straight line. The switch
position is this case was found to be 14.

4.3 Detailed result for PUMAS60

In this section, simulation results are reported for the PUMA 560 arm considering different objective
functions. The start and end positions used, also the boundary torque information, in all seven case
studies for all six joints are given in Table 5.

Tomt1 |Joimt2 |Joint3 |Joint4 |[Joint5 | Joint6
Start -0.3 0.4 -0.18 0.0 -0.05 | 0.05
End  |051 |-042 058 087  |064 084
Boundary | +97.6 +186.4 +89 4 4242 +20.] +97.6
_Torque

Table 5 Trliliérmotiolnh start and end points (radi"z;;s_)

The first case study considers time optimisation with velocity constraints, and the best objective value
was 0.431 seconds. Although the discrete path points have been acquired using the genetic algorithms, a
spline technique (straight line linkage is the simplest linear method) has to be used to link these points
together so as to provide the joint angular information in every 28 ms or other interfacing period e.g. 1.75
ms for experimentation.

Case | Grid Optimisation Criteria Parameters | Motion
no. size Time | Torque Velocity Time
! constrai?lts 4 ‘ & ¥ (sec)

1 16x16 | Yes No Yes — 0.1 0431
2 16x16 | Yes No No — e 0.475
3 16x16 No Yes Yes 0.06 | 0.1 0.502
4 16x16 No Yes No 006 | — 0.307
5 16x16 | Yes Yes Yes 006 | 0.1 0.873
6 16x16 | Yes Yes No 006 | — 0.367
7 25x25 | Yes No Yes — 0.1 0.421

Table 6 Simulation results of different case studies for the PUMA

To provide for a study of the effect of using different combined optimisation criteria in robot motion
planning, other case studies are included along with the above, as indicated in Table 6. One important
parameter in any algorithm using grid search is the actual size of the grid representing the searched space,
and the complexity of the search increases exponentially with the number of points in a chosen grid.
Thus, it is always sensible to have a certain trade-off between search resolution and computation time.
The results of case study 7 were obtained after running the simulation over around five days, as
compared to the other cases for which simulations were accomplished in about one hour. In addition,




’ case 7 was limited to 50,000 iterations to obtain the shown results, as compared to a limited iterations for
the other cases. Nonetheless, the increase in minimising the motion time is relatively small (i.e. 0.421
seconds compared to 0.431 seconds) which appears to query the benefit of the increase in the grid size.
As expected, all cases where the optimisation is constrained by a near-zero end-point velocity exhibit a
higher motion time. The consideration of such a constrain may however be important if motion is to be
planned via successive segments, as it is the case for a point-look-ahead motion planner.

The motion profiles for all six joints of the PUMA are shown in Fig. 14-18 for case 1 of Table 6. In the
figures, the solid line is for joint 1, the dashed line for joint 2, the dash-dotted line for joint 3, the star *
line for joint 4, the plus + line for joint 5 and the plus x line for joint 6.
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5. CONCLUSIONS

This work reported on comparisons between a genetic based motion planner and other heuristic and
dynamic control methods. Results are reported for 2-joint and 6-joint articulated arms. In addition, a
heuristic search based on the dynamic scaling scheme is introduced, based on the assumption that the
torque only switches once during the whole motion. Much better results are acquired than those reported
in Dissanayake (1991) and Sahar and Hollerbach (1986). Simulations show the trade-off between the
search time and the search accuracy, and gives some insight into the choice of the grid size. While a
large grid size may yield more optimal search results, the search time does increase considerably (an hour
to a few days)..
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