
This is a repository copy of A novel selective 11β-hydroxysteroid dehydrogenase type 1 
inhibitor prevents human adipogenesis.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/81091/

Article:

Bujalska, IJ, Gathercole, LL, Tomlinson, JW et al. (5 more authors) (2008) A novel 
selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor prevents human 
adipogenesis. Journal of Endocrinology, 197 (2). 297 - 307. ISSN 0022-0795 

https://doi.org/10.1677/JOE-08-0050

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


A novel selective 11b-hydroxysteroid dehydrogenase type 1 inhibitor
prevents human adipogenesis

I J Bujalska, L L Gathercole, J W Tomlinson, C Darimont1, J Ermolieff 2, A N Fanjul2, P A Rejto2

and P M Stewart

Division of Medical Sciences, The Medical School, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
1Nestle Research Center, PO Box 44, Vers-Chez-Les-Blanc, 1000 Lausanne 26, Switzerland
2Pfizer Global Research and Development, La Jolla Laboratories, 10646 Science Center Drive, San Diego, California 92121, USA

(Correspondence should be addressed to P M Stewart; Email: p.m.stewart@bham.ac.uk)

Abstract

Glucocorticoid excess increases fat mass, preferentially within

omental depots; yet circulating cortisol concentrations are

normal in most patients with metabolic syndrome (MS). At a

pre-receptor level, 11b-hydroxysteroid dehydrogenase type 1

(11b-HSD1) activates cortisol from cortisone locally within

adipose tissue, and inhibition of 11b-HSD1 in liver and

adipose tissue has been proposed as a novel therapy to treat

MS by reducing hepatic glucose output and adiposity. Using a

transformed human subcutaneous preadipocyte cell line

(Chub-S7) and human primary preadipocytes, we have

defined the role of glucocorticoids and 11b-HSD1 in

regulating adipose tissue differentiation. Human cells were

differentiated with 1.0 mM cortisol (F), or cortisone (E) with

or without 100 nM of a highly selective 11b-HSD1 inhibitor

PF-877423. 11b-HSD1 mRNA expression increased across

adipocyte differentiation (P!0.001, nZ4), which was

paralleled by an increase in 11b-HSD1 oxo-reductase activity

(from nil on day 0 to 5.9G1.9 pmol/mg per h on day 16,

P!0.01, nZ7). Cortisone enhanced adipocyte differen-

tiation; fatty acid-binding protein 4 expression increased 312-

fold (P!0.001) and glycerol-3-phosphate dehydrogenase

47-fold (P!0.001) versus controls. This was abolished by

co-incubation with PF-877423. In addition, cellular lipid

content decreased significantly. These findings were

confirmed in the primary cultures of human subcutaneous

preadipocytes. The increase in 11b-HSD1 mRNA expression

and activity is essential for the induction of human

adipogenesis. Blocking adipogenesis with a novel and specific

11b-HSD1 inhibitor may represent a novel approach to treat

obesity in patients with MS.

Journal of Endocrinology (2008) 197, 297–307

Introduction

Glucocorticoid excess (Cushing’s syndrome) causes visceral

obesity, insulin resistance, diabetes mellitus, dyslipidaemia,

hypertension and premature vascular mortality; as such it

represents an excellent paradigm for patients with themetabolic

syndrome (MS). However, Cushing’s syndrome is rare and

circulating glucocorticoid levels are usually normal or even

slightly reduced in obese patients (Fraser et al. 1999). At a cellular

level, glucocorticoids within human adipose tissue, specifically

in omental depots, can be generated from inactive circulating

cortisone (in humans) or 11-dehydrocorticosterone (in rodents)

through the oxo-reductase activity of 11b-hydroxysteroid

dehydrogenase type 1 (11b-HSD1; Bujalska et al. 1997b).

Transgenic mice with adipose tissue-targeted 11b-HSD1

overexpression develop visceral obesity, insulin resistance,

hyperlipidaemia and hypertension without altering circulating

glucocorticoids (Masuzaki et al. 2001, 2003), while mice with

11b-HSD1 overexpression in the liver develop MS without

obesity (Paterson et al. 2004). Conversely, global deletion of

11b-HSD1 caused reduced visceral fat accumulation and

improved insulin sensitivity on a high fat diet (Kotelevtsev

et al. 1997, Morton et al. 2004). At a molecular level,

glucocorticoids exert potent effects upon adipose tissue; in

mature rat adipocytes, dexamethasone decreases glucose uptake

and oxidation (Olefsky 1975, De et al. 1981). Glucocorticoids

increase lipolysis by up-regulating the expression of the rate-

limiting enzyme hormone-sensitive lipase (Slavin et al. 1994), as

well as lipogenic enzyme, lipoprotein lipase (Yang et al. 1993). In

preadipocytes, glucocorticoids are essential for terminal

adipogenesis (Hauner et al. 1987) and limit cell proliferation

(Tomlinson et al. 2002).Theprocess of cellular differentiation is a

highly synchronized cascade of regulated differentiation-

dependent gene expression. Genes such as retinoblastoma

proteins that regulate the cell cycle (Richon et al. 1997)

are followed by adipogenic transcription factors, such as

peroxisome proliferator-activated receptor g (PPARg) and

CCAAT enhancer-binding protein (Rosen & MacDougald

2006). Mature adipocytes express late differentiation genes

involved in lipid metabolism and lipid transport including
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glycerol-3-phosphate dehydrogenase (G3PD) and fatty acid-

binding protein 4 (FABP4; Hotamisligil et al. 1996); many of

these genes are regulated by glucocorticoids (Wu et al. 1996,

Rosen & MacDougald 2006). Previously, we have shown that

non-selective inhibition of 11b-HSD1 can prevent human

adipocyte differentiation in vitro (Bujalska et al. 1999). The

potential for therapeutic intervention has been tested in rodent

models where selective 11b-HSD1 inhibitors lower plasma

glucose, improve insulin sensitivity and in some studies reduce

body weight in mice (Alberts et al. 2002, Kershaw et al. 2005).

However, the potency of these inhibitors has been variable and

there are no data on efficacy in human tissue. We report the

development of a selective inhibitor against human 11b-HSD1,

PF-877423 (Pfizer Global R&D, La Jolla, CA, USA) and the

effect of this compound upon adipogenesis in a well-

characterised differentiating human subcutaneous preadipocyte

cell line (Darimont et al. 2003, Qiao et al. 2005) and in primary

cultures of subcutaneous human preadipocytes.

Research design and methods

Recombinant protein assay

Wild-type recombinant human 11b-HSD1 protein (24–292)

was used for studying the inhibitor kinetics. Radio-labelled

[1,2-3H]-cortisone was purchased from American Radio-

labeled Chemicals Inc (St Louis, MO, USA). NAD (reduced

form; NADPH), glucose-6-phosphate (G6P) and G6P

dehydrogenase (G6PD) were purchased from Sigma–

Aldrich. All the concentrations reported in the following

section are final in the assay buffer. In addition, the enzyme

concentrations represent the active concentrations that were

determined by active-site titration using a tight-binding

inhibitor. The experimental data were fitted by using the

non-linear regression analysis software, Grafit (Leather-

barrow (2001) GraFit Version 5, Erithacus Software Ltd,

Horley, UK).

The measurement of the in vitro 11b-HSD1 activity was

performed in a 100 mM triethanolamine buffer (pH 8.0),
containing 200 mM NaCl, 0.02% n-dodecyl b-D-maltoside,

5% glycerol and 5 mM b-mercaptoethanol. A typical

reaction for the determination of enzyme activity comprised

the following: 5 nM enzyme pre-incubated for at least

30 minutes in the assay buffer in the presence of 500 mM

NADPH in round-bottom 96-well plates (Costar cat #

3365). Next, the reaction was initiated by adding a

regenerating system (consisting of 2 mM G6P, 1 U/ml

G6PD and 6 mM MgCl2) and labelled 3H-cortisone as

substrate. After an incubation period (30–40 min), 100 ml

of the assay mixture were transferred to a second empty

round-bottom 96-well plate and mixed with an equal

volume of dimethylsulphoxide (DMSO) to quench the

reaction. Then, a 15 ml aliquot of the assay solution was

loaded into a C-18 column (Polaris C18-A, 50!4. 6 mm,

5 u, 180 Å, Varian; Polaris, Palo Alto, CA, USA connected

to an automated High-Throughput Liquid Chromatography

instrument (Cohesive Technologies, HTLC, Franklin, MA,

USA). The radioactive material from the column was

detected with a b-RAM model 3 Radio-HPLC detector

(IN/US, Tampa, FL, USA). Substrate and product peaks

were separated by using an isocratic mixture of 38:62

methanol to water (v/v) at a flow rate of 1. 0 ml/min. Under

these experimental conditions, the retention time for

cortisone and cortisol were 4.5 and 5.5 min respectively.

The initial reaction velocities recorded were in the linear

range and were determined by measuring the peak area for

cortisol formation with time.

Recombinant protein kinetic analysis

The inhibition of 11b-HSD1 by PF-877423 was analysed

by fitting to the equation described below (Equation

(1); Morrison 1969) and provided an accurate measure-

ment for the value of Kiapp at a fixed concentration of

cortisone

Vi ZVo 1K
½E�o C ½I�o CKiapp K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð½Eo�C ½I�o CKiappÞ
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@

1
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0

@

1

A
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where [E]o and [I]o are the active enzyme and inhibitor

concentration respectively; Vi and Vo are the rates of

cortisone reduction in the presence or in the absence of

inhibitor respectively. Four Kiapp values were determined

by varying the cortisone concentration while keeping

the concentration of NADPH constant at 500 mM in

the assay buffer. The true inhibition constant, Ki, for

PF-877423 was then obtained by plotting the Kiapp
values versus the cortisone concentration, [C]o, and

fitting the data using Equation (2) for a competitive

inhibitor

Kiapp ZKi 1C
½C�o

Km

� �

(2)

where Km was the Michaelis–Menten constant for

cortisone.

HEK293 and Chubb-S7 cell culture

HEK293 cells stably transfected with human 11b-HSD1

(HEK293T1) or 11b-HSD2 (HEK293T2) cDNA as

described previously (Bujalska et al. 1997a) were used to

study the specificity of inhibitor PF-877423 upon 11b-HSDs.

Cells were cultured in minimum essential medium (MEM)

media supplemented with 10% fetal bovine serum (FBS) and

1% non-essential fatty acids; for experiments, cells were

seeded into 24-well tissue culture dishes and maintained in

MEM with 10% FBS until confluence.

The Chub-S7 cell line was derived from human subcu-

taneous adipose tissue (Darimont et al. 2003) by co-expressionof

human telomerase reverse transcriptase and papillomavirus E7
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oncoprotein (HPV-E7) genes. The cell line has an unlimited life

span and the capacity to accumulate lipid without chromosomal

alteration. Confluent Chub-S7 cells were cultured in 75 cm2

TC flasks in DMEM/Ham’s F-12 medium supplemented

with 10% FBS. For experiments, cells were seeded in 24-well

plates at density 105 cells/well. Chub-S7 were differentiated (up

to 21 days) according to Hauner et al. (1987) with 166 nM

human insulin (I-9278 Sigma), 1 mM PPARg agonist

(GW1929, Camlab, Cambridge, UK) and, where specified,

with the addition of 1 mM cortisol (F). For inhibition studies,

Chub-S7 cells were differentiated with 0.5 mM cortisone (E)

and an optimised concentration of the selective 11b-HSD1

inhibitor, PF-877423, at a final concentration of 100 nM.

Human subcutaneous stromal-vascular cell differentiation

Confluent human subcutaneous stromal-vascular (s–v) cells

(96-well plates) were obtained from Zen-Bio Inc. (Research

Triangle Park, NC, USA) and allowed to recover overnight at

37 8C 5% CO2. The following day, day 0, differentiation was

initiated by incubating cells in differentiating media, DM2(E)

(Zen-Bio Inc.), which consists of DMEM/Ham’s F-12

medium containing FBS, L-glutamine, penicillin/streptomy-

cin, insulin, indomethacin, 3-isobutyl-1-methylxanthine

with 1 mM E and vehicle (DMSO not exceeding 0.1%). To
define the effect of the PF-877423 inhibitor upon the

differentiation of primary preadipocytes, cultures were

supplemented with 300 nM PF-877423 (in DMSO). Control

cells cultured without E. Media were replenished and

PF-877423 or vehicle treatment repeated every 2–3 days,

except when 11b-HSD1 activity was assessed.

Measuring lipid content in human subcutaneous s–v cells

Lipogenesis in human subcutaneous s–v cells was measured as

triglyceride accumulation. Cells were carefully washed with

PBS and lysed in situ by adding 50 ml/well of Hecameg (10%

solution inwater –Calbiochem,Nottingham,UK).After gentle

shaking at room temperature for 10 min, 200 ml triglyceride

(Infinity) reagent (Thermo DMA, Louisville, CO, USA) was

added to each well. Plates were read after 10–20 min at

500 nm with correction at 660 nm (Spectra MAX PLUS –

Molecular Devices Corporation, Sunnyvale, CA, USA).

Results were expressed as optical density (OD) values.

HEK293 and Chubb-S7 11b-HSD assay

Cells were washed and incubated with 100 nM F (for

dehydrogenase activity) or E (for oxo-reductase activity) with

appropriate tritiated tracer – 3HF (Du Pont, Stevenage, UK) or
3H E (0.02 mCi/reaction; Bujalska et al. 1999). PF-877423

specificity upon11b-HSD1was carried outwith the additionof

100 nM inhibitor to HEK293T1 and HEK293T2 cells 24 h

before and during the enzyme assay. After 3 h incubation with

substrate, media was removed and steroids extracted with 4 ml

dichloromethane, evaporated under the air and reconstituted

with 70 ml dichloromethane, then spotted on silica plates

(Sigma–Aldrich). Steroidswere separated by thin-layer chroma-

tography in chloroform and ethanol (92:8) and steroid

conversion was quantified using a LabLogic AR-200 scanner

(LabLogic, Sheffield, UK). Cells were washed and protein

concentration was measured using colorimetric 96-well plate

assay (Bio-Rad) and total RNAwas extracted.

Human subcutaneous s–v cells 11b-HSD1 assay

During 11b-HSD1 activity assessment in human subcutaneous

s–v cells, the medium was changed to basal medium (BM-1,

Zen-Bio Inc.) containingonlyantibiotics, and cellswere cultured

for 24 h in the presence of PF-877423 with or without 0.5 mM
E. At the end of the incubation, the cortisol signal was

quantitatively determined in the 100 ml cell supernatant with

the Correlate-Enzyme Immunoassay Cortisol kit (Assay Designs

Inc. Ann Arbor, MI, USA) following the manufacturers’

instructions. Plates were read on a plate reader (Spectra MAX

PLUS – Molecular Devices Corporation) at 405 nm, with

correction at 580 nm. Activity has been expressed as cortisol

production in pg/ml per 24 h.

Total RNA extraction and RT reaction

Total RNA was extracted from cells using TriReagent

(Sigma) according to the manufacturer’s protocol. Integrity

and concentration of RNA were assessed by electrophoresis

and spectrophotometry respectively. Reverse transcription

was carried out using AMVand random primers at 37 8C for

1 h. All RT reagents were purchased from Promega.

PCR

Expression studies were carried out using gene specific primers

for human 11 b-HSD1, hexose 6-phosphate dehydrogenase

(H6PDH), glucocorticoid receptor a (GRa, FABP4), G3PD,

glucose transporter 4 (GLUT-4) and PPARg. All primers were

designed using primer 3 software (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3.cgi) and their sequences from 50 to 30 are

shown in Table 1. Primers for 18S as internal control were

purchased from Ambion (Quantum RNATM Classic 18S

Internal Standard #1716; Ambion). PCRs were carried out at

95 8C for 30 s, 60 8C for 30 s and 72 8C for 30 s in 20 ml final

volume for 30 cycles.

Real-time PCR

Quantitative mRNA expression levels of 11b-HSD1, H6PDH,

GRa, FABP4,G3PD,GLUT-4 andPPARg2weremeasured by

real-time PCR using an ABI 7500 system (Perkin–Elmer,

Biosystems, Warrington, UK). PCR was performed in 25 ml

reactions on 96-well plates. Reactions contained TaqMan

universal PCR master mix (Applied Biosystems, Foster City,

CA, USA), 900 nmol primers, 100–200 nmol TaqMan probe

and25–50 ngcDNA.All reactionswere correlated to expression
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of ribosomal 18S rRNA (provided as a pre-optimized mix;

Perkin–Elmer) as an internal reference. All target gene probes

were labelled with the fluorescent label FAM and the 18S probe

with the fluorescent label VIC.Reactionswere as follows: 50 8C

for 2 min, 95 8C for 10 min, and then 40 cycles of 95 8C for 15 s

and 60 8C for 1 min. Data were analysed according to the

manufacturer’s guidelines and were obtained as Ct values (the

cycle number at which logarithmic PCR plots cross a calculated

threshold line) andused to determine dCt values (dCtZCt of the

target geneminusCt of the internal reference, 18S). Primers and

probes for 11b-HSD1,H6PDHandG3PDwere designed using

PrimerExpress 1.0 software (Applied Biosystems). Sequences

from 50 to 30 are shown in Table 2. Expression assay kits were

purchased from Applied Biosystems to measure the gene

expression of GRa, GLUT-4, PPARg2 and FABP4.

Statistical analysis

Where datawere normally distributed, unpaired Student’s t-test

was used to compare single treatmentswith control. If normality

tests failed, then non-parametric tests were used. One-way

ANOVA on ranks was used to compare multiple treatments

(SigmaStat 3.1, Systat Software Inc., Point Richmond, CA,

USA). Results were expressed as mean valuesGS.D. or S.E.M.

values and a P value of !0.05 was accepted as statistically

significant. Statistical analysis on real-time PCR data was

performed on mean DCt values and not on fold changes.

Results

Kinetics of PF-877423 upon recombinant 11b-HSD1 protein

The potency for PF-877423 was strongly affected by the

presence of the substrate in the assay buffer (Fig. 1): K
app
i

values increased at high cortisone concentration, suggesting

that the inhibitor behaved as a reversible and competitive

inhibitor against cortisone. Fitting the experimental data

using equation (2) provided a value of 0.2G0.04 and 333.4G
109.2 nM for the inhibition constant, Ki, and the apparent

Michaelis–Menten constant, Km respectively.

Specificity of PF-877423

11b-HSD enzyme assays on HEK293T1 and HEK293T2 cells

showed total abolition of dehydrogenase (12.4G1.0 vs 0.2G
0.01, % cortisol to cortisone conversion, meanGS.D.) and oxo-

reductase (34.7G0.6 vs 0.4G0.1, % cortisone to cortisol

conversion, meanGS.D.) activities of 11b-HSD1 following

incubation with 100 nM PF-877423 for 24 h (Fig. 2A), but

PF-877423 had no effect on 11b-HSD2 activity (63.6G4.0 vs
62.2G4.4, % cortisol to cortisone conversion, meanGS.D.,

control versus PF-877423 respectively; Fig. 2B). No toxic

effects ofPF-877423were observedup to10 mMconcentrations

using a commercially available assay kit (CellTiter 96 Aqueous,

Promega; data not shown).

Table 1 Primer sequences for various human genes for the PCR

Forward Reverse

Gene
HSD11B1 ACCAGAGATGCTCCAAGGAA ATGCTTCCATTGCTCTGCTT
H6PDH AGAAGCGAGACAGCTTCCAC GCTGCTGGGAAAAGAACAAC
GRa TCGACCAGTGTTCCAGAGAAC TTTCGGAACCAACGGGAATTG
GLUT-4 GCCATTGTTATCGGCATTCT CTACCCCTGCTGTCTCGAAG
PPARg1 TCTCTCCGTAATGGAAGACC GCATTATGAGACATCCCCAC
PPARg2 GCGATTCCTTCACTGATAC GCATTATGAGACATCCCCAC
G3PD GGAAGACATTGGAGGCAAAA CCACGGCCACTACATTCTTT
FABP4 CATCAGTGTGAATGGGGATG ATGCGAACTTCAGTCCAGGT

Primers were designed using Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3).

Table 2 Primer and probe sequences for various human genes for the real-time PCR

Forward Reverse Probe

Gene
HSD11B1 AGGAAAGCTCATGGGAGGACTAG ATGGTGAATATCATCATGAA AAAGATTC CATGCTCATTCTCAACCACATCA CCAACA
H6PDH GGGCCTATGGAACCTCCAA GACCCACGTTTCTCACTGAC TCT CCGTGGCGCTACTCATGGACAC A
PPARg2 AGAAGAAGGCGGCGTTGTC TCAGGTTGAGGCCACCATC AGGGGCCACCACAGACTTGCAC AT
G3PD CCATCAGTTCATCGGCAAGAT TCGTCTACCCCCTTAATAAG AGATATG AGGGCCATCTGAAGGCAAACGC C

Primers and probes were designed using PrimerExpress software (Applied Biosystems, UK).

I J BUJALSKA and others . 11b-HSD1 is essential for human adipogenesis300

Journal of Endocrinology (2008) 197, 297–307 www.endocrinology-journals.org

http://frodo.wi.mit.edu/cgi-bin/primer3


Characterisation of chub-S7 cells

At confluence (day 0), Chub-S7 cells did not accumulate lipid

droplets (Fig. 3A); however, they readily underwent adipogen-

esis (shown as oil red O staining) when cultured for 21 days in

chemically-defined, serum-free media (166 nM insulin, 1 mM

PPARg agonist and 1 mM F; Fig. 3B). As demonstrated

by conventional PCR, confluent undifferentiated Chub-S7

cells expressed GRa H6PDH and PPARg1 mRNA but not

11b-HSD1, PPARg2, GLUT-4, G3PD or FABP4 mRNA

(Fig. 3C). In the differentiated Chub-S7 cells, increased

expression of adipogenic markers including G3PD and

FABP4 was observed. This process resulted in an increase in

11b-HSD1, GLUT-4 and PPARg2 mRNA levels (Fig. 3D).

Across differentiation, 11b-HSD1 oxo-reductase activity

increased significantly; from nil on day 0 to 0.4G0.2 on day

3, 5.3G0.7 on day 5, 8.4G0.14 on day 7, 10.5G1.9 on day 9
and 5.9G1.9 on day 16 (pmol/mg per h, meanGS.D., nZ7, all

P!0.01 versus previous time point; Fig. 4A). Conventional

PCRfindingswere endorsed and quantified by real-time PCR.

Expression of 11b-HSD1 mRNA increased 2.9-fold on day 5,
3.6-fold on day 7, 3.4-fold on day 9 (P!0.01) and 38.1-fold on
day 16 (P!0.001) when compared with day 3, nZ4 (Fig. 4B).

We observed a transient increase in H6PDH mRNA levels

(11b-HSD1 co-factor provider) – 2.9-fold on day 3, 3.5-fold
on day 5, 3.7-fold on day 7, 3.4-fold on day 9 and 0.6-fold
on day 16 versus day 0, P!0.01 (Fig. 4C) – but there was no

significant change in GRa mRNA during Chub-S7

differentiation (Fig. 4D).

Significant increases in differentiationmarkers FABP4 (2-fold

on day 5 (P!0.01), 38-fold on day 7, 142-fold on day 9 and

870-fold onday 16 versus day 3,P!0.001) andG3PD (4.5-fold
on day 7 (P!0.01), 22-fold on day 9 and 380-fold on day 16

versus day 5, P!0.001) were also observed (Fig. 5A and B

respectively). When compared with day 7, the expression of

adipocyte-specific genes including GLUT-4 and PPARg2 also

increased – 2.1-fold on day 9 and 9.8-fold on day 16, P!0.01
(GLUT-4) and 1.3-fold on day 7 and 2.2-fold on day 16,

P!0.01 (PPARg2; Fig. 5C and D respectively).

Glucocorticoid metabolism and adipogenesis in Chub-S7 cells
incubated with PF-877423

Chub-S7 cells differentiated for 10 days with 500 nM

cortisone showed increased 11b-HSD1 oxo-reductase

activity: 14.6G2.3 (E) versus 3.4G1.3 (control), pmol/mg

per h meanGS.E.M., P!0.001 (Fig. 6A), and mRNA

expression (14.1-fold versus control; Fig. 6B). Co-incubation
with 100 nM PF-877423 abolished this effect: 14.6G2.3 (E)

versus 1.3G1.1 (ECPF-877423) vs 0.6G0.5 (PF-877423)

pmol/mg per h, meanGS.E.M. (Fig. 6A) and 14.1-fold (E)

versus 1.2-fold (ECPF-877423), 11b-HSD1 activity and

mRNA respectively (Fig. 6B). Differentiated Chub-S7 cells

with E showed increased expression of the adipogenic

markers FABP4 (312-fold versus control, P!0.001) and

G3PD (47-fold versus control, P!0.001) – an effect that was

completely abolished by co-incubation with PF-877423 (1.3-
and 0.7-fold, FABP4 and G3PD respectively; Fig. 6C and D).

The change in adipogenesis following incubation with the

11b-HSD1-specific inhibitor was confirmed visually through

staining the cells with oil red O after 21 days of differentiation.

A marked increase in the number of red-stained cells was

observed in cells differentiated with E or F but not in the

presence of PF-877423 (Fig. 6E).

Figure 1 Effect of cortisone concentration upon the apparent
inhibition constant Kiapp of the inhibitor PF-877423: a value for
the true inhibition constant Ki (0.2G0.04 nM) and the Michaelis–
Menten constant Km (333.4G109.2 nM) is calculated by fitting the
experimental data using equation (2).

Figure 2 (A) PF-877423 inhibits 11b-HSD1 enzyme activity
(dehydrogenase: 12.4G1.0 vs 0.2G0.01, % cortisol to cortisone
conversion, and oxo-reductase: 34.7G0.6 vs 0.4G0.1, % cortisone
to cortisol conversion, meanGS.D.) as measured in HEK293T1
(HEK293 cells stably transfected with human 11b-HSD type 1
cDNA), nZ3 but not (B) 11b-HSD2 enzyme activity (63.6G4.0 vs
62.2G4.4, % cortisol to cortisone conversion, meanGS.D., control
versus PF-9Z877423 respectively) as measured in HEK293T2 (cells
stably transfected with human 11b-HSD type 2 cDNA), nZ3.
P values: **P!0.01, ***P!0.001.
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Human subcutaneous s–v cells differentiation

Human subcutaneous s–v cells differentiated with ECPF-

877423 had significantly lower 11b-HSD1 oxo-reductase

activity compared with cells differentiated with E at any time

point studied (day 6: 154G8 vs 5387G182; day 9: 128G1 vs

5489G230; day 14: 174G18 vs 4041G106; day 20: 409G27

vs 10443G78; day 22: 330G7 vs 11218G193 pg/ml per 24 h,

meanGS.D., P!0.001, nZ3, EK or ECPF-877423 treated

respectively (Fig. 7A)). Lipid content in cells differentiated

with E and PF-877423 was significantly lower than in cells

differentiated with E only and similar to undifferentiated cells

(day 16, 0.25G0.03 vs 0.20G0.01; day 20, 0.3G0.02 vs

0.20G0.01; day 22, 0.27G0.01 vs 0.19G0.01; OD (500/

660 nm); meanGS.D., P!0.01, nZ3, EK or ECPF-877423

treated respectively; Fig. 7B).

Discussion

Numerous studies (Hauner et al. 1989,Gregoire et al. 1991,Wolf

1999), including our own (Bujalska et al. 1999, 2002b), have

Figure 3 Oil red O staining in (A) confluent Chub-S7 cells (day 0) and (B) differentiated Chub-S7 (day 21). RT-PCR analysis (30 cycles) of
nine gene expressions in (C) confluent Chub-S7 cells and (D) in differentiated Chub-S7 cells.

Figure 4 (A) 11b-HSD1 oxo-reductase activity (cortisone to cortisol conversion); nil on day 0 to 0.4G0.2 on day 3,
5.3G0.7 on day 5, 8.4G0.14 on day 7, 10.5G1.9 on day 9 and 5.9G1.9 on day 16, pmol/mg per h, meanGS.D. versus
previous time point, nZ7 and mRNA levels measured by real-time PCR of (B) 11b-HSD1 (2.9-fold increase on day 5,
3.6-fold on day 7, 3.4-fold on day 9 and 38.1-fold on day 16 when compared with day 3). (C) H6PDH increased 2.9-
fold on day 3, 3.5-fold on day 5, 3.7-fold on day 7, 3.4-fold on day 9 and 0.6-fold on day 16 versus day 0 and (D) GRa
(no significant change) across Chub-S7 differentiation, nZ4. P values: **P!0.01, ***P!0.001.
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defined the permissive role of GCs in inducing adipocyte

differentiation. Here, we extend those observations to a novel

transformed human adipocyte cell line that should greatly

enhance in vitrohuman-based adipocyte research studies.Within

5 days of incubation in chemically defined media comprising

insulin, PPARg agonist and glucocorticoid, impressive differ-

entiation was observed in Chub-S7 cells as assessed by markers

including FABP4, G3PD and adipocyte-specific genes such as

GLUT-4 and PPARg2. Adipogenesis was an ongoing process

up to 16 days in culture with intracellular lipid stores confirmed

by oil red O staining. No significant changes were observed in

GRa expression during this differentiation phase; earlier studies

had reported increased GR expression in omental versus

subcutaneous adipose tissue and had argued that this may be

the one factor explaining the predilection of glucocorticoids for

visceral obesity (Bronnegard et al. 1990). However, more

recently our array and real-time PCR analyses failed to

demonstrate any difference in GR expression between human

omental and subcutaneous preadipocytes (Bujalska et al. 2006)

and adipose tissue (unpublished data). Together with the data in

this study, it seems unlikely that changes in GR expression per se

are important in the adipogenesis process.

At a pre-receptor level our group has focussed on the role of

11b-HSD1 and the regeneration of cortisol from inactive

cortisone in human adipose tissue. Previously we have

demonstrated increased expression of 11b-HSD1 in omental

compared with subcutaneous depots (Bujalska et al. 1997b), and

importantly a switch in the directionality of enzyme activity

from predominant dehydrogenase to oxo-reductase (Bujalska

et al. 2002a), probably as a result of induction of the NADPH

donor source for 11b-HSD1within the endoplasmic reticulum

(ER) lumen, H6PDH (Ozols 1993). In support of these

observations, in this study, the rise in H6PDH mRNA levels

probably explained the increase in 11b-HSD1-mediated oxo-

reductase activity between days 3 and 9 in addition to an increase

in 11b-HSD1 mRNA levels. Furthermore, decreased H6PDH

mRNAexpression seen onday 16might account for the decline

in 11b-HSD1 oxo-reductase activity despite highmRNA. The

impressive increase in 11b-HSD1 expression across adipocyte

differentiation has been noted recently in mouse 3T3-L1 cells

(Kim et al. 2007), as it has been done in other differentiating cell

systems including osteoblasts (Eijken et al. 2005). In both cases

cells have been incubated with glucocorticoids that themselves

positively regulate 11b-HSD1 (Bujalska et al. 1997b); it is not

possible from these or previous data sets to conclude whether or

not the increased 11b-HSD1 expression is glucocorticoid

mediated or a manifestation of the differentiation process per se.

Nevertheless, 11b-HSD1 expression, resulting in a function-

ally active oxo-reductase,was clearly linked to the differentiation

phenotype. Incubation of Chub-S7 cells with inactive steroid,

cortisone, induced a degree of adipocyte differentiation similar

to that observed with cortisol. This could be explained on the

basis of 11b-HSD1-mediated oxo-reductase activity with a Km

for cortisone in Chubb-S7 cells of 100 nM which is similar to

the reports in other 11b-HSD1-expressing cell systems

(Monder & Lakshmi 1989, Ricketts et al. 1998) including

studies on the recombinant enzyme (KmZ333 nM;Walker et al.

2001, Shafqat et al. 2003). Evaluation of the competitive

11b-HSD1 inhibitor, PF-877423, indicated selectivity for

the type 1 11b-HSD isoform with a Ki£0.2 nM in the

recombinant assay and IC50w5 nM in Chubb-S7 cells.

Selectivity of the inhibitor towards 11b-HSD1 isoform but not

11b-HSD2 is crucial as patients with impairment in the latter

are presented with severe hypertension, (White et al. 1997).

Figure 5 Gene expression analysed by real-time PCR of adipogenic markers; (A) FABP4: (log scale) 2-fold increase on day 5,
38-fold on day 7, 142-fold on day 9 and 870-fold on day 16 versus day 3; (B) G3PD: 4.5-fold on day 7, 22-fold on day 9 and
380-fold on day 16 versus day 5; (C) PPARg2: 1.3-fold on day 9 and 2.2-fold on day 16 versus day 7; and (D) GLUT-4: 2.1-fold
on day 9 and 9.8-fold on day 16 versus day 7 across Chub-S7 cell differentiation. P values: **P!0.01, ***P!0.001.
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PF-877423 selectivity was undertaken using a transformed

cell line expressing human 11b-HSD2 enzyme where no

inhibitory effect was observed. Incubation of cells with 100 nM

PF-877423 completely abolished the cortisone induction of

FABP4, G3PDH and 11b-HSD1 itself in Chubb-S7 cells. We

also demonstrated that the transformed cell line data were

consistent with data in primary human subcutaneous pre-

adipocytes. While incubation with cortisone yielded a less

impressive effect on adipogenesis in human subcutaneous

preadipocytes when compared with Chubb-S7 cells (this

might reflect a more advanced adipogenic lineage of primary

cultures), inhibition of 11b-HSD1 activity nevertheless reduced

the ability of human subcutaneous preadipocytes to differentiate

and accumulate lipid.

Whilst the cell line that we have used is subcutaneous in

origin and the expression of 11b-HSD1 is higher in omental

human preadipocytes (Bujalska et al. 1997b) and therefore we

predict that the impact upon omental cells would be more

pronounced. We anticipate that this would not lead to

preferential loss of subcutaneous fat. Unfortunately, omental

cell lines are not available for study and in vivo human clinical

studies have not been performed.

Previously, non-selective 11b-HSD inhibitors have been

shown to diminish human adipocyte differentiation in vitro

(Bujalska et al. 1999) and increase insulin sensitivity in man

(Walker et al. 1995), but a lack of isozyme selectivity can cause

water retention and hypertension. Since then, patents have been

filed on compounds that report to be selective 11b-HSD1

inhibitors. An aryl sulphonamide derivative has been shown to

reduce insulin levels and improve glucose tolerance when

administered to rodents for 7 days (Alberts et al. 2002). Similar

data have been reported for an adamantyl triazole that also

reduced body weight and the progression of atherosclerosis in

mice (Hermanowski-Vosatka et al. 2005). Transgenic mouse

models have established 11b-HSD1 as a novel therapeutic target

in this regard; global deletion of 11b-HSD1 results in improved

Figure 6 Chub-S7 cells differentiated with 0. 5 mM E and with or without the selective 11b-HSD1 inhibitor PF-877423 at 100 nM. All
experiments were carried out on differentiated cells on day 10, nZ3. (A) 11b-HSD1 oxo-reductase activity (cortisone to cortisol
conversion): 14.6G2.4 (E) versus 1.2G1.1 (ECPF-877423) vs 3.4G1.3 (control), pmol/mg per h meanGS.E.M., P!0.001, (B) 11b-HSD1
mRNA expression and adipogenic markers (C) FABP4, (D) G3PD (log scale, P!0.001 and P!0.001 respectively) and (E) Chub-S7 cells
differentiated for 21 days and stained with oil red O; 1) control: 166 nM insulin, PPARg agonist, 100 nM PF-877423, 2) 0.5 mM E,
3) 0.5 mM EC100 nM PF-877423 and 4) positive control (differentiation with 0.5 mM F). P values: **P!0.01, ***P!0.001.
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glucose tolerance through reduced gluconeogenesis and hepatic

glucose output (Kotelevtsev et al. 1997, Morton et al. 2001),

while targeted overexpression of 11b-HSD1 in adipose tissue

recapitulates features of the MS including central adiposity

(Masuzaki et al. 2001). In the liver of db/db mice (a model of

type 2 diabetes), GR and 11b-HSD1 mRNA expression

positively correlated with blood insulin and glucose (Liu et al.

2005). Inhibition of GR and 11b-HSD1 expression either with

GRantagonist (RU486; Liu et al. 2005) or by chronic activation

of liver X receptor (Liu et al. 2006) attenuated the phenotype of

type 2 diabetes in mice.

In humans, the situation is less clear with regard to a role for

11b-HSD1 in the pathogenesis of MS. Some authors have

argued for a primary overexpression of 11b-HSD1 in affected

patients akin to that observed in some animal models

(Paulmyer-Lacroix et al. 2002, Rask et al. 2002). However,

while the expression of 11b-HSD1 might be increased, at least

in subcutaneous adipose tissue in obese patients with MS and

type 2 diabetes (Tomlinson et al. 2002, Alberti et al. 2007), no

such increase was observed in omental adipose tissue.

Furthermore, based on urinary cortisol/cortisone metabolite

ratios and plasma cortisol generation curves following oral

cortisone acetate that primarily reflects hepatic 11b-HSD1

expression, a reduction, not an increase, in 11b-HSD1

expression was observed at least in subjects with simple obesity

(Stewart et al. 1999, Tomlinson et al. 2004).We have argued that

obesity is not primarily a state of 11b-HSD1overexpression, but

that the fall in hepatic 11b-HSD1activitywith increased visceral

adipositymight serve as a protectivemechanism to offset hepatic

glucose output and further adiposity (Valsamakis et al. 2004).

Failure of such a switch off in 11b-HSD1 expression might be a

factor that determines the onset and persistence of hypergly-

caemia in obese patients with type 2 diabetes mellitus

(Valsamakis et al. 2004). Further studies are indicated to define

the exact role of 11b-HSD1 in the pathophysiology of human

MS. Irrespective of the outcome of these studies, selective

inhibitors such as PF-877423 offer a real advance in the

prevention and treatment of diabetes in subjects with obesity

with the potential added benefit of inhibiting adipocyte

differentiation. A reduction in adipogenesis specifically within

omental depots is likely to further improve the metabolic

phenotype of these patients. Clinical studies characterising a

novel, potent (Ki 0.2 nM) and fully selective 11b-HSD1

inhibitor preventing lipogenesis in vitro will further our

understanding of the role of local glucocorticoid metabolism

in human adipose tissue.
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