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REGULARIZED TREFFTZ COLLOCATION METHOD FOR VOID DETECTION IN

TWO-DIMENSIONAL STEADY-STATE HEAT CONDUCTION PROBLEMS

A. KARAGEORGHIS, D. LESNIC, AND L. MARIN

Abstract. We propose the use of the Trefftz collocation method for the solution of inverse geometric problems
and, in particular, the determination of the boundary of a void. As was the case in the solution of such problems

using the method of fundamental solutions, the algorithm for imaging the interior of the medium also makes use
of radial polar parametrization of the unknown void shape in two dimensions. The centre of this radial polar
parametrization is considered to be unknown. The feasibility of this new method is illustrated by several numerical

examples highlighting its advantages and shortcomings.

1. Introduction

Numerous practical problems in engineering and sciences are characterised by the fact that one or more of the
following conditions are partially or entirely unknown: the geometry of the domain of interest, the complete
boundary and initial conditions, the material properties and the external sources acting in the solution domain.
These problems are known as inverse problems and it are, in general, ill-posed [18], in the sense that the existence,
uniqueness and stability of their solutions are not always guaranteed, and hence more difficult to solve. An
important class of inverse problems is represented by the so-called inverse geometric problems whose main feature
is the lack of knowledge of part of the boundary. In particular, we focus herein on the numerical reconstruction of
an internal boundary (i.e. cavity or rigid inclusion) in steady-state isotropic heat conduction (Laplace’s equation)
from the knowledge of the temperature and normal heat flux (i.e. Cauchy data) on the outer boundary and an
appropriate boundary condition for the unknown void.
The uniqueness of solution of the inverse geometric steady-state heat conduction problem related to the determi-
nation of rigid inclusions or cavities from Cauchy data prescribed on the outer boundary of the solution domain for
media with constant conductivity was proved in [19] and [48], respectively. The numerical reconstruction of voids in
heat conduction problems has been tackled by numerous authors and various approaches have been proposed for the
solution of this inverse geometric problem, see e.g. [1, 6, 13, 17, 27, 28, 32, 33, 34, 35, 46, 47, 53]. Das and Mitra [13]
developed an iterative algorithm to determine the location and shape of a flaw in steady-state heat conduction (i.e.
Laplace’s equation). Kassab and Pollard [32, 33] proposed a linear boundary element method (BEM), an anchored
grid pattern method and a Newton-Raphson method with a Broyden update for the numerical reconstruction of an
unknown cavity for the same inverse geometric heat conduction problem. The conjugate gradient method (CGM)
for the numerical solution of inverse design problems in estimating the optimal locations and shapes of the internal
cooling passages for turbine blades based on the desired outer surface temperature distribution was considered
in [24]. Gallego and Suarez [17] proposed an approach based on a boundary integral equation for the variation
of the potential and flux to retrieve numerically an assumed flaw in the case of a two-dimensional isotropic solid
subject to thermal loads. An iterative algorithm based on a real coded geneatic algorithm (GA) and the BEM for
detecting cavities in problems governed by the two-dimensional Laplace equation was developed in [46], while [6]
proposed a simplification of the CGM for the reconstruction of voids in two-dimensional steady-state isotropic heat
conduction which consists of prescribing the values of the step size for the optimal searches to be constant values
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depending upon the resolution of the identification. An iterative algorithm using thermographic techniques based
on the superposition of clusters of sources/sinks with the BEM [34] was employed for the detection of subsurface
cavities and flaws. Mera [47] used kriging approximation models to speed-up the optimization process via GAs for
detecting the size and location of subsurface cavities associated with the two-dimensional Laplace’s equation, whilst
Tan et al. [50] solved a geometry identification problem in two-dimensional isotropic heat conduction by employing
the least-squares collocation meshless method and CGM. Kazemzadeh-Parsi and Daneshmand [35] approached
the cavity detection problem for the two-dimensional Laplace equation via the smoothed fixed grid finite element
method in conjunction with the CGM. Yan and Ma [53] considered the reconstruction of a cavity in the case of
the Laplace equation from the knowledge of the measurements on the exterior boundary and employed the domain
derivative of the associated operator and a regularized Newton method for the solution of the corresponding ill-
posed and nonlinear problem. Recently, Karageorghis and Lesnic [27] proposed a method of fundamental solution
(MFS)-based reconstruction of a cavity for the two-dimensional stationary heat conduction equation in isotropic
media, whereas Borman et al. [1] and Karageorghis and Lesnic [28] employed the same approach for the detection
of inclusions.
Trefftz methods [51] have been used extensively for the solution of elliptic boundary value problems, see, for example
[38, 39, 52], and also [55]. Surveys on Trefftz and related methods may be found in [26, 36, 40, 55]. In this work we
investigate the performance of the Trefftz collocation method (TCM) for the solution of inverse geometric problems,
in particular for void detection problems. The TCM is a boundary meshless method and such methods have, in
recent years, become increasingly popular for the solution of inverse problems in general because of the ease with
which they can be implemented for boundary value problems in complex geometries and in three dimensions. The
MFS in particular has been used extensively for the solution of inverse problems [30]. Trefftz methods have been
used for the solution of inverse Cauchy linear problems [7, 8, 9, 10, 31, 43, 54]. In the case of inverse geometric
problems the TCM has been recently used by Fan and his co-workers [3, 14, 15]. In particular, [15] deals entirely
with boundary identification problems for Laplace’s equation, while in [3] an internal void problem is solved in
the case of the Helmholtz equation. The ideas developed in this work are close to the ones developed in [14], see
also [2], where two internal void detection problems are solved in the case of the Laplace equation. However, our
proposed algorithm differs from the one in [14] as follows:

• In contrast to the algorithm of [14] for void detection inverse problems, we consider problems in which the
centre(s) of the void(s) to be reconstructed is (are) unknown. The coordinates of the centre(s) are merely
taken as additional unknowns in the algorithm.

• By changing and augmenting the Trefftz basis, the algorithm is capable of locating multiple inclusion with
unknown centres.

• Instead of using a scalar homotopy algorithm we use the state-of-the-art MATLAB optimization toolbox
routine lsqnonlin. This routine allows for the imposition of simple bounds on the variable which, to a
great extent, eliminates physically unrealistic solutions.

• The stability of the proposed algorithm is achieved using two regularization parameters which can be
determined by the use of the L-curve criterion. The method is shown to accurately reconstruct smooth or
piecewise smooth, convex or concave, single or multiple cavities and rigid inclusions.

• We are not using the so-called modified collocation Trefftz method of [41, 42] which takes into account the
characteristic shapes of the domains involved. This is because the size of at least one of the domains in
unknown and needs to be determined as part of the solution. Efforts to normalize one set of unknowns
produced little or no difference to our results.

In comparison to the MFS, the TCM does not require selecting a fictitious boundary curve on which source points
need to be positioned. However, a disadvantage of the TCM with respect to the MFS is the poor conditioning of
the discretization matrices [42, 56] and we aim to also address this issue in the application of the TCM to void
detection problems. In fact, the connection between the TCM and the MFS has recently been pointed out in [5]
where it is shown that for the Laplace equation in a bounded, simply-connected domain the TCM is retrieved as
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a degenerate situation of the MFS with the source points placed at infinity. The corresponding result in annular
and exterior domains may be found in [4] and [49], respectively.

2. Mathematical formulation

In this section we formulate the direct and inverse problems related to a void such as a rigid inclusion or a cavity in
the case of steady-state heat conduction (Laplace’s equation). The direct problem given by the Laplace equation

∆u = 0 in Ω, (2.1a)

subject to the Dirichlet boundary condition

u = f on ∂Ω2, (2.1b)

and the homogeneous boundary condition

αu+ (1− α)∂nu = 0 on ∂Ω1 , where α ∈ {0, 1}, (2.1c)

has a unique weak solution u ∈ H1(Ω) if f ∈ H1/2(∂Ω2), and a unique classical solution u ∈ C2(Ω)∩C(Ω̄), provided
f is sufficiently smooth. In the above, Ω = Ω2\Ω1, where Ω1 ⊂ Ω2, is a bounded annular domain with boundary
∂Ω = ∂Ω1 ∪ ∂Ω2 and we assume that Ω is connected. Equation (2.1c), covers both Dirichlet (α = 1), i.e. a rigid
inclusion, and Neumann (α = 0), i.e. a cavity, boundary conditions on ∂Ω1.

The inverse problem we are concerned with consists of determining not only the function u, but also the void Ω1

so that u satisfies the Laplace equation (2.1a), given the Dirichlet data f ̸≡ constant in (2.1b), the homogeneous
boundary condition (2.1c) and the Neumann current flux measurement

g := ∂nu on ∂Ω2 . (2.1d)

In (2.1c) and (2.1d), the vector n denotes the outward unit normal to the annular domain Ω.
When α = 0, for (2.1a), (2.1c) and (2.1d) to be consistent, we require

∫

∂Ω2

g(s) ds = 0. (2.2)

In contrast to the direct (forward) boundary value problem (2.1a)-(2.1c), the inverse problem (2.1a)-(2.1d) is
nonlinear and ill-posed. Although the solution is unique, [19], it is unstable with respect to small errors in the
input Cauchy data (2.1b) and (2.1d).

3. Trefftz collocation method

In the TCM for the doubly-connected two-dimensional annular domain Ω, we seek an approximation to the solution
of Laplace’s equation (2.1a) as a linear combination of T-complete functions in the form [42, 22, 23]

uN (α,β,γ, δ;x) = α0 + γ0 log |z|+
N
∑

k=1

αkℜ
{

zk
}

+
N
∑

k=1

βkℑ
{

zk
}

+
N
∑

k=1

ckℜ
{

z−k
}

+
N
∑

k=1

dkℑ
{

z−k
}

, x = (x, y) ∈ Ω, (3.1)

where the T-complete system is given by
{

1, log |z|,ℜ(zn),ℑ(zk),ℜ(z−k),ℑ(z−k); z = x+ iy, k ∈ N
}

, (3.2)

where ℜ and ℑ denote the real and imaginary part of a complex number, respectively. In (3.1), there are 4N +
2 unknowns, namely the coefficients α = [α0, α1, . . . , αN ]T , β = [β1, β2, . . . , βN ]T , γ = [γ0, γ1, . . . , γN ]T , δ =
[δ1, δ2, . . . , δN ]T .
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Without loss of generality, we shall assume that the (known) fixed exterior boundary ∂Ω2 is a circle of radius R.
As a result, the outer boundary collocation points are chosen as

xM1+ℓ = R(cos ϑ̃ℓ, sin ϑ̃ℓ), ℓ = 1,M2, (3.3)

where ϑ̃ℓ =
2π(ℓ−1)

M2

, ℓ = 1,M2.
We further assume that the unknown boundary ∂Ω1 is a smooth, star-like curve with respect to the centre which
has unknown coordinates (X,Y ). This means that its equation in polar coordinates can be written as

x = X + r(ϑ) cosϑ, y = Y + r(ϑ) sinϑ, ϑ ∈ [0, 2π), (3.4)

where r is a smooth 2π−periodic function. The constraint that Ω1 ⊂ Ω2 then recasts as

(X + r(ϑ) cosϑ)
2
+ (Y + r(ϑ) sinϑ)

2
< R2, ϑ ∈ [0, 2π). (3.5)

The discretized form of (3.4) for ∂Ω1 becomes

rk = r(ϑk), k = 1,M1 (3.6)

and we choose the inner boundary collocation points as

xk = (X,Y ) + rk (cosϑk, sinϑk) , (3.7)

where ϑk = 2π(k−1)
M1

, k = 1,M1.

Since the centre is not known and therefore not necessarily the origin, the basis (3.2) needs to be modified to
{

1, log |z − z0|,ℜ(z
n),ℑ(zn),ℜ((z − z0)

−n),ℑ((z − z0)
−n); z = x+ iy, n ∈ N

}

, (3.8)

where z0 = X + iY . For example, this is suggested by function theoretic results concerning the expansion of
functions that are analytic in multiply-connected domains [16, page 244], see also [37]. Therefore, the TCM
approximation becomes

uN (α,β,γ, δ;x) = α0 + γ0 log |z − z0|+
N
∑

k=1

αkℜ
{

zk
}

+

N
∑

k=1

βkℑ
{

zk
}

+

N
∑

k=1

γkℜ
{

(z − z0)
−k
}

+

N
∑

k=1

δkℑ
{

(z − z0)
−k
}

, x = (x, y) ∈ Ω. (3.9)

In the cases where R > 1 we tried to scale the terms in the first and second series in (3.9) through division with
Rk as suggested by Liu [41, 42]. This produced little or no improvement to our results. This may be because the
corresponding multiplication of each of the terms in the third and fourth series in (3.9) by Rk

c , where Rc is the
characteristic length of ∂Ω1, as suggested in [42] is not possible as its size is unknown.

4. Implementational details

The current flux data (2.1d) come from practical measurements which is inherently contaminated with errors due
to noise, and we therefore replace g by the noisy data gε defined as

gε(xj) = (1 + ρj p) g(xj) , j = M1 + 1,M1 +M2 , (4.1)

where p represents the percentage of noise and ρj is a pseudo-random noisy variable drawn from a uniform distribu-
tion in [−1, 1] using the MATLAB command -1+2*rand(1,M2). It is also reported that in our numerical experiments
we observed that the effect of noise added to the Dirichlet boundary data (2.1b) was similar to that of perturbing
the Neumann data. As a result in the numerical results section we only present results for the noisy Neumann data
(4.1).
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The coefficients (ak)k=0,N , (bk)k=0,N , (ck)k=1,N and (dk)k=1,N in (3.1), the radii (rk)k=1,M1
in (3.6), and the

coordinates of the centre C = (X,Y ) are determined by imposing the boundary conditions (2.1b), (2.1c) and
(2.1d) in a least-squares sense. This leads to the minimization of the functional

S(α,β,γ, δ, r,C) : =

M1+M2
∑

j=M1+1

[uN (α,β,γ, δ;xj)− f(xj)]
2
+

M1+M2
∑

j=M1+1

[∂nuN (α,β,γ, δ;xj)− gε(xj)]
2

+

M1
∑

j=1

[αuN (α,β,γ, δ;xj) + (1− α)∂nuN (α,β,γ, δ;xj)]
2

+λ1

(

|α|2 + |β|2 + |γ|2 + |δ|2
)

+ λ2

M1
∑

ℓ=2

(rℓ − rℓ−1)
2
, (4.2)

where λ1, λ2 ≥ 0 are regularization parameters to be prescribed.

In (4.2), the outward normal vector n is defined as follows:

n =











cosϑ i+ sinϑ j , if x ∈ ∂Ω2 ,
1

√

r2(ϑ) + r′2(ϑ)
[− (r′(ϑ) sinϑ+ r(ϑ) cosϑ) i+ (r′(ϑ) cosϑ− r(ϑ) sinϑ) j] , if x ∈ ∂Ω1 , (4.3)

where i = (1, 0) and j = (0, 1). As a result, from (3.9) the normal derivative ∂nuN is evaluated as

∂nuN = n · ∇uN =

n ·

(

γ0
ℜ{z − z0}

|z − z0|2
+

N
∑

k=1

αkℜ
{

kzk−1
}

+
N
∑

k=1

βkℑ
{

kzk−1
}

+

N
∑

k=1

γkℜ
{

−k(z − z0)
−k−1

}

+

N
∑

k=1

δkℑ
{

−k(z − z0)
−k−1

}

,

γ0
ℑ{z − z0}

|z − z0|2
+

N
∑

k=1

αkℜ
{

ikzk−1
}

+

N
∑

k=1

βkℑ
{

ikzk−1
}

+

N
∑

k=1

γkℜ
{

−ki(z − z0)
−k−1

}

+

N
∑

k=1

δkℑ
{

−ki(z − z0)
−k−1

}

)

. (4.4)

In (4.3), we use the central finite-difference approximation

r′(ϑi) ≈
ri+1 − ri−1

4π/M1
, i = 1,M1, (4.5)

with the convention that rN+1 = r1, r0 = rM1
.

Since the total number of unknowns is 4N+2+M1+2 and the number of boundary condition collocation equations
is M1 + 2M2 we need to take M2 ≥ 2N + 2.

4.1. Non-linear minimization. The minimization of functional (4.2) is carried out using the MATLAB [45] opti-
mization toolbox routine lsqnonlin which solves nonlinear least squares problems. This routine by default uses
the so-called trust-region-reflective algorithm based on the interior-reflective Newton method [11, 12]. In addition,
lsqnonlin does not require the user to provide the gradient and, in addition, it offers the option of imposing
lower and upper bounds on the elements of the vector of unknowns. Further details regarding the application of
lsqnonlin to inverse geometric problems may be found in [30].
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5. Numerical examples

5.1. Example 1. We first consider an example from the literature for which the exact solution is known [1]. Here
we examine the case of a circular rigid inclusion where α = 1. In particular, we consider

Ω1 =
{

(x, y) ∈ R
2 : x2 + y2 < R2

0 < 1
}

, Ω2 =
{

(x, y) ∈ R
2 : x2 + y2 < R2 = 1

}

(5.1)

and

u(x, y) = log

√

x2 + y2

R0
. (5.2)

For any 0 < R0 < 1, the function u satisfies problem (2.1a)-(2.1d), with

f(x, y) = − logR0, g(x, y) = 1, (x, y) ∈ ∂Ω2. (5.3)

In our numerical experiments we consider the case R0 = 0.5. We take as initial guesses r0 = 0.3, a0 = b0 = 0 and
c0 = d0 = 0, and we fix as known the centre C at the origin (0, 0).
In Figure 1 we present the reconstructed curves for various numbers of degrees of freedom obtained in 20 iterations,
no noise and no regularization. From this figure it can be seen that very accurate and convergent numerical results
are obtained. In Figure 2 we present typical examples of reconstructed curves with noise level of p = 10% with
no regularization and M1 = M2 = 48, N = 8 for different numbers of iterations. From this figure it can be seen
that as the number of iterations increases instabilities start to manifest if no regularization is included. In Figure 3
we present the corresponding reconstructed curves with p = 10%, after 1000 iterations and various regularization
parameters λ1 with λ2 = 0. The corresponding curves for various regularization parameters λ2 with λ1 = 0 are
presented in Figure 4. In some instances, in this and subsequent examples, the use of regularization leads the
iterative process to converge in fewer than the prescribed maximum number of iterations. Overall from Figures 3
and 4 it can be seen that regularization with either λ1 = 120 or λ2 = 1, respectively, does smooth out the slight
oscillations recorded in the results of Figure 2 obtained after 1000 iterations with no regularization.

M
1
=M

2
=12, N=4 M

1
=M

2
=24, N=8

M
1
=M

2
=48, N=16 M

1
=M

2
=60, N=20

Figure 1. Example 1: Results after 20 iteration for various numbers of degrees of freedom, no
noise and no regularization.
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iter=10 iter=100

iter=500 iter=1000

Figure 2. Example 1: Results for noise p = 10%, no regularization and various numbers of iterations.

λ
1
=0 λ

1
=101

λ
1
=102 λ

1
=120

Figure 3. Example 1: Results after 1000 iterations for noise p = 10% and regularization with λ1.

5.2. Example 2. In this example, we consider a more complicated peanut-shaped rigid inclusion whose boundary
∂Ω1 is described by the radial parametrization

r(ϑ) =
3

4

√

cos2(ϑ) + 0.25 sin2(ϑ) , ϑ ∈ [0, 2π), (5.4)
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λ
2
=0 λ

2
=10−2

λ
2
=100 λ

2
=101

Figure 4. Example 1: Results after 1000 iterations for noise p = 10% and regularization with λ2.

in the case of α = 1, which was considered in [25]. The Dirichlet data (2.1b) on ∂Ω2 is taken as [25]

u(1, ϑ) = f(ϑ) = e− cos2 ϑ , ϑ ∈ [0, 2π). (5.5)

Since in this case no analytical solution is available, the Neumann data (2.1d) is simulated by solving the direct well-
posed problem (2.1a), (2.1c) and (5.5), when ∂Ω1 is given by (5.4), using the direct TCM with M1 = M2 = 100, N =
30. In order to avoid committing an inverse crime, the inverse solver is applied using M1 = M2 = 64, N = 6.
In Figure 5 we present typical examples of reconstructed curves with noise p = 10% with no regularization for
different numbers of iterations. In Figures 6 and 7 we present the corresponding reconstructed curves with p = 10%,
after 1000 iterations and various regularization parameters λ1 with λ2 = 0, and λ2 with λ1 = 0, respectively. The
L-curves [21, 20] obtained with regularization in λ1 or λ2 for noise p = 10% and 1000 iterations are presented in
Figures 8(a) and (b), respectively. From Figure 5 it can be seen that the numerically retrieved shapes are stable
and in reasonable agreement with the exact shape (5.4). This is somewhat surprising since no regularization has
been imposed, but it may be that oscillations will start to appear only after a larger number of iterations than
1000. Furthermore, Figure 6 shows that regularization with λ1 produces almost no improvement and, in fact,
Figure 8(a) illustrates that an L-curve could not be obtained in this case. On the other hand, Figure 7 shows that
regularization with λ2 between 10−2 to 1 does produce smoother and more stable and accurate solutions with the
choice of the regularization parameter given by the corner of the L-curve illustrated in Figure 8(b).

5.3. Example 3. In this example, we again consider the peanut-shaped cavity whose boundary ∂Ω1 is described
by the radial parametrization (5.4), this time in the case of α = 0, which was studied in [25, 29]. As in Example
2, the Dirichlet data (2.1b) on ∂Ω2 is given by (5.5). The Neumann data (2.1d) is simulated by solving the direct
problem using the direct TCM with, M1 = M2 = 100, N = 28. In order to avoid committing an inverse crime, the
inverse solver is applied using M1 = M2 = 64, N = 5.
In Figure 9 we present typical examples of reconstructed curves with noise level of p = 5% with no regularization
for different numbers of iterations. In Figures 10 and 11 we present the corresponding reconstructed curves with
p = 5%, after 500 iterations and various regularization parameters λ1 with λ2 = 0, and λ2 with λ1 = 0, respectively.
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iter=10 iter=100

iter=500 iter=1000

Figure 5. Example 2: Results for noise p = 10%, no regularization and various numbers of iterations.

λ
1
=0 λ

1
=10−3 λ

1
=10−2

λ
1
=10−1 λ

1
=100 λ

1
=101

Figure 6. Example 2: Results after 1000 iterations for noise p = 10% and regularization with λ1.

When λ2 ̸= 0, it was observed that in some cases the iterative process converged in fewer than the prescribed 500
iterations. From Figures 9-11 the same conclusions as those drawn from Figures 5-7 are obtained, although the
reconstructions of the cavity in Example 3 are slightly less accurate than the reconstructions of the rigid inclusion
in Example 2.
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λ
2
=0 λ

2
=10−3 λ

2
=10−2

λ
2
=10−1 λ

2
=100 λ

2
=101

Figure 7. Example 2: Results after 1000 iterations for noise p = 10% and regularization with λ2.

0.5 0.75 1

1.35

1.4 100

10−1

||Residual||
2

||c
oe

ffi
ci

en
ts

|| 2

(a)

0.5 0.6 0.7
0.1

0.15

0.2

100

10−1

||Residual||
2

|| 
r′ || 2

(b)

Figure 8. Example 2: L-curves obtained with regularization in (a) λ1 and (b) λ2 for noise p = 10%.

5.4. Example 4. We consider a rigid inclusion Ω1, i.e. α = 1, described by X = 0.5, Y = −1, R = 3.5 and the
radial parametrization

r(ϑ) = 1.52− 0.24 sin(3ϑ) , ϑ ∈ [0, 2π). (5.6)
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iter=10 iter=100

iter=200 iter=500

Figure 9. Example 3: Results for noise p = 5% and no regularization.

λ
1
=0 λ

1
=10−2 λ

1
=10−1

λ
1
=100 λ

1
=5 λ

1
=101

Figure 10. Example 3: Results for noise p = 5% and regularization with λ1.

This example, which was considered in [44] for the Stokes equations in slow viscous flow and in [30], is more
difficult than the previous examples because of the fact that we now consider the centre of the cavity as unknown.
The Neumann data (2.1d) is simulated by solving the direct problem using the MFS with 400 sources and 400
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2
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2
=100

Figure 11. Example 3: Results for noise p = 5% and regularization with λ2.

collocation points. The inverse TCM solver is applied using M1 = M2 = 64, N = 6. The starting position of the
centre in the iterative process was taken to be the origin.
In Figure 12 we present typical examples of reconstructed curves with noise level of p = 5% with no regularization
for different numbers of iterations. In Figures 13 and 14 we present the corresponding reconstructed curves with
p = 5%, after 1000 iterations and various regularization parameters λ1 with λ2 = 0, and λ2 with λ1 = 0, respectively.
From Figures 12-14, the same conclusions as those drawn from Figures 5-7 for Example 2 and Figures 9-11 for
Example 3 are obtained. This shows that the reconstruction method also performs well when the centre of the
star-shaped void is unknown.

5.5. Example 5. We finally consider the same obstacle as in Example 4, given by (5.6) but in the case of α = 0,
i.e. Ω1 is a cavity. The numerical details are the same as in Example 4.
In Figure 15 we present the results obtained for different numbers of iterations, with p = 5% noise and no
regularization. In Figures 16 and 17 we present the corresponding reconstructed curves with p = 5%, after 500
iterations and various regularization parameters λ1 with λ2 = 0, and λ2 with λ1 = 0, respectively. From Figures
15 and 16 it can be seen that the numerically obtained shapes with λ1 = λ2 = 0, or λ2 = 0, λ1 > 0, are unstable,
whilst from Figure 17 it can be observed that regularization with λ2 between 10−4 and 10−2 produces smoother
stable reconstructions.

6. Extension to multiple voids

The TCM analysis performed so far showed the successful implementation of this method for the identification of
a single void. In this section we extend the analysis to multiple voids which may contain both cavities and rigid
inclusions. For the sake of clarity, we describe the formulation for the case of two voids. Therefore, we consider
the inverse problem

∆u = 0 in Ω, (6.1a)



TREFFTZ METHOD FOR VOID DETECTION 13

iter=10 iter=100

iter=500 iter=1000

Figure 12. Example 4: Results for noise p = 5%, no regularization and various numbers of iterations.
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Figure 13. Example 4: Results after 1000 iterations for noise p = 5% and regularization with λ1.

subject to the boundary conditions

u = f and ∂nu = g on ∂Ω2, (6.1b)

and the homogeneous boundary conditions

α1u+ (1− α1)∂nu = 0 on ∂Ωa
1 , where α1 ∈ {0, 1}, (6.1c)
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Figure 14. Example 4: Results after 1000 iterations for noise p = 5% and regularization with λ2.

iter=10 iter=100

iter=200 iter=500

Figure 15. Example 5: Results for noise p = 5%, no regularization and various numbers of iterations.

and

α2u+ (1− α2)∂nu = 0 on ∂Ωb
1 , where α2 ∈ {0, 1}. (6.1d)

Here Ωa
1 and Ωb

1 are two disjoint voids, such that Ωa
1 ∪ Ωb

1 = Ω1 and Ωa
1 ∩ Ωb

1 = ∅.
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Figure 16. Example 5: Results after 500 iterations for noise p = 5% and regularization with λ1.
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Figure 17. Example 5: Results after 500 iterations for noise p = 5% and regularization with λ2.

The outer boundary collocation points are chosen as

xM1+M2+ℓ = R(cos ϑ̃ℓ, sin ϑ̃ℓ), ℓ = 1,M3, (6.2)

where ϑ̃ℓ =
2π(ℓ−1)

M3

, ℓ = 1,M3.
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We further assume that the unknown boundaries ∂Ωa
1 and ∂Ωb

1 are a smooth, star-like curves with respect to their
centres which have unknown coordinates (Xa, Y a) and (Xb, Y b), respectively. This means that their equations in
polar coordinates can be written as

x = Xa + ra(ϑ) cosϑ, y = Y a + ra(ϑ) sinϑ, (6.3)

x = Xb + rb(ϑ) cosϑ, y = Y b + rb(ϑ) sinϑ, ϑ ∈ [0, 2π), (6.4)

where ra and rb are smooth 2π−periodic functions.
The discretized forms of (6.3) and (6.4) for ∂Ωa

1 and ∂Ωb
1 become

rak = ra(ϑk), k = 1,M1 and rbℓ = rb(ϑℓ) ℓ = 1,M2. (6.5)

We choose the inner boundary collocation points as

xk = (Xa, Y a) + rak (cosϑk, sinϑk) , k = 1,M1 (6.6)

xk = (Xb, Y a) + rbk (cosϑk, sinϑk) , k = M1 + 1,M1 +M2. (6.7)

Since we have more than one void and their centres are not at the origin, the basis (3.2) needs to be modified as
in the doubly connected domain, to (see [16])

{

1, log |z − za|, log |z − zb|,ℜ(zn),ℑ(zn),ℜ((z − za)−n),ℑ((z − za)−n),

ℜ((z − zb)−n),ℑ((z − zb)−n); z = x+ iy, n ∈ N
}

, (6.8)

where za = Xa + iY a, zb = Xb + iY b and therefore the TCM approximation becomes

uN (α,β,γa,γb, δa, δb;x) = α0 + γa
0 log |z − za|+ γb

0 log |z − zb|+
N
∑

k=1

αkℜ
{

zk
}

+
N
∑

k=1

βkℑ
{

zk
}

+
N
∑

k=1

γa
kℜ
{

(z − za)−k
}

+
N
∑

k=1

δakℑ
{

(z − za)−k
}

+
N
∑

k=1

γb
kℜ
{

(z − zb)−k
}

+
N
∑

k=1

δbkℑ
{

(z − zb)−k
}

, (6.9)

for x = (x, y) ∈ Ω.
The coefficients (αk)k=0,N , (βk)k=1,N ,

(

γℓ
k

)

k=0,N,ℓ=a,b
,
(

δℓk
)

k=1,N,ℓ=a,b
in (6.9), the radii (rak)k=1,M1

,
(

rbk
)

k=1,M2

in

(6.5), and the coordinates of the centres (Xa, Y a), (Xb, Y b) can be determined by imposing the boundary conditions
in a least-squares sense. This leads to the minimization of the functional

S(α,β,γa,γb, δa, δb, ra, rb,C) :=

M1+M2+M3
∑

j=M1+M2+1

[

uN (α,β,γa,γb, δa, δb;xj)− f(xj)
]2

+

M1+M2+M3
∑

j=M1+M2+1

[

∂nuN (α,β,γa,γb, δa, δb;xj)− gε(xj)
]2

+

M1
∑

j=1

[

α1uN (α,β,γa,γb, δa, δb;xj) + (1− α1)∂nuN (α,β,γa,γb, δa, δb;xj)
]2

+

M1+M2
∑

j=M1+1

[

α2uN (α,β,γa,γb, δa, δb;xj) + (1− α2)∂nuN (α,β,γa,γb, δa, δb;xj)
]2

+ λ1

(

|α|2 + |β|2 + |γa|2 + |γb|2 + |δa|2 + |δb|2
)

+ λa
2

M1
∑

ℓ=2

(

raℓ − raℓ−1

)2
+ λb

2

M2
∑

ℓ=2

(

rbℓ − rbℓ−1

)2
, (6.10)

where λ1, λ
a
2 , λ

b
2 ≥ 0 are regularization parameters to be prescribed, ra = [ra1 , r

a
2 , . . . , r

a
N ]T , rb = [rb1, r

b
2, . . . , r

b
N ]T ,

and C = [Xa, Y a, Xb, Y b]T . The number of unknowns is 6N + 3 + M1 + M2 + 4 and the number of boundary
collocation equations M1 +M2 + 2M3, and thus we need to take 2M3 ≥ 6N + 7.
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6.1. Example 6. We consider the case when two rigid inclusions α1 = α2 = 1) Ωa
1 and Ωb

1 are present. The
domain Ωa

1 is a disk of radius 1, with centre Xa = 1, Y a = −1, while the domain Ωb
1 is described by the radial

parametrization

r(ϑ) =
1 + 0.8 cos(ϑ) + 0.2 sin(2ϑ)

1 + 0.7 cos(ϑ)
, ϑ ∈ [0, 2π), (6.11)

and has centre Xb = −1, Y b = 1. In this example which was also examined in [29] we take R = 3.5. The Neumann
data (2.1d) is simulated by solving the direct problem using the MFS with 600 singularities and 600 collocation
points. The inverse TCM solver is applied using M1 = M2 = 32,M3 = 64, N = 6. The starting position of the
centres in the iterative process was taken to be (0.5,-0.5) and (-0.5,0.5), respectively.

In Figure 18 we present the results obtained for different numbers of iterations, no regularization, and p = 5% noise.
In Figures 19 and 20 we present the corresponding reconstructed curves with p = 5% noise, after 500 iterations,
and various levels of regularization λ1 with λ2 = λa

2 = λb
2 = 0, and λ1 = 0 with λ2 = λa

2 = λb
2, respectively. Overall,

Figures 18-20 illustrate that the MFS can successfully retrieve voids having two connected components.

iter=10 iter=100

iter=200 iter=500

Figure 18. Example 6: Results for noise p = 5%, no regularization and various numbers of iterations.

7. Conclusions

We have applied the TCM combined with a nonlinear least-squares minimization for the solution of several inverse
geometric problems including the detection of voids such as rigid inclusions and cavities. The centre of the assumed
star-shaped void may or may not be known. For several test examples involving various shapes the method
performed well producing accurate and stable reconstructions with relatively few terms in the approximating
expansion of the solution. In some of the cases where cavities were considered ill-conditioning was observed. This
is due to the inherent ill-conditioning of the TCM. Regularization appears to alleviate to a great extent this problem.
The reconstruction of multiple voids is also possible with the proposed method. Extensions of the present approach
could include applications to inverse geometric problems governed by the Helmholtz and biharmonic equations as
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Figure 19. Example 6: Results after 500 iterations for noise p = 5% and regularization with λ1.

λ
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Figure 20. Example 6: Results after 500 iterations for noise p = 5% and regularization with λ2.

well as applications to three-dimensional inverse geometric problems by using the appropriate bases listed in [38,
pages 32-33].
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