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A LYAPANOV FUNCTION METHOD TO ESTIMATE THE STABILITY
REGION OF NONLINEAR SYSTEMS USING THE LIE SERIES

SP.BANKS* AnD C.ERIDDALLS
Research Report No 665

Abstract. A method to estimate the region of asymptotic stability, about an equilibrium point,
of an autonomous nonlinear system is presented. The Lie series is used to approximate the solution
trajeclories of a general point in the stability region. The method is applied to several well-known
examples in two and three dimensions.

1. Introduction. There exists no definitive method to find the region of asymp-
totic stability (RAS) about the equilibrium point of a general nonlinear system. Many
existing methods demand considerable computational capacity or rely on the applica-
tion of a complicated prescriptive procedure which is different for every system.

The approach of finding a Lyapanov function is most widely used to estimate the
RAS. Typically the RAS can be estimated by the set contained within certain level
hyper-surfaces of the Lyapanov function. Lyapanov methods can be divided into two
main approaches: those resulting from the work of Zubov [11], and LaSalle [12].

Zubov [11] gives necessary and sufficient conditions for a certain region to be the
RAS of an equilibrium point. The determination of the requisite ‘optimal” Lyapanov
function involves the solution of a set of nonlinear partial differential equations (pde’s).
Many iterative methods to solve these pde’s have been proposed, for instance [3] uses
the Lie series. The deficiencies of these methods are the nonuniformity of convergence of
the procedures involved and the arbitrary nature of the choice of a certain function used
in the method. Using an approach similar to that of Zubov, Vannelli and Vidyasagar [6]
introduce the concept. of a maximal Lyapanov function by considering rational function
candidates. This approach, whilst requiring fewer iterations, still relies on the solution
of a constrained minimization which becomes intractable in higher dimensions.

LaSalle’s extension of Lyapanov theory [12] gives conditions for a set to be in-
cluded in the RAS. As in this paper the typical approach falls into two parts: finding
a suitable form for V (The Lyapanov function), and searching for the tangency points

between V and V. These methods employ a diverse range of tactics and generally lead
to good results through an acceptable amount of computation. In [2] Davidson and
Kurak optimize the volume enclosed by a hyper-elipse by conversion to a constrained
minimisation problem. The success of this method is crucially dependent on the choice
of initial conditions. Shields and Storey [1] consider three ‘optimal’ methods and inves-
tigate the problem of finding tangency points. In [5] Chiang and Thorp improve existing
Lyapanov functions by backwards integration along trajectories to create a sequence of
monotone increasing (in the sense of inclusion) sets. A similar approach is presented in
[7].

[4] and [8] are non-Lyapanov methods. They both use a combination of topological
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considerations and trajectory reversing methods to give very accurate results in two
dimensions. However both require the application of a complex sequence of steps which
varies with each problem. For example, [8] requires the determination of the stable
manifolds of an equilibrium point. Furthermore, both methods become onerous in
dimensions greater than two.

2. The Lie Series. In this section we introduce the concept of the Lie series and
derive bounds on its radius of convergence for polynomial systems. We use the following
notation and conventions:

An n-tuple of non-negative integers, (iy,...,%,), is denoted by a boldface i. More-
over, for any z € R", '

S

i1=0 in=0

Dencte by 1; the n-tuple of zeros with one in the kth position:

= {0.0,: . s I | ER
1 =(0,0,..., 1 .0 0)
k
Lastly note that when dealing with a number of vector indices, say iy,...,1m. (1)),

denotes the jth component of the vector ;.
Consider the nonlinear autonomous system

(1) g = flz); z(0)= 1= (Zog," -~ . Hox).

Where » € R", [ : R” — R". Provided it exists, the Taylor series of the solution is
given by the Lie series (See [13]):

=
Zﬂ fE:t =iy 2

k=0

p_ (0
L -(fTBI) .

o= (Lot F]

i=0

where

For polynomial systems

for some p > 1. The radius of convergence, 7, of the Lie series for this system is given
by

r=1/A,
2




where

)lﬁr

We proceed to derive a bound on A, and thus obtain a lower bound for r. Note
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and ¢, and the exponent of 2 are taken to be zero when any of their components are
negative. Using the kth term in this series, we have

n n P 1/k
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and letting

a —max |a |
Hence r is bounded below as follows:
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3. Lyapanov Functions. Consider the nonlinear autonomous system

(2) i = f(z), z(0) = ze.

Where z € R", f : R" — R". We assume that [ is an infinitely differentiable vector
field and so the sufficient condition for the existence and uniqueness of solutions to (2)
is satisfied. Suppose zero is a stable equilibrium point of (2). Define the Region of
Asymptotic Stability (RAS) of zero to be the set

(3) R= {3:0; t_l_iinm z(t,zo0) = 0} i
We also assume that each solution, z(t; 7o), varies continuously with g, ensuring that
R is open and connected.

THEOREM 3.1. [12] The equilibrium point x =0 of (2) is asymplotically stable if
there ezists a scalar function, V(z), (a Lyapanov function), with continuous first partial
derivatives, and a domain, Q@ C R", containing zero, such that
1)V(r) >0,Vz e Q,x#0

2)V(0)=0
S’)I’(:L) = fT(z)gradV(z) < 0,Vz € Q,z # 0
4)v(0) =0.

Furthermore, if C is a positive constant such that the hypersurface V (z) = C is con-
tained in Q, then the domain V(z) < C is contained in R.

Once a particular V is chosen the largest value of C satisfying theorem 3.1 will
yield the best approximation of R obtainable from that Lyapanov function.

Our approach is based on the theory in [9]. Suppose that the system (2) is as-
ymptotically stable in the region R. Denote by z(t; o) the solution at time t through
2(0) = zq. Then we have the following result.

LEMMA 3.2. If the solutions of (2) are asymptotically stable in R and salisfy

(4) lz(t; zo)|| = O (l}) forallz € R ast— o9,
i
for some integer p > 0, then
® Vi) = [ etz at, o€ R
0

is a Lyapanov function for (2) in R for any q 2 p.
Proof. !
By condition (4) the integral certainly exists and

V(zg) > 0, zp#0




Also, if 2y = z(tq;2),1; > 0, then, by the group property of solutions,

V(zg) = /D“—‘ 2t .’ED)HQQ dt

- A’wummWwﬂ+[’wwa%m%m
> [Clatizol
B /w | (t + a5 o) |7 dt

0 2
= [ etttz a
0
So V decreases along trajectories.l]

We propose using the Lie series to estimate the solution, z(t; zq), in (5) over a finite
time interval, 7. Our Lyapanov function candidate is

2g

m

A
Z ; [wa]:m

2=0

dt

bl

Q Vo= [

where ||-|| is the standard 2-norm and

,_ Pl
= (s 8m>

operates on x component-wise. Suitable T', m and g must be chosen. For polynomial
systems an appropriate magnitude for T may be obtained using the bound on the radius
of convergence of the Lie series derived in section 2. Large m obviously yield a better
approximation to the real solution. However, when increasing m one faces a conflict
between attaining greater accuracy over the interval [0,T — 6], 6 > 0, and loosing it
over [T — &, T], due to Zfloi—: [Ljrw]m
problem and improve the approximation of solution trajectories we use multiple Lie
series expansions about successive points on a trajectory. Put

‘blowing up’ more quickly. To circumvent this
0

Bl zg) = Z q [L}:L] e

i=0

a vector of polynomials in t with coefficients depending on zo. Put

PE(t;me) = Pt By (L. .. P (t;20)...)), E=1,2,...

N il

k times

Pf?z (tsmﬂ) = Xy,




where each F,, acts componentwise. Then another candidate for V is

T 2T
V) = [ 1Al [ 1Pl B e
(1] T

N T
(7) = Z/ 1P (¢ + KT B (T3 0)) || i,
k=00

where N is the number of additional Lie series expansions, along a trajectory, after the
first,

Once a particular V has been chosen we must find the largest constant, C, such
that the hyper-surface V(z) < C is contained in § (theorem 3.1). This translates into
solving the constrained optimization: '

min V(z)
such that

V(z) = 0

V(z) > 0.

This gives us a set of tangency points (TPs) [1]. Choosing the TP which gives the
minimum V yields C. In two and three dimensions the optimization can be carried out

by sight by simply plotting V(z) = C and V(z) = 0.
4. Examples. Erample 1
1 = I
Ty = —Tq —$2+$§'
This system is taken from [1]. Zero is the only stable equilibrium point. Both (-1,0)
and (1,0) are unstable equilibrium points. Figure 1 shows two estimates of the RAS

provided by the proposed method and a sketch of the exact RAS obtained from the
phase portrait.
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Figure 1. Estimates of RAS of example 1. (a) exact RAS, (b) estimate with m=1, N=3, T=0.5, ¢=1,
(c) estimate with m=1, N=1, T=0.5, g=1.
Ezample 2

: 3
Ty = I — T3 — T2

i‘g = I

This system, the Van der Pohl Oscillator, has a single stable equilibrium point at zero.
See Figure 2.
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Figure 2. Estimates of RAS of example 2. (a) Exact RAS, (b) Estimate with m=2, N=3, T=0.5,
=1, (c) Estimate with m=1, N=4, T=0.5, g=1.
Ezrample 3

Iy = .’a:“i’ —T;— T9 — 3
Ty = Iy
.’i?g = —23

This system is similar to the Van der Pohl Oscillator and has a single stable equilibrinm
point at zero. See Figure 3.




Figure 3. Estimate of RAS of BExample 3 with m=1, N=1, T=0.5 and q=1.

5. Conclusions. We have presented a method to find the RAS about an equillib-

rium point of a nonlinear system. The merits of this method are its sound theoretical

rationale, simplicity of application and reliability in producing accurate estimates of
the RAS through reasonable computational effort.
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