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Abstract

This paper presents the development of a neuro-adaptive active noise control (ANC)
system. Radial basis function neural networks with an orthogonal forward regression
algorithm are considered in both the modelling and control contexts. A feedforward ANC
= structure is considered for optimum cancellation of broadband noise in a three-dimensional
propagation medium. An on-line adaptation and training mechanism allowing a neural-
network architecture to characterise the optimal controller within the ANC system is
developed. The neuro-adaptive ANC algorithm thus developed is implemented within a
free-field environment and simulation results verifying its performance are presented and

discussed.

Keywords: Active noise control, adaptive control, neural networks, orthogonal forward

¢ regression, radial basis functions, self-tuning control.
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1 Introduction

Active noise control is realised by artificially generating cancelling source(s), through a
process of detection and control, to destructively interfere with the unwanted source and
thus result in a reduction in the level of the noise (disturbance) at desired location(s). In this
manner, the noise is processed by a suitable electronic controller so that, when
superimposed on the disturbance, cancellation occurs (Leitch and Tokhi, 1987).

Noise, in general, is of broadband nature. This requires the control mechanism to realise
suitable frequency-dependent characteristics sd that cancellation over a broad range of
frequencies is achieved (Leitch and Tokhi, 1987). Moreover, in practice, time-varying
phenomena, due to variations in the spectral contents of the noise and characteristics of
system components, occur. This requires the control mechanism further to be intelligent
enough to track these variations, so that the desired level of performance is achieved and
maintained (Leitch and Tokhi, 1987; Tokhi and Leitch, 1991a). This paper presents the
development of an adaptive ANC mechanism incorporating neural networks.

Much of the work reported on ANC has centred on conventional adaptive controllers
(Elliott et al., 1987; Eriksson er al., 1987; Fuller et al., 1992; Ross, 1982; Snyder and
Hansen, 1992; Tokhi and Leitch, 1991a). These do not, however, have the long-term
memory of intelligent systems to remember the optimal control parameters corresponding
to different plant configurations. Intelligent controllers have the ability to sense
environment changes and execute the control actions required. Neural networks, on the
other hand, have had great success in areas such as speech, natural language processing,
pattern recognition and system modelling (Allen, 1987; Lapedes and Farber, 1987,
Narendra and Parthasarathy, 1990; Sejnowski and Rosenberg; 1986). Not much work has,
however, been reported in the area of intelligent neural-network control applied to ANC
systems (Tokhi and Wood, 1995, 1996). This paper attempts to develop an intelligent ANC
system incorporating neural networks.

Various types of neural-network architectures have been represented in the literature.
Among these the radial basis function (RBF) and the multi-layered perceptron (MLP)

networks have commonly been used in the modelling and control of dynamic systems. The
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RBF and MLP networks are similar in some respects (Broomhead and Lowe, 1988). The
RBF networks, however, can be considered to be superior in many ways to the MLP. The
MLP models are highly non-linear in the unknown parameters, and parameter estimation
must be based on non-linear optimisation techniques which require intensive computation
and which can result in problems associated with local minima. The RBF models do not
suffer from such problems. One of the main advantages of the RBF networks is that they
are linear in the unknown parameters, and consequently a global minimum in the error
surface is achieved. The work presented in lﬁis paper utilises RBF networks. This is
presented as follows

Section 2 introduces the RBF neural network with its training algorithm and describes
the issues involved in the characterisation of dynamic systems using such networks. Section
3 introduces the ANC structure, and presents the development of a neuro-self-tuning ANC
system. The development of a simulation environment characterising a free-field medium is
presented in Section 4. The neuro-ANC system is implemented within the simulation
environment in Section 5, and simulated results of the cancellation of broadband noise
achieved with the system are presented and discussed in comparison to an ANC system

incorporating the ideal (optimal) controller. Finally, the paper is concluded in Section 6.
2  Radial basis function networks

2.1 Radial basis function models
Radial basis function models can be expressed in the general form of

Y6y = (V=D y(e =) u(D,ult =1,y ult =n,), €@ = 1).... E(r = 1,) )+ £,

where y(r) is the output, u(r) is the input, €(z) is the residual and n, and n, are the

maximum lags in the output and input respectively. The above is known as the Non-linear
AutoRegressive Moving Average with eXogenous inputs (NARMAX) model (Leontaritis

and Billings, 1985). The NARMAX model can also be expressed by the regression equation
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M
y)=Y (1P, +e(); t=1..,N (1)
i=]

where p,(t) are the regressors, y(t) represents the dependent variables, €£(r) is some

modelling error which is uncorrelated with the regressors, 8, represent the unknown

parameters to be estimated, M represents the number of parameters of the regressors and
N is the data length. The RBF network can be represented by using the extended model set
representation in equation (1) (Billings and Chen, 1989).

An RBF expansion with n inputs and a scalar output implements a mapping according

to

() = w, + 2 wG(x - c]).

where x is the n—dimensional input vector, G(.) is the basis function, || denotes the

Euchidean norm, w; represent the weights, ¢, represent the centres and n, represents the

number of centres. The above mapping can be implemented in a two-layered neural-
network structure, where, given fixed centres, the first layer performs a fixed non-linear
transformation which maps the input space onto a new space. The output layer implements
a linear combiner on this new space. Thus, the RBF expansion can be viewed as a two-
layered neural network which has the important property that it is linear in the unknown
parameters. Therefore, the problem of determining the parameter values is reduced to one
of a linear least-squares optimisation.

Since RBF expansions are linearly dependent on the weights, a globally optimum least-
squares interpolation of non-linear maps can be achieved. However, it is important to
emphasise that the RBF performance is critically dependent upon the given centres.
Although it is known that the fixed centres should suitably sample the input domain, most
published results simply assume that some mechanism exists to select centres from data
points and do not offer any real means for choosing the centres. The orthogonal forward
regression (OFR) algorithm (Korenberg er al., 1988) has been proposed as the mechanism

to select the centres and, using the idea of generalisation (Broomhead and Lowe, 1988)
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coupled with the model validity techniques, it has been shown that a parsimonious RBF
model can be obtained. The centres of the RBF can be chosen from a subset of the input
data or boundary within the input and output data values. In practice, only a few significant
c centres, typically 30 to 50, are required to adequately describe the dynamics of a system.
However, when dealing with unknowﬁ real systems it is not known which centres are
significant. One way of choosing the centres is by using an orthogonal least-squares
algorithm (Billings and Chen, 1989). A procedure for selecting appropriate centres for an
RBF network using the OFR algorithm has fireviously been investigated (Chen et al.,
1990). The OFR algorithm is used in this investigation to train the RBF network and also

select the appropriate centres.

2.2 The orthogonal forward regression algorithm
Equation (1) can be written as

z=PO+= (2)

where

2= - 2] P=[p - py)
e=[el BM]T1 E=[§(1) “’;(N)]T,
P;=[Pj-(1)---pj(N)] s j=1...,M.

An orthogonal decomposition of P can be obtained as

P=WA 3
where
¥ 1 o), o im ]
1 oy, O opm
A= E :
1 Oym
— ] -

isan M X M unit upper triangular matrix,
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W=[wl wM]

is an N x M matrix with orthogonal columns that satisfy W'W =D and D is a positive
diagonal matrix;

D =diag{d,}, d,=(w.w).j=1...M

where {.,.) denotes the inner product, that is

(wi,wj) = wiij = iwl(r)wj(z‘).

1=]

Equation (2) can be rearranged as
z=(PA"')AO)+ZE=Wg+=

where AO=g.

Since &(r) is uncorrelated with the regressors,

g=D"W'z, ¢ =MS, i Lyl

(“j,wj

The number of all the candidate regressors can be very large even though adequate
modelling may only require M, (<< M) significant regressors. The OFR procedure
identifies the significant regressors.

The sum of squares of the dependent variable is

(2.2)= Y g} (W W) +(5,E).

The error-reduction ratio due to w, is thus expressed as the proportion of the dependent
variable variance expressed in terms of w,;

3[2(wisw,‘>

(z,z)

[err]; = ; 1SisM.

Thus, using equation (3), W, is computed, and hence P, is obtained from P using the

3

classical Gram-Schmidt procedure. From the ith stage, by interchanging the i to M
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columns of P, a p, is selected which gives the largest [err], when orthogonalized into w;,.

The selection procedure can thus be outlined as

(a) Denote w," =p,; i =1,...,M, and compute
g =MD ey BTV wow D)
i (wlhsw1“> 1 (Z,Z)

(b) If [err]," = max{[err],“, 1<i< M}is assumed, then w, =w," (=p,) is selected as the
first column of W, together with the first element of g,, g = g, and [err], = [err],“.
(c) For the second stage, i =1,...,M, i # j, and compute

(w,".z)

(i
o = :
12 (“'](r,“,l>

(i _ (i
» W =p—0, W

T3 (“’_‘7_“,2>. lerr]," = (83“)2(“'2“»“’2“)
(w," w,") ’ (z.z)

&

d) If lerr,” = max{[err],", 1< j< M and i # j} is assumed, then
w, =w,"* (=p, —0,w,) is selected as the second column of W, together with the

second columm of A,, a,=0,", the second element of g, & =g" , and

5

[err], =[err],".

The error-reductiom ratio offers a simple and effective means of selecting a subset of

significant regressors from a large number of candidates in a forward regression manner.

At the ith step a regressor is selected if it produces the largest value of [err], among the

number of candidates. The selection procedure is continued until the M. th stage when
Mi
1- Z[err] <P
i=1

where O<p <1 is a desired tolerance. This leads to a subset of M, regressors. The
parameter estimate tés is then computed from the subset model
Ases = gs (4)

where A | is an upper triangular matrix. The OFR algorithm can thus be outlined as
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1. Select the terms of the input vector n, and n,.
2. Define the tolerance p as a criterion to stop regression.
3. Consider all the p,'s as possible candidates for the significant term. Then, compute the

[err], values for the p. and choose the regressor with the largest [err], value as the

significant term.
4. Compute I-Z[err],..

5 H1- Z[err],. >p then repeat steps 1 to 4 but this time exclude the terms which

have been selected from the set of possible candidate terms, p;.

6. Compute the parameters 8 of the final model using equation (4).

2.3 The basis function

Several basis functions have been proposed for the RBF networks (Powell, 1985). These
include the linear approximation, cubic approximation, thin-plate-spline, multiquadratic and
the inverse multiquadratic functions. Investigations have show that among these the thin-
plate-spline function would give the best performance (Jamaluddin, 1991). This function

will, thus, be used in this investigation.

2.4 Training considerations

In training an RBF network, the choice of the input vector is important if the network is to
capture the dynamics present in the system. The number of input nodes specifies the
dimension of the network inputs. Increasing the input dimension of an RBF netwofk does
not necessarily improve the network performance. A large input dimension can make the
training data appear more distributed. It has been shown that the number of training
vectors to cover this space increases exponentially with an increase in the input dimension
(Eubank, 1988). A network with an over-specified input dimension gives rise to
overlapping decision boundaries, causing the network centres to be sensitive to the region
of the input space that is away from the training data. This can result in a network which

will be highly sensitive to irrelevant data and give poor generalisation performance.

7129
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Theoretical studies have suggested that the network performance can be improved by
having a larger number of RBF centres (Powell, 1988). In practice, however, with noise-
corrupted data, a network that has an over-assigned number of RBF centres can lead to the
problem of overfitting, making the network to give a poor generalisation performance.
Whilst the network may give a good output prediction over the data set used in training, it
may not provide a good prediction when a different set of data is used.

Theoretical studies have shown that with a larger training sample size a neural network
should adapt its structure or complexity (Niyoéi and Girosi, 1994). The way to do this is to
increase the number of network parameters. This means increasing the flexibility of the
network by adjusting the number of centres and input vectors. To avoid overfitting, it is

important that an increase in model flexibility should be matched with more training data.

2.5 Model validation

To ensure that a fitted neural-network model adequately represents the underlying
mechanism which produced the data set, a process of model validation can be employed.
Model validity tests are procedures designed to detect the inadequacy of a fitted model.

A common measure of predictive accuracy used in control and system identification is

to compute the one-step-ahead (OSA) prediction of the system output. This is expressed as

$() = f(u()ult = 1) ..oult = n, )yt = 1), 3(t = n, )

where f(.) is a non-linear function, and u and y are the inputs and outputs respectively.

The residual or prediction is given by
e(t=1)=y(r) = y(r).

Often ¥(r) will be a relatively good prediction of y(r) over the estimation set, even if the
model is biased, because the model was estimated by minimising the prediction errors.

Another method of measuring the predictive capability of the fitted model is to compute

the model predicted output (MPO). This is defined by

8/29
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$4(t) = F(uC@u(t=1)csu(t =1, ) 5, (= 1., 94(t-n,))

with the corresponding deterministic error or residual as

e (t=1)=y(t) = y,(1).
If only lagged inputs are used to assign network input nodes then $(z) = ,(7).

If the fitted model behaves well for the OSAiand the MPO, this does not necessarily
imply that the model is unbiased. The prediction over a different set of data often reveals
that the model could be significantly biased. ‘One way to overcome this problem is by
splitting the data set into two sets, an estimation set and a test set (prediction set). Normally
the data set is divided into two halves. The first half is used to train the neural network, and
the output is computed. The neural network usually tracks the system output well, and
converges to a suitable error minimum. The test set is presented as new inputs to the
trained network, and the predicted output is observed. If the fitted model is correct, that is,
the number of lagged u's and y's have been correctly assigned, then the network will
predict well for the prediction set. In this case the model will capture the underlying
dynamics of the system. If both the OSA and the MPO of a fitted model are good over
estimation and prediction data sets, then the model is most likely unbiased.

A more convincing method of model validation is to use correlation tests. If a model of
a system is adequate, then the residuals or prediction errors €(t) should be unpredictable
from all linear and non-linear combinations of past inputs and outputs. It has been shown
that for an estimated model to be reasonably acceptable and accurate, the following
conditions should hold (Billings and Voon, 1986):

0, (1)= E[e(r—1)e()]=5()
0, (1) = E[u(t-1)(r)]=0; V1
0,:,(0)=E[(* (=) -2 ())e(r)]= 0; v

¢uzez (T)= E[(uz(t =T ) = Ez(t))sz([)]z 0; V1
q’e(eul(T): E[E(I)E(f‘_ 1 "'T)H(I -1 —T)]: O; 120

where ¢,.(t) indicates the cross-correlation function between wu(r) and &(1),

eu(t)=e(t+Du(r+1) and 6(t) is an impulse function. Ideally the model validity tests

9/29
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should detect all the deficiencies in network performance, including bias due to internal
noise. The cause of the bias will, however, be different for different assignments of network
input nodes. Consequently the full five tests defined above should be satisfied.

In practice, normalised correlations are computed. The sampled correlation function

between two sequences Y ,(r) and wz(f) is given by

N-t
) Sy, t+1)
0y, @)=—

N N :
sz 2OY w0

=1 =1

Normalisation ensures that all the correlation functions lie in the range
A

~1£6,.. )=l irrespective of the signal strengths. The correlations will never be exactly

zero for all lags, and thus the 95% confidence bands defined as 1.96 / VN , where N is the
data length, are used 1o indicate if the estimated correlations are significant or not.
Therefore, if the correlation functions are within the confidence intervals the model is
regarded as adequate.

Part of the utility of neural networks comes from their ability to extrapolate from and
interpolate between the training data used to set the weights. One way to set the weights of
a network to obtain a good generalisation is to use cross-validation. This method uses part
of the data as a training set and part as a validation set. One cross-validation method is
called ‘'early stopping'. The network is trained for a while on the validation set, and then
tested on the validation set. As training progresses the error on the validation set initially
falls. However, the validation error will eventually start to rise when the network is being
over-trained. Training is stopped when a minimum of the validation error is reached, even
though proceeding might give lower training errors. It is not desirable for a network to be
trained to the point where it can faithfully reproduce the training set because it would
generalise poorly.

The predictive accuracy of the model can be computed by defining the normalised root

mean square of the residuals as an error index:

10/29
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> Vi)

error index =

As will be demonstrated later in this paper, the OSA prediction is not a sufficient
indicator of model performance because at each step, past inputs, outputs and residuals are
used to predict just one increment forward. The MPO, on the other hand, will detect any
deficiencies in the fitted model. The OSA prediction and MPO, along with correlation tests,

are implemented and used in this work to verify the trained neural-network models.

3 Neuro-active noise control

A schematic diagram of a feedforward ANC structure is shown in Figure 1(a). An
unwanted (primary) point source emits broadband noise into the propagation medium. This
is detected by a detector, processed by a controller of suitable transfer characteristics and
fed to a cancelling (secondary) point source. The secondary signal thus generated is
superimposed on the primary signal, so as to achieve cancellation of the noise at and in the
vicinity of an observation point. A frequency-domain equivalent block diagram of the ANC
structure is shown in Figure 1(b), where E, F, G and H are transfer functions of the
acoustic paths between the primary source and the detector, secondary source and the
detector, primary source and the observer, and the secondary source and the observer

respectively. M, C and L are transfer characteristics of the detector, the observer, the

controller and the secondary source respectively. U, and U, are the primary and

secondary signals at the source locations, whereas Y,, and Y,. are the corresponding
signals at the observation point. U,, is the detected signal and ¥, is the observed signal.
The control structure in Figure 1 has previously been considered in various noise and
vibration control applications (Conover, 1956; Eriksson et al., 1987; Leitch and Tokhi,
1987; Nelson et al., 1987; Ross, 1982; Tokhi and Leitch, 1991a,b,c).

The objective in Figure 1 is to achieve zero noise level at the observation point. This is

equivalent to the minimum-variance design criterion in a stochastic environment. This
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requires the primary and secondary signals at the observation point to be equal in

amplitudes, and to have a phase difference of 180° relative to each other;

Yor =Yg, (5)

It follows from Figure 1(b) that

_ UpEMCL ,,

Yoo =U,G, Y, = |- FMCL

(6)

Substituting for ¥, and Y,. from equation (6) into equation (5) and simplifying yields the
required controller transfer function as

. &
" ML(FG - EH)’

(7

Note in equation (7) that, for a given secondary source and detector, the characteristics
of the required controller are determined by the transfer characteristics of the acoustic paths
from the primary and secondary sources to the detection and observation points. This, in
turn, is determined by the geometric arrangement of the system components. Among these,
it is possible with some arrangements that the factor FG — EH will be zero or close to
zero, requiring the controller to have impractically large gains. Note further in Figure 1 that,
with some geometric arrangements of system components, the feedback loop due to the
secondary signal reaching the detector can cause the system to become unstable. Therefore,
for the system performance to be robust, a consideration of the system in relation to the
geometric arrangement of system components is important at-the design stage. Such a
consideration will allow determination, specifically, of the loci of detection and observation
points in the propagation medium that can lead to these problems (Tokhi and Leitch,
1991b,c).

In practice, the characteristics of sources of noise vary due to operating conditions,

leading to time-varying spectra. Similarly, the characteristics of transducers, sensors and

other electronic equipment used can vary due to environmental effects, ageing, etc. To

design an ANC system so that such variations are tracked and the controller characteristics
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are updated accordingly, such that the required performance is achieved and maintained, a

self-tuning control strategy can be utilised. To realise this, consider the system in Figure 1

with the detected signal, U,,, as input and the observed signal, Y,, as output. Moreover,

owing to the state of the secondary source, let the system be characterised by two sub-

systems, namely, when the secondary source is off, by an equivalent transfer function

denoted by Q,, and when the secondary source is on, by an equivalent transfer function

1 b
QO =‘0| L] Ql =‘O_‘ * (8)
UM Ucso UM Ucso

Using the block diagram of Figure 1(b) the detected and observed signals, namely U,,

denoted by 0, ;

and Y, can be expressed as

U, = MEU, + MFU,

9
Y,=GU,+HU,. ©)
The secondary source signal U, can be expressed through the controller path as
U.=CLUy . (10)

Substituting zero for U, into equation (9), using equation (8) and simplifying yields the

system transfer function Q, as
1[G
0, = _[_J_ (1n

Substituting unity for C into equation (10), corresponding to U,, # 0, and using equations

(8) and (9), yields the system transfer function Q, as
1[G FG-EH
M| E E

which, after using equation (11) and simplifying, yields

12, (12)
G Oy

FG-EH
| 2
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The left-hand side of equation (12) is the inverse of the required controller transfer function

given in equation (7); hence

C=[ —-Q—L} : (13)
G

Equation (13) is the required controller design rule expressed in terms of the system
transfer characteristics Q, and Q, which can be measured/estimated on-line. To allow the
time-varying phenomena in the system be accounted for, an on-line design and

implementation of a neuro-controller can be devised. This can be achieved as

1. obtain the frequency responses of @, and (, using on-line measurement of

input/output signals,

2. use equation (13) to obtain the corresponding frequency-response of the (ideal)
controller, and

3. train a neural network structure to characterise the ideal controller and implement this

on a digital processor.

Moreover, to monitor system performance and update the neuro-controller upon changes in
the system, a supervisory-level control can be utilised. This will result in a neuro-self-tuning
ANC mechanism. The scheme thus developed is shown in Figure 2, where, ‘plant’ is the
system in Figure 1 between the detection point and the observation point.

To realise the neuro-controller, the topology of the network must be selected. This
involves the input data structure and number of centres of the RBF network. Generally, the
topology is selected in an intuitive manner, as there are no concrete rules regarding this.
This is similar to the selection of model-order in a traditional linear system identification
process. The output of the plant is assumed as a non-linear function of its present and past

inputs and outputs. This means that the input vector to the network is of the form

X(r)= [y(r - l),...,y(r - m);u(!),u(r —1),...u(r - nu)]T

14/29
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where u's and y's represent the inputs and outputs of the plant respectively.

Following the process of structure selection, a neural-network controller is required to
be trained to characterise a particular behaviour. One method is to use a conventional
controller for the system to produce the training set. In this case, the inputs and their

. corresponding outputs of the conventional controller are used as the training pairs for the
neural ne[w‘ork. In this investigation, the ideal controller is used to provide the training
data. Thus, the ideal controller is modelled by a neural-network controller. In this process,

the OFR algorithm is used to train the network until the global error minimum is reached.

4 Development of the simulation environment

To allow development of a sunitable simulation environment for test and verification of the
control strategy, consider a loudspeaker with its drive amplifier, and a microphone

incorporating its pre-amplifier located at a set distance 1, in front of the loudspeaker. This

. is shown in an equivalent block diagram in Figure 3 where

L = Transfer characteristics of the loudspeaker.

M = Transfer characteristics of the microphone.

A
—exp(—jrm(u/c)= The characteristics of the acoustic path through r, with A as a
2

constant, ¢ as the speed of sound and ® the radian frequency. Note that the acoustic
medium is assumed to be non-dispersive.
Let the amplitude and phase response of the system in Figure 3 from the input of the

loudspeaker to the output of the microphone as a function of the frequency @ be denoted

by A, and Q, respectively;

A, exp(jQ, )= M.Li exp(-jr,m/c). (14)
r

m

The frequency responses of the acoustic paths in Figure 1 can be written as
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E(jo)=(A/r,)exp(-jro/c)
F(jo)= (A/rf)exp(—j rfu)/c)
G(jo)= (A/rg )exp(—j rgm/c)
H(jo)= (A/r,)exp(-jro/c)

(15)

where 7,, 1;, r, and r, represent the distances of the acoustic paths between the primary

source and the detector, the secondary source and the detector, the primary source and the
observer, and the secondary source and the observer respectively. Let E', F',G and H’

be transfer characteristics defined as

E' = MLE = A, exp(jQ,)
F'= MLF = A, exp(jQ, )

16
G' = MLG = A, exp(jQ,) i
H’ = MLH = A, exp(jQ,) -
Using equations (14), (15) and (16) yields

A=A/ ) 0.=0,-(- rJw/c

AJ,:Am(rm/rJ,), szQm —(rf—rm)m/c (17)

A = Am(rm/rg), i —(rg -7, )a)/c

A=A (

Thus, using equation (17) with given data for A, and Q, , the frequency responses E’,

F'. G’ and H’ can be obtained with different arrangements of the primary source,

secondary source, detector and observer locations using the corresponding values for 7,

r,, 1, and r,. This results in an equivalent block diagram of the ANC system as shown in
Figure 4. Signal propagation through the system in Figure 1 can thus be simulated by using
the block diagram in Figure 4, either in the frequency domain or in the time-domain. The
frequency-domain approach will require the frequency responses of the system components,
as obtained through the procedure outlined above. The time-domain approach will,
however, require transformation of the frequency responses obtained above into the time-
domain, using an inverse Fourier transformation. This gives the corresponding impulse
responses of the system components, which can be used within convolution relations to

obtain the required signals through the system. Note that the accuracy of the results
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depends on the size of the data window; the larger the window the more accurate the
results will be. The time-domain approach is preferred in this work, since subsequent

investigations into the training of neural networks will require signals in the time domain.

5 Implementations and results

To realise the ANC simulation environment, an experiment was conducted using the
arrangement shown in Figure 3 with r, =0.03 metres. A sine wave of fixed amplitude and
phase was fed into the power amplifier and th; frequency varied over the range 0 — 500
Hz. The amplitude and phase of the microphone output was measured relative to the input,
and recorded to enable the gain and phase of the system be obtained. The gain and phase
relationships of the system thus measured are shown in Figure 5.

The simulation algorithm was coded using MATLAB and implemented on a 486 PC. A
pseudo-random binary sequence (PRBS) simulating a broadband signal in the range
0-500 Hz was utilised as the primary noise source. The system components were
arranged with the observer at 1.5 metres away and equidistant from the primary and
secondary sources. With the values of the distances r,, Ty T and r, set, the transfer
characteristics and corresponding impulse responses of system components in the block
diagram of Figure 4 were obtained. The corresponding amplitude and phase characteristics
of the controller for optimum cancellation at the observation point are shown in Figure 6.
It is noted that the ideal controller has a flat amplitude characteristic throughout the
frequency range, except at frequencies below 40 Hz, where it has a large gain. This is due
to the similarly large attenuation in the loudspeaker characteristics, see Figure 5. The phase
characteristics of the controller, on the other hand, have a rising feature as a function of
frequency.

To obtain the amount of cancellation achieved with the ideal controller over a broad
frequency range of the noise, the autopower spectral densities of the noise before and after

cancellation and the corresponding difference, that is, the cancelled spectrum was obtained.
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This is shown in Figure 7. It is seen that an average of 20 dB cancellation was achieved
over the broad frequency range of the noise.

Note that, with the system employing the ideal controller, the amount of cancellation
achieved should be infinity. However, due to the level of accuracy attainable with the
computing domain and the size of the data window utilised, the results shown are the best
obtainable under these circumstances. Thus, for purposes of this investigation, these will be
used subsequently for verification of performance of the neuro-ANC system.

To implement the RBF neuro-controller a' network with 65 centres and input vector
with n, =n, =15 was set up. These parameters were arrived at through the model
validation tests described in Section 2. The input and the corresponding output of the ideal
controller were used as the training pair with the OFR algorithm and the thin-plate-spline as
the basis function for the RBF network. Both the OSA prediction and the MPO were used

to train the network. One half of the data was used as the estimation set and the remaining

~ half was used as the test set. Later, the full data set was used to train the network and

evaluate the system performance in comparison to the ideal controller.

Figure 8 shows the OSA prediction and MPO of the network, achieving error indices
of 0.0002 and 0.0002 for the estimation set and 0.0031 and 0.0045 for the test set
respectively. Note that the estimation set error of the MPO is at a similar level as compared
to that of the OSA prediction. The test set shows a larger error in the output with the MPO
in comparison to the OSA prediction. Although, the test set error in each case is relatively
larger than the estimation-set error, the network gives a good output prediction. The
corresponding correlation test functions were all found to be within the 95% confidence
intervals, indicating an adequately fitted model.

To train the network for utilisation in the ANC system, the full data set was used in the
training procedure. The network achieved a predicted output with an error index of 0.0002.
The performance of the ANC system was monitored at the observation point with the
neuro-controller. Figure 9 shows the cancelled spectrum thus obtained. It is noted that an
average level of around 20 dB cancellation has been achieved with the neuro-controller.

This is similar to the performance achieved with the ideal controller, see Figure 7.
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6 Conclusion

The development of a neuro-adaptive ANC system has been presented and verified in the
cancellation of broadband noise in a three-dimensional propagation medium.

An RBF neural network with an OFR algorithm for training the network has been
introduced. The capability of the network in characterising dynamic systems has been
investigated. Both the OSA prediction and the MPO have been used as the training
methods. It has been shown that with a suitable choice of the input data structure the
system data can be faithfully predicted with an acceptable prediction error minimum.

A feedforward ANC structure has been considered for optimum cancellation of
broadband noise at an observation point in a three-dimensional propagation medium. The
controller design relations have been formulated so as to allow on-line design and
implementation, and hence a self-tuning control algorithm. The RBF neural netw‘ork has
been incorporated within the algorithm to characterise the optimal controller. In this
manner, a self-tuning neuro-ANC system has been introduced for broadband noise
cancellation. This has incorporated a supervisory level of control which detects variations
in the system and enables the controller characteristics to be updated, so as to achieve and
maintain the desired level of system performance. The neuro-adaptive ANC algorithm thus
developed has been tested within an acoustic environment characterising a non-dispersive
propagation medium, and its performance was verified in the cancellation of broadband
noise in comparison to the idea controller. It has been shown that the neuro-ANC system

achieves as good a performance as the system incorporating the ideal controller.
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Figure 1: Active noise control structure.
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Figure 2: Neuro-self-tuning controller.
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Figure 4: Block diagram of the simulated feedforward ANC structure.

24/29




Tokhi, MO and Wood, R (1997)

Ampl

05 100 200 300 400 500
Frequency (Hz)
(a) System gain.
300 T T T T

250
200
Degree

150

100

50 ' : :
0 100 200 300 400 500

Frequency (Hz)

(b) System phase.

Figure 5: Transfer characteristics of loudspeaker-microphone combination.
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Figure 7: The cancelled spectrum with the ideal controller.
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Figure 8: Output prediction of the RBF neuro-controller.

28/29




;

Tokhi, MO and Wood, R (1997)

40 T T T T T

dB

-40 1 1 L
0 100 200 300 400 500

Frequency (Hz)

Figure 9: The cancelled spectrum with the RBF neuro-controller.
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