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  Earthquake events are inevitable but the consequences of earthquake disasters are partially 

controllable using an effective risk management system, since the seismic risk is the interaction 

of ground shaking intensity with the built environment. A systematic risk-based method is 

proposed for assessing the resilience capacities of school buildings exposed to varying levels of 

seismic risk. This approach screens and monitors the equivalent seismic performance of buildings 

by the means of new composite risk index (FSRi). The process of performance assessment of 

existing buildings is usually performed through walk-down surveys and associated with expert 

judgments which are often highly subjective. The pervasive nature of uncertainty within the risk 

assessment process often ignored or not completely reflected within the existing models. To 

handle the uncertainty associated with risk attributes, fuzzy set theory was used to characterize 

the uncertain qualitative information. The application of the model was applied to retrofitting 

school buildings in Iran. The screening results reveal that the composite risk index (FSRi) does not 

necessarily follow its factors’ trends and therefore relying on sole factors such as hazard and 

vulnerability may mislead the decision making process . Therefore seismic mitigation decisions 

should be made in compliance with the multi dimensional aspects of seismic risk as an 

aggregated index rather , such as FSRi. 

 

Key words: seismic risk management, fuzzy logic, uncertainty, vulnerability 
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The resilience of infrastructure in seismic areas is one of the grand challenges for 

many countries particularly in facilities such as schools that carry high occupancy load. 

Even though the seismicity of the regions remains constant, the rapid increase in 

population, urbanization and economic development can significantly increase the 

seismic risk and trigger a disastrous event. Reported damage and losses in recent 

earthquakes in Iran highlights the importance of school protection and risk assessment. 

More than 90% of local educational establishments which catered for 10,000 students 

were lost or destroyed in 2003 Bam seismic event (IIEES 2003). Most of this loss could 

have been prevented by identification and primary screening of vulnerable schools. 

Educational facilities deserve special attention because of their primary role with 

vulnerable users. To reduce seismic induced impacts and to promote life safety, an 

effective risk management system is of utmost important. Thus in recent decades ,  risk 

methodologies have tried to include not only the estimated physical damage, the 

number and type of casualties or economic losses , but also the conditions related to 

social vulnerability and lack of resilience (Carreno et al 2006) 

Several risk assessment systems exist which are capable of computing damage and 

casualties in many cities of the world based on probabilistic concept (Chen et al 2010; 

Davison and Shah 1997; Cardona O. D 2004; PEER 2011). The important ingredients of 

this loss estimation procedure is consideration of hazard related factors reflecting the 

losses and direct physical damages  to building stock. Imprecise measurements of the 

damages and losses of a disaster are often the major concern in such probabilistic-based  

approaches. Karbassi and Nollet (2008) developed a rapid visual screening approach for 

existing buildings in Quebec using standard loss estimation concept. Sen (2010, 2011) 

applied a similar approach to estimate the seismic hazard of buildings in Turkey focusing 

on related hazard-related attributes to represent the overall seismic risk taking to the 

account magnitude and some basic structural indices such as soft storey , building height  

stiffness , storey , etc.  However specific hazard factors would be limited to certain group 

of buildings in specific area only and would not be reliable to be used for use in other 

regions. Besides , hazard assessment requires detailed historical records and reliable 

structural performance indices which may not always available in many areas. In cases 

where historical records are missing or available information is scarce or imprecise 

conventional probabilistic-based approaches may not be able to generate reliable 

results. Limitations and imperfections in historical data, along with imprecise human 

perception in capturing the multi dimensional aspects of seismic risk, pose great 

uncertainties for the seismic risk assessment process. Moreover, evaluating and 

synthesizing a large amount of information from a variety of sources is acknowledged as 

a complex process. 

Seismic risk assessment requires aggregation of numerous non-commensurable input 

parameters. Several methods of aggregation are reported in literature including simple 

aggregating operators (e.g. average , MIN , MAX) ,  weighted arithmetic mean (WAM) , 

simple multi attributes rating technique (SMART) , analytic hierarchy process (AHP) and 

other generic multi criteria decision analysis (MCDA). Aggregating multiple inputs of a 

complex system into a single output should reliably and precisely represent the whole is 
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a synthesis as parts (Ross 2004) . According to Tesfamariam and Sediq (2008) there is a 

potential for loss of information in conventional aggregation methods due to 

exaggeration and eclipsing. Both types of errors can unacceptably generate the high 

score output for unimportant input and conversely, low score results for high 

importance parameters. These errors normally stem from ignoring the properties of 

input data and type of uncertainties involved  , complexity of system and capacity of the 

aggregating methods in handling both uncertainty and complexity. For example 

Davidson and Shah (1997) developed an earthquake disaster risk index(EDRI) based on 

WAM to evaluate the seismic risk between cities. Kapes et al (2012) examined SMART 

Assessing physical vulnerability for multi-hazards. Cardona et al (2004) used AHP to 

estimate the weights of seismic risk factors . Carreno et al (2006) improved a similar 

approach using a fuzzy attributes capable of aggregating wide array of input. 

Tesfamariam and Liu (2013)conducted a comparative study using Bayesian belief 

network(BBN) and WAM to estimate the seismic risk over 11 Canadian cities. BBN, as 

with other heuristic based methods, has shown more utility and strength in aggregating 

and differentiating the results comparing to WAM. 

Generally, aggregating the parameters associated  with a complex system such as an 

earthquake requires a heuristic methodology capable of interacting with different range 

of information , fact , algorithm and experience. The great challenge of existing 

approaches is three folds. First there are lots of factors involved in risk assessment 

whose importance varies from place to place and thus the factors should be calculated 

so as to adequately represent the situation and the scope of the application. Second 

experts opinions and experiences play a major role in preliminary risk assessment 

imposing significant uncertainty into the process that needs to be accountable. Third the 

adopted methodology should be consistent with former needs and be capable of not 

only aggregating reliably the risk factors and expert views and experiences but also of 

simply reflecting the uncertainty of the results to guide decision making process. 

Further, there is an urgent need for a comprehensive system capable of integrating 

multiple risk factors effectively and efficiently since the detailed hazard assessment is a 

technically complex and expensive process which may not deliver precise results for 

some buildings (Sinha and Goyal 2004). Alternatively , the preliminary risk assessment 

can assist risk mitigation process by screening the schools in terms of their risk 

influencing factors. In this way , more detailed investigations can be focused and limited 

to the most critical buildings. 

   Therefore, the main purpose of this paper is to develop a new heuristic method for 

seismic risk assessment that simply characterizes and represents the seismic risk 

influencing factors, capable of aggregating types of information, facts and experiences. 

The research contributes primarily a new heuristic methodology that is systemically 

capable of integrating seismic risk factors and handling uncertainty through the risk 

assessment process. The paper determines the overall fuzzy seismic risk index (FSRi) 

through fuzzy based methodology. The scope of this work covers the preliminary risk 

assessment of large group of school buildings in high seismic zones.  
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Iran is known as a country prone to high levels of seismic activity and has 

experienced more than 130 strong earthquakes in the recent past. The national hazard 

map of the country indicates that a large populated portion of the country, almost 37%, 

is subject to frequent earthquakes (Ghafory-Ashtiany and Hosseini  2007). Furthermore, 

much of the economic and social infrastructure in Iran is prone to medium to high 

degrees of seismic risk. This is due to a combination of poor risk management and 

inconsistent prediction of seismic risk impacts when choosing the project sites. Having 

acknowledged the earthquake threat and with a desire to improve mitigation measures, 

Iran’s government enacted a seismic mitigation policy to reduce seismic risk impacts for 

infrastructure and public buildings. Seismic mitigation measures were initialized after 

the 1997 Manjil earthquake and were accelerated following 2003 Bam seismic event. 

Particular attention was devoted to the educational sector because of the vulnerability 

of both the buildings and occupants across country. The national school inventory (NSI 

2010) database shows that 22% of the total population (nearly 14 million students) is 

exposed to the threat of a medium to high intensity earthquake event. The latest survey, 

made by school rehabilitation office, reveals that about 65% of the total schools 

(110,000) do not have the structural capacity to withstand a likely earthquake. Within 

the preliminary screening phase almost 15,000 vulnerable schools were identified across 

country .It was agreed that retrofitting and strengthening works would be carried out 

within a tight schedule (five year mitigation program). Practically, evaluating and 

managing this large number of projects in a tight time frame is critical. Two mitigating 

measures have been officially adopted namely ‘retrofitting’ and ‘reconstructing’ 

(demolish and rebuild). The process of evaluating vulnerable schools is usually 

undertaken by a group of experts (Retrofit engineering consultants) through a complex 

structural performance analysis leading to a feasible structural reinforcing system. The 

conceptual study needs to be peer reviewed and approved for construction by an expert 

panel chosen from universities prior to tender. The process of decision making for each 

school building typically takes at least 6 to 12 month. Considering the large number of 

participant schools in the retrofitting scheme, only a small percentage of these schools 

will pass through the process every year. Thus developing a system of risk assessment in 

schools which can facilitate the decision making process, particularly for those in urgent 

need, and provide a roadmap for disaster planning and management is paramount. 

 ��!"��
�����
��������������

����

Simnovic (2011) defined a disaster system as a set of complex dynamics involving the 

interaction of innumerable systems parts within three major systems: the physical 

environment; the social and demographic characteristics of the communities that 

experience them; and the buildings, infrastructures and other components of the 

constructed environment. Seismic risk systems facilitate the evaluation and monitoring 

of the hot spot locations within the network and convert this data into knowledge that 

would be extremely valuable to decision makers involved in seismic risk management 

(Chen at al 2010). Indicator based systems are in demand in policy circles in order to 

identify, rank (for the purpose of informing resource allocation, or targeting support 

programs or other interventions) (Eikin et al 2008). Theoretically, all applicable indexes 
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need to be considered within a disaster system; however it is impractical to include all 

possible factors. 

Several approaches have been developed with the goal of identifying indicators that 

could serve as proxies for commonly used attributes of risk and vulnerability. A 

classification of various vulnerability and risk systems can be found in Birkmann (2006). 

The United Nation Development Program (UNDP) has produced the Disaster Risk Index 

(DRI) a national level disaster risk assessment index, emphasizing the relationship 

between disaster risk and national development (UNDP 2004). The U.S. Federal 

Emergency Management Agency (FEMA) established multi hazard disaster risk 

assessment system using HAZUS. The HAZUS system is based on a Geographical 

Information System (GIS) platform for direct and indirect (physical, economical and 

social) loss estimation on a regional scale. HAZUS loss functions and damage estimation 

module could be a reliable predictor of seismic impacts for generic median cases (HAZUS 

2001); however the applicability of such approaches are limited because they have been 

developed for a particular region and thus cannot be easily applied in another 

geographic area. Such sophisticated systems require large computational and 

information resources as well as high quality data which may be unavailable (Rodriguez 

et al 2012).  

Some studies particularly focused on seismic risk management. Using a linear 

weighting system, Davison and Shah (1997) introduced an index system for evaluating 

earthquake risk in urban cities .Cardona et al (2004) developed a holistic risk system 

taking to the account socio-economic aspects of seismic risk including physical exposure, 

social fragility and resilience. Using the structural damageability index as major factor,  

Tesfamariam and Wang (2011) established a risk-based indicator system for prioritizing 

civic infrastructure in U.S. 

With the aim of creating a comprehensive tool that provides metrics concerning the 

main disaster risk influencing factors with the presence of uncertainty, a new evaluation 

indicator system has been designed by the authors. This model uses a fuzzy based 

approach to handle uncertain information of risk attributes such as vulnerability that 

relies on field survey and engineering judgment. This model is further outlined in the 

following sections. 

#��$��
����������

����������

  A systematic fuzzy based methodology for evaluating and rating the seismic risk was 

proposed in four stages including risk analysis, risk assessment, verification and risk 

ranking as shown in Figure 1.This approach used a knowledge-based expert system to 

aggregate the knowledge from different sources of data, information, and multiple 

experts’ opinions. Expert system is appropriate for evaluating seismic risk because much 

of the assessment involves expert opinion and knowledge from past experience.  
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Figure 1 – Framework of fuzzy risk assessment 

   

  Initially, a project survey was conducted to collect related data and quantify into units. 

For instance, baseline information related to site condition, building inventory and 

microzonation maps are required to characterize the seismic risk factors and evaluate 

the carrying capacities of different sites with respect to hazard and vulnerability. Given 

the complexity of the interactions amongst factors and the necessity of managing the 

common pitfall of the fuzzy system, called the “Curse of dimensionality”, a hierarchical 

system to be established. This issue happens in the fuzzy systems since the number of 

rules and hence the complexity increases exponentially with the number of variables 

involved in the system (Tesfamariam and Wang 2011).  

   Structuring the risk systems is a crucial step toward knowledge base development 

since the risk assessment process is accommodated using a knowledge base inference 

system to synthesize the knowledge from different sources of data, information, and 

multiple expert opinions. An expert system is appropriate for evaluating seismic risk 

because much of the assessment involves expert opinion and knowledge from past 

experience. In this stage, the risk attributes are mapped to a fuzzy scale and aggregated 

using knowledge base reasoning: rule base. Acquiring knowledge for rule base module 

can be achieved from expert survey and experimental data. Considering the 

impreciseness and vagueness of the knowledge acquisition process, all information 

should be described on the basis of a common natural linguistic scale. This process is so 

called as fuzzification. To quantify various linguistic terms for describing the risk 

attributes, the basic input parameters needs to be grouped (or clustered) into the 

linguistic quantifiers such as low(L), medium(M) and high (H). In the other word, the 

input values are converted (or fuzzified) into a homogenous scale by assigning 
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corresponding membership functions (MFs) to the clustered data.  After converting the 

crisp data and clustering to different MFs, the knowledge base rules can be evaluated 

using an Inference engine. The knowledge base rules defines the relationships among 

risk attributes. The outcome of the Inference engine is a fuzzy index representing the 

interaction of multiple attributes in each category. The aggregated fuzzy risk index 

encompasses a range of values and thus it must be defuzzfied to a single value. For 

example Center of Area (COA) is the most common method for defuzzification that 

develops the center of gravity of the area under membership function.   

  To verify the robustness of the aggregation results, sensitivity analysis is applied to 

ensure the variation and uncertainty of risk attributes is within the range. The inference 

process has to be applied for each category of seismic risk, including hazard factors, 

vulnerability and etc. The crisp defuzzified results of the four sub-models are then 

combined together through a new Inference system to generate the overall fuzzy 

seismic risk index (FSRi) as shown in Figure 2. Finally, schools can be prioritized in 

accordance with their FSRi and may be monitored for further mitigation action. The 

main steps of the methodology are outlined in more detail in following sections. 

 

 

 Figure 2 – Developing hierarchical fuzzy system by integrating different FIS    
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  According to Carreno et al (2006) risk is defined as the potential economic, social and 

environmental consequences of hazardous events that may occur in a specified period 

of time. The purpose of risk management is to assist decision makers in formulating 

relevant risk prevention, reduction or mitigation measures and policies. Thus the scope 

of risk assessment should consider not only scientific and physical aspects but also social 

and economic dimensions of risk need to be acknowledged (Chen et al 2010).   

 Selection of the underpinning methodology is very important for the process. There are 

two main streams in literature for characterizing the seismic risk; the probabilistic 

approach and the more ’mixed method’ fuzzy approach. Conventional probabilistic 

based approaches use historical records related to damage and intensity to describe the 

seismic hazard and vulnerability respectively; however this methodology might be 

restricted due to lack of data. Alternatively, the fuzzy seismic risk index (FSRi) can be 
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used on the basis fuzzy set theory as proposed by Zadeh (1965). Unlike previous 

approaches; this methodology relies on subjective information to describe the 

relationship of seismic risk with hazard and vulnerability. 

  In this paper, the risk model is developed by applying the fuzzy concept on a 

hierarchically-structured system using common risk factors that mostly been considered 

as important in literature (UNDP 2004; Davison and Shah 1997; Cardona O. D 2004; PEER 

2011). Risk is characterized in this research by the fuzzy seismic risk index (FSRi) 

representing the multidimensional aspect various risk attributes such as hazard (H), 

vulnerability (V) , exposure (E) and response management (RM).Hazard refers to 

potential intensity or severity of a disaster event that threats the life, property and 

business. Earthquake hazard could cause severe damage and losses to people and 

building assets which can be expressed by exposure factor. Vulnerability conveys a 

broad range of degrees of susceptibility for people and buildings exposed to severe 

earthquake. In countries with both technically sound seismic codes and active regulation 

and enforcement, their building stocks would likely be above a certain safety threshold 

and thus responses capacity and recovery management could have as important as 

other risk factors. Areas with high density population and with sparse infrastructures 

would be exposed to a great amount of risk during an earthquake event. For the regions 

which have had an emergency response policy and critical plans for disaster 

management, for example early warning systems, shelters and first aid provisions, the 

risk of loss could be considerably reduced and managed. 
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  Based on the conceptual framework of seismic risk outlined above, a hierarchal risk 

breakdown structure has been established. This structure provides the basis for 

classification and characterization of risk factors by the means of relevant scope. The 

hierarchy was structured in three levels as illustrated in Figure 3. Level 1 denotes the 

objective of the decision problem defined as ”fuzzy seismic risk index” (FSRi). Level 2 

represents a set of factors that play major role in characterizing the seismic risk context.  



9 

   

 

Figure 3 – Hierarchal structure for seismic risk  

  In Level 3 , four major factors including H, V, E and RM were further broke down into 

more detailed attributes to reflect more precisely the seismic risk aspects. For example, 

hazard was characterized by five attributes namely H1 to H5. Some attributes such as 

“Ground shaking index” and “Closeness to the faults” were selected to take potential 

intensity of earthquake hazards into the account. Potential instability refers to seismic 

impact capacity which could be induced by liquefaction and sliding due to ground 

conditions. “Liquefaction susceptibility” could amplify the hazard by reducing the 

bearing capacity of the soil grades during a likely earthquake event. “Sliding 

susceptibility” linked to the topographical impacts that may occur if the building located 

on slope or susceptible soil. Clearly, the population density in a school affects the 

potential loss of life and consequently has a direct impact on the seismic risk; likewise, 

other factors were broken down into more detailed attributes so as to be measured 

effectively.   
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In the fuzzification step, all the qualitative and quantitative variables can be measured 

based on a common scale, the so called linguistic variables. The use of linguistic 

variables facilitates the handling imprecise qualitative information using common scale 

in a flexible manner (Miri Lavasani et al 2011). The use of such a scale facilitates the 

quantification of imprecise statements as ‘low’, ‘very low’ to ‘fairly’ (Schmucher 1984). 

Describing a risk attribute may vary considerably in practice due to individual 

E3 

E2 

E1 

V6 

V4 

V5 

V3 

V2 

V1 

RM4 

RM5 

RM3 

RM2 

RM1 

H4 

H5 

H3 

H2 

H1 

Fuzzy Seismic 

Risk Index (FSRi) 

Level 2 

Risk Factors 

Hazard  (H) 

  

Vulnerability (V) 

Exposure (E) 

Level 3 

Risk attribute 

Level 1 

Risk Index 

SOIL TYPE 

CLOSNESS TO FAULT 

POTENTIAL INSTABILITY 

GROUND SHAKING INDEX  

POPULATION DENSITY 

POPULATION DENSITY 

POPULATION EXPOSED 

BUILDING AGE 

HOURS OF OPERATION 

USERS AGES 

STRUCTURE TYPE 

Response 

Management (RM) 

ENGINERING PERFORMANCE 

AREA EXPOSED 

ASSET VALUE EXPOSED 

HOSPITAL INDEX 

REGIRNAL POPULATION INDEX 

PHYSICIAN INDEX 

PLANNNG & DISASTER MANAGEMENT INDEX 

INFRASTRUCTURE INDEX 

LIQUIFATION SUCCEPTIBILITY 

SLIDING SUCEPTIBILITY 

CODE INDICATOR 

CODE CONFORMANCE 



10 

understanding, situations and application oriented. Linguistic terms allow expert 

judgment to be consistently managed in a common language scale. 

   Membership functions (MFs) represent the degree to which an element of a set fits 

the linguistic scale. Various membership function (MFs) can be used to develop a fuzzy 

system including triangular, trapezoidal, Gaussian, etc (Figure 4).  

 

Figure 4 – Various membership functions 

  Triangular functions has been adopted to describe the input variables (risk attributes) 

at the third level of the hierarchy.  Alternatively, for other risk factors in second and first 

level of hierarchy that require more accuracy and smooth transition in output results, a 

Gaussian function was implemented. Karwowski and Mital (1986) recommended using 

five to nine linguistic terms to get high performance results in judgment process. Having 

reviewed the attributes and considered the expert opinion, five levels scale was selected 

for linguistic variables including ‘very low’ (VL) , ‘low’ (L) , ‘medium’ (M)  , ‘high’ (H) and 

‘very high’ (VH).   
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  Fuzzy inference system consists of a knowledge base that defines the relationship 

between input and output parameters of system. The knowledge base  is commonly 

presented as a set of IF-THEN rules expressing the expert's opinion valuation for a 

particular uncertain state of risk attribute. It can be simply shown as : 

IF   x = A1   AND  y = B1  THEN   z = C1 

where A1 , B1 and C1 are the linguistic values defined by fuzzy sets on universe of 

discourse X and Y. The source of IF-THEN rules stems from the use of linguistic variables 

(Zadeh 1965).For simplicity ,the process of generating rule base consisting of hazard 

attributes is shown in Table 1.  
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Table 1 - Typical rule base aggregation process  

Hazard attribute Aggregation process 
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 In this study combination of large number of rules was handled through fuzzy logic 

toolbox of MATLAB. Sample module of Hazard is indicated in Figure 5.  

 

Figure 5 - Sample rule base viewer in MATLAB for Hazard attributes 
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  The purpose of schools, their occupancy, their economic basis, and their role in society 

are features that distinguish them from other building types (FEMA 2002). A trial case 

example of the seismic risk system was applied to selected country schools in Iran. The 

initial screening of schools conducted by school rehabilitation office (SRO 2011) showed 

that almost 65% of total buildings required either retrofitting or reconstruction. The 

report also reveals that a high percentage of schools, over 68%, were built prior to 1989 

when no seismic code of practice was in force.    

  For this research,a sample of twenty one school buildings were taken from moderate 

to high seismic risk regions of Iran. The schools chosen in the case study represented a 

variety of material types, structures, population and site conditions. The building 

inventory database established by the school rehabilitation office (SRO 2011) together 

with the national census (IIEES 2003; BHRC 2006) were taken as main sources for current 

study. 

,���(�+���
�����
����

  Applying the five FIS’s to the seismic risk framework articulated earlier, the risk factors 

can be integrated within the hierarchy as depicted in Figure 6. This diagram shows the 

integration of input-output of each risk sub-system that can be carried out in two steps. 

Initially, different risk attributes at level three are combined with regard to their fuzzy 

rules. The output variables in FIS-1 to FIS-4 represent the risk factors that are computed 

for each school.  These data were considered as input variables for next level that to be 

imported to FIS-5 based on the new reasoning rules to develop the fuzzy seismic risk 

index (FSRi). 

 

 

Figure 6 – Integrating FIS for seismic risk system 
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  The fuzzy system implemented in risk model is based on a Mamdami and Assilian 

(1975) with the characteristics reported in Table 2. 

Table 2 - Characteristic of Mamdani Model 

Operation Operator Formula 

Union (OR) MAX µc(x)= max(µA(x), µB(x))= µA(x) ∨∨∨∨ µB(x) 

Intersection (AND) MIN µc(x)= min(µA(x), µB(x))= µA(x) ∧∧∧∧ µB(x) 

Aggregation MIN max(min (µA(x), µB(x))) 

Defuzzification COA COA=∫x µC(x)dx / ∫ µA(x) dx 

 

As an example, applying Mamdani model to FIS-5 , using MIN operator for aggregating 

the risk factors : 

µFSRi(x)= max(min (µH(x), µV(x), µE(x), µRM(x))) = max(µH(x) ∧ µV(x) ∧ µE(x) ∧ µRM(x)) 

Where µ is a membership function for each variable and ∧ and ∨ are max and min 

operators, respectively. The process of aggregation was modeled through MATLAB® 

Fuzzy Logic Toolbox. 
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    In current study, five sets of linguistic scale were taken for risk attributes as indicated 

in Table 3. This classification covers the whole range of data including min and max 

values; Though some qualitative attributes may be simply described by three or four 

scales such as H1 (as indicated in local seismic code) or engineering performance index 

V2.  

Table 3 – Linguistic scale for representing the risk attributes 
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  Some attributes are broken down into more detailed factors as indicated in Table 4, 5 

and 6. Clearly, a hazard index can be dramatically increased by proximity to a fault. Any 

school building in can be endangered by collateral hazards such as liquefaction and/or 

sliding phenomena that may be caused following an earthquake ,Table 3.The standard 

maps for liquefaction and sliding have been developed by IIEES and taken as benchmark 

for determining the potential instability (PI) index for each site. Soil type has also a direct 

impact on earthquake amplification and propagation the structural damage. Generally 

speaking, the deeper the soils, the more damaging the earthquake motion will be (FEMA 

2002). According to the soil classification made by BHRC (2006), four types of soil were 

considered in the hazard assessment module. 

Table 4 – Potential Instability      Table 5- Structure Index          Table 6 – Engineering Performance 

     

The engineering performance of a school building depends on the year in which building 

constructed (Pre-code/Post-code) and how much the building conforms to current code 

of practice (Table 6). Having known the year in which seismic codes were initially 

adopted and enforced by the local jurisdiction and the year in which significantly 

improved seismic codes were implemented as a benchmark, the building conformity 

index can be deduced. In the current case study most of the buildings were identified in 

pre-code period meaning that no seismic requirements were considered in design and 

operation.  
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   The development of the rules describing the relationship between linguistic variables is 

a critical step, because they describe the heuristic knowledge about the behavior of the 

physical system (Gentil e al., 2003). Initially, the lowest and most effective set of rules 

that describe each FIS needs to be identified. This selection requires extensive cause and 

effect analysis of each linguistic variable and requires also the collaboration of experts 

who are involved in subjective judgment. 

   As an example, the variables ‘‘FSRi” has five fuzzy sets for each factor and totally 625 

(5x5x5x5) rules can be developed to describe the FIS-1; although the system can be 

further simplified by discarding the least significant rules which has no data in input 

variables. The calculation of “FSRi” requires five inputs at the same time. This process 

was programmed in MATLAB® to reduce the human error and complexity in defining the 

rule base. The risk factors can be primarily modeled in pair based on common sense 

judgment as already discussed. For example IF “Hazard” is L AND ‘Vulnerability’ is M 

THEN ‘FSRi’ is L. For simplicity, the reasoning rules can be expressed in matrix format as 

shown in Table 7 and 8. 
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    Table 7 – Rule matrix for H and V                                          Table 8 – Rule matrix for H and E 
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  Similarly, the fuzzy rule base applied to different levels of hierarchy including risk 

attributes, factors as described within fuzzy risk framework. The output variable range of 

1–10 is selected by the experts as being the most convenient language to discuss the 

consequent variable of each rule set. For seismic risk interpretation, the linguistic terms 

of ‘VL’, ‘L’, ‘M’, ‘H’ and ‘VH’ corresponds with ‘Light’, ‘Moderate’, ‘Critical’, ‘Disaster’ and 

‘Catastrophic’ situations respectively . 
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    Setting up the MFs and rule bases using MATLAB®, the regional and site-specific data 

for each school were imported to Inference system to obtain the aggregated risk index. 

The output results for risk factors and overall FSRi are presented in Table 9. The risk 

ranking results highlight those schools needing retrofitting to minimize loss and 

casualties. The overall fuzzy risk index can be described by the means of linguistic terms. 

This measurement provides a more meaningful way to communicate the current status 

of risk and vulnerability for a large group of schools. 

Table 9 – Fuzzy seismic risk Index (FSRi) for different school buildings 

3
��
7

�

�
8
�

0
�
�


�

��
	���
)�

�
*�

9
	��

"
�
*
�
��
�

�
�
�

3
��
�
��
�


�

2	'	������
)2*�

1�

!
"
�
�
�
�
�

�

&
����
�
������

(+&��
.������
�����



���

 � )� /;��  ;5�� -��� �(	� .��5� 5�;�� /�--� /� � ;���� ����	���*

0�

�� )�  5.��  ;;��  ���� C'� .�5� -��-� /��� /��� .�/.� 2
	�	����

�� )� �/���  ;./�  /��� 4C&� �� -��5� ;��5� �� .�-;� 2
	�	����

-� ?� ����  ;5 � 5�� ?C� �� /���� -� �� .�-;� 2
	�	����

�� )�  �;/�  ;. � ���� %D� .��5� ����� -���� -�-� .�-� 2
	�	����

/� ?� ;5��  ;; � ���� �%� �� ��5�� -� /��� .�-� 2
	�	����

.� ?�  �5��  ;5�� ���� (?� -� ��/-� ��;.� ���� .���� 2
	�	����

5� ?� 5�-�  ;.�� �-�� 4C&� �� -��;� ��5�� -�-� .��/� 2
	�	����

;� )�  -���  ;5 � � �� �3� �� /�5�� ��-� �� /�;-� ��
�
0���

 �� ?�  ��.�  ;;.� ���� �C� ��  �5�� ���/� ���� /�/-� ��
�
0���

  � ?� /���  ;;�� ;�� 4�� -�5�� ���/� ���5� /� /���� ��
�
0���

 �� ?� � ./�  ;.�� /��� 4C&� ��� � ��;5� /�.�� -�;� /� .� ��
�
0���

 �� ?� .-��  ;5�� ���� C'� �� �� -� �� ����� /��� /�  � ��
�
0���

 -� �� ��� �  ;;�� /��� E?� ��;.� ��;.� /�.�� -�.� ��-;� ��
�
0���

 �� )�  5�;�  ;;�� -.�� E?� ����� ��5;� �� -�/� ��-;� ��
�
0���

 /� )� ;5��  ;;�� ���� )?� /�-�� ���/� ��//� /�/� ���-� ��
�
0���

 .� )� ��/��  ;;�� -��� )3� ��.�� ���/� -� ���� �� ��
�
0���

 5� ��  ���� ��� � ���� ?C� ��.�� ��;�� ��5� -�/;� -�/�� ��
�
0���

 ;� )�  �� �  ;5/�  ��� �%� �� �� /� ����� ���� -�� � ��
�
0���

��� )�  ����  ;;5� ���� )?� ��.�  �5-� ��5� -�/� ��-�� ?��������

� � ?� � .�  ;5-� 5�� 4�� ��/5� ��- �  �5� /��� ���;� ?��������



16 

   The FSRi can be also expressed in linguistic terms as indicated in the last column. 

Schools with an FSRi of more than 7 would face a disastrous loss if a seismic event 

occured and therefore require urgent retrofitting measures. For a seismic risk of less 

than 7 but more than 4, the school buildings are considered as ‘critical’ and would need 

to be managed as a priority compared with the rest of the school buildings. The fuzzy 

risk index can be also represented as function of different variables like ‘hazard’ and 

‘vulnerability’ in the form of 2D and 3D surface view as shown in Figure 7. The graphs 

demonstrate the interaction of the risk parameters indicated in decision matrix, thus the 

trend and interactions of the risk parameters can easily be verified. Clearly, hazard or 

vulnerability can individually impact the seismic risk variation; although vulnerability 

indicates more influence particularly in ‘VH’ state which is reasonable. In the situation 

where both hazard and vulnerability have high values, the results present an extreme 

seismic risk irrespective of other factors.  

 

Figure 7 – 3D and 2D Surface view of FSRI with respect to hazard and vulnerability  
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   Model verification comprises the checking of the consistency and completeness of the 

system (Botten et al. 1989). According to Gupta (1991) model verification should be 

performed first to determine if the system completely and accurately implements the 

user specifications and second to ensure if the system asserts something that is not truly 

in the modeled domain. This process focused on how variations in risk parameters such 

as hazard and vulnerability factor affect the overall seismic risk index. Previous seismic 

risk results in literature were taken as benchmark to verify the robustness and reliability 

of the model. 

 

  Figure 8 – Uncertainty of risk factor indices         Figure 9 – Uncertainty of risk factors’ weights                       
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   Sensitivity analysis was performed to evaluate the uncertainty of the risk factors 

indices and risk factors’ weights. According to Figure 8, the highest variation (30%-35%) 

in three most important factors (H, V, E) and least variation in RM with 22%.The overall 

risk composite factor (FSRi) with almost 30% variation follows its components trend. 

Due to the uncertainties associated with the judgment process, the weighting of the 

indicators might vary significantly among various risk states. Thus, the average variation 

in risk factors was considered as single index for verification as indicated in Figure 9. 

Clearly, this chart indicates the weights of each factor in different fuzzy situations 

comprising VL to VH. The average weights of seismic risk factors comprising H, V, E, and 

RM are 30%, 35%, 15% and 10% respectively. The variation of the weights reveals that 

RM with 22% is the most sensitive factor in the process and the others varies between 

5% to 12% and demonstrates less uncertainty comparing to past studies. In contrast 

with the sensitivity results obtained from previous studies (Davison and Shah 1997; 

Marulanda et al 2008; Vahdat and Smith 2010), the research results represent the least 

uncertainty, and thus more reliability, in term of overall seismic risk factors. The 

weighting sum method (WSM) and Analytic Hierarch Process (AHP) expresses greater 

uncertainty with 35% and 29% respectively. It also shows that the ranking results are 

sensitive to extreme changes over most important risk factors such as hazard and 

vulnerability.   

 

Figure 10 –Sensitivity of ranking results for different MFs  

  “Robustness is related to the stability and reliability of the method to deal with the 

uncertainty of input data and the modeling parameters“ (Marulanda et al 2008). The 

robustness of the proposed model has been demonstrated by examining different MFs. 

Three types of MFs were applied to verify the uncertainty of risk attributes as shown in 

Figure 10. This experiment revealed how well a membership function can represent the 

corresponding data range. In general, all three MFs follow the same descending trend 

from highest to lowest performance; however there are some perturbations observed in 

less than 30% of dataset that related to the Gaussian and Trapezoidal MFs. Triangular 

MFs demonstrate less variation and thus represent more stability in output. Various 

defuzzification methods including COA, MOM and LOM were also applied to the model. 

The results indicate no significant changes in performance index and thus the overall 

ranking results maintained minor sensitivity to change in defuzzification operator.  
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  To satisfy the urgent need to address and classify those school buildings having the 

largest potential threat to life, safety and the built environment, a risk-based ranking 

system has been developed using the fuzzy concept of seismic risk. The vague and 

complex interactions between seismic risk factors such as hazard and vulnerability were 

represented through linguistic variables. A fuzzy inference system was implemented to 

aggregate the risk factors within the hierarchy and to obtain the overall fuzzy seismic 

risk index (FSRi) for prioritization. The applicability of the model was tested on a real 

case study based on a sample of schools in Iran. It was demonstrated that prioritizing 

the retrofitting of schools is significantly affected by seismic risk variation. Thus 

retrofitting decisions in seismic prone areas should be made in conformance with the 

multi dimensional aspects of seismic risk. 

   Managing uncertainty was highlighted as a major concern in this model because much 

of the information in the knowledge base is derived from expert opinion which is often 

imprecise and incomplete. Knowledge base uncertainty has been acknowledged as 

prevalent in current disaster management systems dealing with imprecise qualitative 

information. The results of verification process for this model have shown less 

uncertainty in both performance indices and weightings comparing with similar risk 

studies that conducted using AHP and WSM. Vulnerability as key element of risk 

assessment is associated with the most uncertainty (35%) since it relies on both the 

building inventory and a checklist procedure that requires engineering judgment. Hazard 

demonstrated less uncertainty (less than 30%) as it based on more objective 

information. Response management factor has indicated the least uncertainty due to its 

indirect effects on seismic impacts. 

  Given the imprecise data, which is the prime challenge for development of any risk 

model, the proposed model demonstrated more reliable and robust methodology than 

the existing screening approach. The proposed model also presents more transparency 

and flexibility in using risk factors and tracking the components individually. In general, 

the ranking results conveys that the composite seismic performance index (FSRi) 

although reasonably depends on its main components (H and V) , FSRi does not 

necessarily follows its factors’ trends. This trial reveals the importance of using multi-

disciplinary risk index rather than relying on hazard and vulnerability factors alone.  

  Unlike previous studies, the current model allows the handling of large numbers of 

school buildings within the screening process. The findings from this research are 

beneficial to both researchers and professionals involved in seismic mitigation planning 

and pre/post disaster management. The results of this study contribute to body of 

literature examining the socio-economic aspects of earthquakes. The conceptual 

framework gives a new insight for seismic risk assessment in disaster management 

context. The potential exists for further research to be developed to extend this risk 

concept to other infrastructure. 
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