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Abstract

In this paper we consider the steady-state response of forced, damped,

weakly nonlinear oscillators with polynomial type nonlinearities. In partic-

ular we define general expressions that can be used to compute resonant

response functions which define the steady state constant amplitude oscilla-

tory response at the primary resonance and the associated harmonics. The

resonant response functions are derived using a normal form transformation

which is carried out directly on the second order nonlinear oscillator. The

example of a forced Van der Pol oscillator with an additional cubic stiffness

nonlinearity is used to demonstrate how the general analysis can be applied.

Keywords: weakly nonlinear, response function, normal form

1. Introduction

In this paper we consider nonlinear oscillators where the nonlinear terms

come from polynomial type terms involving velocity ẋ and displacement x.

These type of systems arise naturally in models of many physical phenomena,

and as a result, modelling the response of mechanical and structural systems
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with these type of nonlinearities is of interest in a range of applications. For

example the escape equation, the Duffing oscillator and the Van Der Pol

equation are three of the most well known and intensively studied equations

of this type — see [1, 2, 3] and references therein.

In this paper we use normal form transformations to derive a generalized

resonance response function (RRF) for the class of nonlinear oscillators being

considered. We demonstrate how different forms of the polynomial nonlin-

earities lead to different contributions in the RRF, and thus to the response

of the system.

The main analytical tool used to derive the RRFs in this paper is a nor-

mal form transformation is applied directly to the second order nonlinear

oscillator without the need for the usual preparatory transformation into

first order form [4]. The reason for using normal forms over other similar

methods such as multiple scales [5] is that we wish to exploit the properties

of the Lie bracket [6]. Normal form transformations are a powerful technique

for studying the response of nonlinear oscillators, which has it’s origins in

the work of Poincaré [7]. The techniques have a long history of development

and application, and are particularly useful for identifying resonant interac-

tions in oscillators — for example see [8, 9, 10, 11, 12, 13] and the related

approach of using nonlinear normal modes [14, 15, 16, 17, 18]. In addition,

a comprehensive overview of normal form theory and related techniques can

be found in [19, 20, 21, 22], and a survey of recent developments is given by

Stolovitch [23].

The main advantage in using the approach of [4, 24] over the more usual

first order normal form, is that it exactly separates the responses at each
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resonance from the harmonic components of the response. This allows the

resulting expressions to be projected onto a basis of complex exponential

functions and derivation of RRFs without needing to use harmonic balance

type approximations. The technique is demonstrated on an example system

which has both damping and stiffness polynomial type nonlinearities.

2. Deriving resonant response functions (RRFs)

In this paper we will consider oscillators of the form

ẍ+ ω2
nx+Nx(x, ẋ, r) = Pxr (1)

where Nx is a function containing both nonlinear and damping terms, ωn is

the undamped natural frequency, Pxr represents the harmonic forcing term

in which Px is the forcing (divided by mass) vector
[

P
2

P
2

]

, r = {rp, rm}T =

{eiΩt, e−iΩt}T and Ω is the forcing frequency. The forcing term is expressed

in this way because later in the analysis, exponential trial solutions will be

used to obtain nonlinear resonant response functions which we denote RRFs.

In this analysis the nonlinear and damping terms are grouped together

as we are assuming that both these terms are of a similarly small magni-

tude — order ε1 (we use ε as a bookkeeping device to establish the relative

magnitudes of the various terms). For this type of single-degree-of-freedom

weakly nonlinear system we will take the usual assumption that the case of

most interest is when the forcing frequency, Ω, is close to the linear resonance

frequency, ωn, corresponding to when response amplitudes are highest. As

the forcing is near-resonant, Ω ≈ ωn, the response frequency for the system,

defined as ωr, is taken to match the forcing frequency, ωr = Ω.
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A near-identity nonlinear transform will be applied of the form

x = u+ h(u, u̇, r), (2)

leading to transformed dynamic equation with a simplified form given by

ü+ ω2
nu+Nu(u, u̇, r) = Pur, (3)

where Nu contains only the resonant nonlinear terms.

The purpose of the transformation is to put the dynamic equation, E-

q. (1), into a simplified form which can be solved exactly by projecting onto

a basis of oscillatory exponential functions. This eliminates the need for

a harmonic balance type approximation when deriving the RRFs, as will

be described later. We use the harmonic response u = up + um, where

up =
U
2
ei(ωrt−φ) and um = U

2
e−i(ωrt−φ) such that u = U cos(ωrt−φ) where the

response amplitude, U , is real. Using the fact that Ω = ωr, the RRF relating

the displacement amplitude U to the input forcing amplitude P can then be

calculated.

The transformation method used here is a normal form transformation

method for systems of second order oscillators as described by [4]. This meth-

ods is used because it exactly separates the responses at each resonance from

the harmonic components of the response. A short description of the method

is included in the Appendix, and further details (including its application to

multi-degree-of-freedom systems) can be found in [4, 24]. The normal form

method centres around finding suitable Nu(u, u̇, r) and h(u, u̇, r) functions

for the given nonlinearity in the original oscillator equation Nx(u, u̇, r). Note

that while Nx is expressed in terms of x and ẋ in Eq. (1), when considering

the relationship between the three terms, Nu, h and Nx, it is expressed in
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terms of u and u̇. This is due to a Taylor series expansion during the deriva-

tion of this relationship – see Appendix Appendix A for details. Making the

substitution u = up + um into the nonlinear function Nx(u, u̇, r) results in

terms of the type up, um, u
2
p, u

2
m, ....etc, plus forcing terms rp and rm. These

nonlinear and forcing terms are collected into a vector denoted u∗, and then

Nx, Nu and h are each re-expressed in terms of u∗. The result is that the

transformed dynamic equation, Eq. (3), can be expressed as

ü+ ω2
nu+ εnuu

∗ = Pur, (4)

to order ε1, by applying the transformation, Eq. (2), which can be expressed

as

x = u+ εhu∗ (5)

where nu and h are coefficient vectors. We will now describe how these

vectors can be derived for oscillators with polynomial nonlinearities.

2.1. RRFs for polynomial nonlinearities

From Eq. (4) the resonant terms of the system are determined by the

non-zero coefficients of nu. From Eq. (5) the system response containing

constant offset and higher harmonic components (i.e. those at frequencies

greater than ωr) is determined by the non-zero coefficients in matrix h.

We will consider combined nonlinear and damping terms which can be

written as a series of the following form [25],

Nx (u, u̇) = εnx1 (u, u̇) = εnxu
∗ = ε

I
∑

i=0

J
∑

j=0

α̂iju
iu̇j (6)
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to order ε1, where αij = εα̂ij are the coefficients of the nonlinear and/or

damping terms with i, j, I and J positive integers and we assume no para-

metric excitation.

Now make the substitution u = up + um into Eq. (6) to give

Nx =
I

∑

i=0

J
∑

j=0

αij(iωr)
j(up + um)

i(up − um)
j, (7)

where the ε notation has been dropped. Expanding the i, j term in the

summation gives

Nx =
I

∑

i=0

J
∑

j=0

Nij : Nij = αij(iωr)
j

i+j
∑

k=0

γku
i+j−k
p uk

m. (8)

It is the ui+j−k
p uk

m terms that define the terms in u∗ with the corresponding

coefficients αij(iωr)
jγk included in nx, (see Eq. (6)). Here γk is the kth

coefficient in the polynomial expansion and is given by

γk =
∑

v

Cv
i C

k−v
j (−1)k−v (9)

where C is the binomial coefficient, taking C0
0 = 1 and Ca+b

a = C−b
a = 0

for positive integer values of b. Note also that for non-integer values and

negative values of a; γa = 0 is defined.

Using the normal form technique the resonant terms can be identified

from Eq. (8), see Appendix Appendix B.1, allowing the transformed dynamic

equation to be derived as

ü+ ω2
nu+

I
∑

i=0

J
∑

j=0

Nij,res = Pur, (10)

where

even i+ j: Nij,res = 0

odd i+ j: Nij,res = αij(iωr)
j
(

γku
k+1
p uk

m + γk+1u
k
pu

k+1
m

)

, k = i+j−1
2

(11)
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and the subscript res indicates that only the resonant terms are included

(the other terms will be represented in the nonlinear near-identity transform

– discussed later in this section).

To proceed we note that γk = (−1)jγk+1 for the case where k = (i+ j −
1)/2, see Appendix Appendix C, and that

uk+1
p uk

m + uk
pu

k+1
m =

(

U

2

)2k

u, uk+1
p uk

m − uk
pu

k+1
m =

(

U

2

)2k
1

iωr

u̇ (12)

obtained via the relationship u = up + um with up = U
2
ei(ωrt−φ) and um =

U
2
e−i(ωrt−φ). Using these relationships and Eq. (11) allows Eq. (10) to be

written as

ü+D(U)u̇+
[

ω2
n +K(U)

]

u = Pur, (13)

where D(U) and K(U) are damping and stiffness like terms respectively.

They may be written as

D(U) =
I

∑

i=0,e

J
∑

j=0,o

αij(iωr)
j−1γ(i+j−1)/2

(

U

2

)(i+j−1)

,

K(U) =
I

∑

i=0,o

J
∑

j=0,e

αij(iωr)
jγ(i+j−1)/2

(

U

2

)(i+j−1)

(14)

where the summation subscript o and e indicate that only the odd or even

terms, respectively, of the variable are considered.

Now consider the case where there is non-zero near-resonant forcing such

that Ω = ωr. Following the near-identity transform, the resonant terms

remained in the dynamic equation while the non resonant terms were included

in the transform, Eq. (5). Note thatD(U) andK(U) are functions of response

amplitude U but not time (see Eq. (12)). Therefore, the resonant response
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may be written as an RRF of the form

U

P
=

1
√

{K(U) + ω2
n − ω2

r}2 + {D(U)ωr}2
, (15)

where Pu = Px =
[

P
2

P
2

]

, has been used (see Eq. (A3)). This is the resonance

response function (RRF) of the system which shows the relationship between

the frequency and the response amplitude, hence allowing the response am-

plitude U to be computed. Due to the form of K and D it can be seen that

the even terms in Nx(x, ẋ) have no effect on the resonant response, whereas

the odd terms can contribute either in the form of apparent damping or of

stiffness. At the same time, Eq. (15) reflects that the nonlinear system can

also adopt a indirect superposition to get the final dynamic equation in u

form, for each of the nonlinearities adds its own contribution to the resonant

response function of the system.

In addition the phase of the resonant response can be calculated from

Eq. (14) as

φ = arctan

(

D(U)ωr

K(U) + ω2
n − ω2

r

)

(16)

Table 1 lists a selection of example polynomial nonlinear terms for N and

their effect on the resonant response.

2.2. Non-resonant response for polynomial nonlinearities

The non-resonant response of the system is captured by h, which to order

ε1 can be written as

h = εhu∗ = h(0) +
I+J
∑

k=2

h(k) (17)
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Table 1: The polynomial nonlinearities’ contributions to the resonance response function,

note γk is written in the form γk(i, j) and k = (i+ j − 1)/2.

Nonlinear γ for resonant terms Contribution Contribution

terms to K(U) to D(U)

x2ẋ0 none none none

x2ẋ1 γk(2, 1) = −γk+1(2, 1) = 1 none α21U
2/4

x2ẋ2 none none none

x2ẋ3 γk(2, 3) = −γk+1(2, 3) = −2 none α23ω
2
rU

4/8

x3ẋ0 γk(3, 0) = γk+1(3, 0) = 3 α30U
2/4 none

x3ẋ1 none none none

x3ẋ2 γk(3, 2) = γk+1(3, 2) = −2 α32ω
2
rU

4/8 none

x3ẋ3 none none none

where the constant time-invariant response is given by

h(0) =
I

∑

i=0,e

J
∑

j=0,e

αij(iωr)
j−2γ(i+j)/2

(

U

2

)i+j

(18)

see Appendix Appendix B.2.1, and the response at the kth higher harmonic

is given by

h(k) =
I

∑

i=0

J
∑

j=0,e

2αij(iωr)
j

(

U

2

)i+j
1

(k2 − 1)ω2
r

γ(i+j−k)/2 cos[k(ωrt− φ)]+

I
∑

i=0

J
∑

j=0,o

2αiji(iωr)
j

(

U

2

)i+j
1

(k2 − 1)ω2
r

γ(i+j−k)/2 sin[k(ωrt− φ)]

(19)

where k = 2, 3, 4 . . . , see Appendix Appendix B.2.2. Table 2, gives the dis-

tribution of the harmonics in the system response for some nonlinear terms.

9



Table 2: The nonlinearities contribution to the constant off-set and the second and third

harmonic. Using the abbreviations Sk and Ck for sin[k(ωrt − φ)] and cos[k(ωrt − φ)]

respectively and writing γk in the form γk(i, j)

Nonlinear terms h(0), Eq. (18) h(2), Eq. (19) h(3), Eq. (19)

x2ẋ0 −α20ω
−2
r U2/2 α20ω

−2
r U2C2/6 0

(γ1(2, 0) = 2) (γ0(2, 0) = 1) (γ−0.5(2, 0) = 0)

x2ẋ1 0 0 −α21ω
−1
r U3S3/32

(odd j) (γ0.5(2, 1) = 0) (γ0(2, 1) = 1)

x2ẋ2 −α22U
4/8 0 0

(γ2(2, 2) = −2) (γ1(2, 2) = 0) (γ0.5(2, 2) = 0)

x2ẋ3 0 0 −α23ωrU
5S3/64

(odd j) (γ1.5(2, 3) = 0) (γ1(2, 3) = −2)

x3ẋ0 0 0 α30ω
−2
r U3C3/32

(odd i) (γ0.5(3, 0) = 0) (γ0(3, 0) = 1)

x3ẋ1 0 −α31ω
−1
r U4S2/12 0

(odd i,j) (γ1(3, 1) = 2) (γ0.5(3, 1) = 0)

x3ẋ2 0 0 −α32U
5C3/128

(odd i) (γ1.5(3, 2) = 0) (γ1(3, 2) = 1)

x3ẋ3 0 α33ωrU
6S2/32 0

(odd i,j) (γ2(3, 3) = −3) (γ1.5(3, 3) = 0)

10



2.3. Complete response

Finally to calculate the full response, the resonant response amplitude U

and phase φ are calculated using Eqs. (15) and (16) and then the harmonic

responses can be calculated using Eqs. (18) and (19) respectively. Using

Eq. (2), the full response to order ε is given by

x = U cos(ωrt− φ) + h(0) +
I+J
∑

k=2

h(k) (20)

where u = up + um with up =
U
2
ei(ωrt−φ) and um = U

2
e−i(ωrt−φ) has been used

and h(0) and h(k) are given in Eqs. (18) and (19) respectively. From this

response equation the nonlinear terms in N can be separated into 4 classes

based on whether i and j are even or odd. This is summarised in Table 3.

2.4. Stability of the solution

The steady-state constant amplitude near-resonant response of a gener-

alised nonlinear equation of motion, consisting of the RRF along with expres-

sions for the harmonics, has now been found. We now consider the stability

of the RRF solution. This is done by considering the amplitude of response

U to be slowly varying, as is typically done in the multiple scales technique

(see for example [3]). Recalling that u = up + um = U cos(ωrt− φ), we now

write

u = Uc cos(ωrt) + Us sin(ωrt) (21)

where Uc = U cos(φ) and Us = U sin(φ) and to account for the slow amplitude

variation with time both Uc and Us are functions of εt (the ε is present to

indicate the slow nature of the variation). The derivatives of umay be written
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Table 3: Summary of the form of the response for combinations of odd and even i and j,

note that higher harmonic terms where the γa term contains a non-integer a have been

removed resulting in either even or odd values of k.

i j Contribution Contribution to Higher harmonics

to RRF, constant off-set, response terms,

Eq. (15) Eq. (18) Eq. (19)

even odd terms in D(U) none sin(k(ωrt− φ)] terms,

k = 3, 5, . . . , i+ j

odd even terms in K(U) none cos(k(ωrt− φ)] terms,

k = 3, 5, . . . , i+ j

odd odd none none sin(k(ωrt− φ)] terms,

k = 2, 4, . . . , i+ j

even even none yes if cos(k(ωrt− φ)] terms,

γ(i+j)/2 6= 0 k = 2, 4, . . . , i+ j

12



as

u̇ = ωr[−Uc sin(ωrt) + Us cos(ωrt)] + ε[U ′
c cos(ωrt) + U ′

s sin(ωrt)]

ü = −ω2
ru+ 2εωr[−U ′

c sin(ωrt) + U ′
s cos(ωrt)] +O{ε2} (22)

where {}′ indicates the derivative with respect to εt.

When letting the amplitude of response vary slowly with time we firstly

note that, to order ε1, the derivation of the transformed equation of motion,

Eq. (23), remains unchanged. This is because u is only present at order

ε1 in the relationship linking the original nonlinear term, the transformed

nonlinear term and the transform (derived in the Appendix – Eq. (A2)).

Hence including the modified to u, which is order ε1, results in new terms

at only order ε2. Now taking the transformed equation of motion, Eq. (23),

recognising it is accurate to order ε as K(U) and D(U) are order ε and

making the substitution for u and ü gives

2ωr[−U ′
c sin(ωrt) + U ′

s cos(ωrt)] +D(U)ωr[−Uc sin(ωrt) + Us cos(ωrt)]

+
(

ω2
n − ω2

r +K(U)
)

[Uc cos(ωrt) + Us sin(ωrt)] = P cos(ωrt), (23)

to order ε1, once we have dropped the ε notation. Balancing sine and cosine

terms results in the first-order differential equation





Uc

Us





′

=
1

2ωr





(K(U) + ω2
n − ω2

r)Us − ωrD(U)Uc

−(K(U) + ω2
n − ω2

r)Uc − ωrD(U)Us



+





0

P



 (24)

The forcing frequency dynamics are now in the form X′ = f(X, t) + P.

The equilibrium of the constant amplitude solutions, X̄, can be found by

considering a perturbation Xp away from equilibrium. Using a Taylor series

expansion, the perturbation dynamics are Xp
′ = fx(X̄, t)Xp, where fx is the
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Jacobian of f . Hence the equilibrium solution is stable when the real parts

of both eigenvalues of fx(X̄, t) are negative.

With some algebraic manipulation the eigenvalue equation may be writ-

ten as

λ2 + λ
[

D + U2D∗
]

+
U2(K(U) + ω2

n − ω2
r)

ωr

dωr

dU2
= 0 (25)

where D∗ = dD/dU2 and λ is an eigenvalue of fx(X̄, t). In deriving this

equation we have used U2 = U2
c + U2

s , ∂D/∂Us = 2UsD
∗ etc and to simplify

the λ0 term have used the derivative of the equilibrium solution equation,

Eq. (15), with respect to U2 to give an expression for dωr/dU
2. This eigen-

value equation is in the quadratic form λ2 + bλ + c = 0, where b and c are

real. For the real parts of the eigenvalues to be negative it is well known,

and straightforward to show, that both b and c must be positive. Hence for

the constant amplitude solutions, derived in section 2.1, to be stable we have

the conditions

(K(U) + ω2
n − ω2

r)
dωr

dU2
≥ 0 (26)

D + U2D∗ ≥ 0 (27)

Note that by inspection of Eq. (23) the backbone curve for the system, the

curve defining the nonlinear natural frequency in the unforced, undamped

system, ω0, as a function of amplitude may be written as ω2
0 = ω2

n +K(U).

As a result, considering the response curve defined by Eq. (23) in the usual

[U, ωr] plane, the first condition, Eq. (26), may be interpreted as requiring

a positive gradient to the response curve when to the left of the backbone

curve and a negative gradient to the right of the backbone curve for the RRF

solution to be stable. This is consistent with a zero eigenvalue corresponding

14



to a fold. At the transition to instability via purely imaginary eigenvalues,

i.e. when D + U2D∗ = 0, a Neimark-Sacker bifurcation occurs resulting in

quasi-periodic motion [22].

3. Example system

The relationships derived in the previous section are now applied to an

example system. This system is the forced Van der Pol equation with an

additional cubic stiffness nonlinearity giving

ẍ+ ω2
nx− µ(1− x2)ẋ+ αx3 = P cos(Ωt) (28)

where it is assumed that the nonlinear and damping terms are small com-

pared to the linear ones and the forcing is near resonant such that Ω is close

to the natural frequency, ωn, and therefore ωr = Ω.

Through comparison with Eq. (1), the nonlinear stiffness and damping

term may be written as

Nx(x, ẋ, r) = µ(x2 − 1)ẋ+ αx3 (29)

such that just the [i, j] = [0, 1], [2, 1] and [3, 0] terms in the summation,

Eq. (6), exist with coefficients α01 = −µ α21 = µ and α30 = α respectively.

Immediately from Eqs. (14) and (15) the resonant response may be written

as
U

P
=

1
√

(

ω2
n − ω2

r +
3αU2

4

)2
+ µ2ω2

r

(

−1 + U2

4

)2
(30)

with ωr = Ω. This equation can be rewritten as a quadratic in ω2
r and solved

for a range of U to give the resonant response curve.
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Figure 1 shows an example resonant response function for the system

with parameters ωn = 1, µ = 0.08 and α = 0.04 and forcing amplitude P =

0.4. Time-stepping simulation results, using a variable-step Runge-Kutta

solver (matlab function ode45), are shown for comparison – dots and circles

are the simulation results for steps of increasing and decreasing frequency

respectively. The amplitudes plotted are based on an FFT applied to the

response of the system after the initial transients have decayed away.

Considering the stability conditions, Eq. (26) and Eq. (27), the dashed

line indicates unstable solutions, where the first condition, Eq. (26), isn’t met

— in this case the response is to the right of the backbone curve and the

gradient negative. The second condition, Eq. (27), simply requires U ≥
√
2,

and solutions outside this are indicated by the dotted lines. Stable solutions

which satisfy both Eq. (26) and Eq. (27) are indicated by solid lines, and it

can be seen that in the stable solution regions there is very good agreement

between the prediction using the general RRF equation, Eq. (23), and the

time-stepping simulations. The time stepping solutions for the case where

the frequency is just above or below that corresponding to U =
√
2 have

amplitudes that are oscillatory in nature. This is indicated by the lack of

agreement between the circles, dots in the regions of the dotted lines.

The constant offset can be predicted using Eq. (18) and is h(0) = 0 since

all three terms in the nonlinear expression have odd values of j. The higher

harmonics are predicted from Eq. (19). For the [i, j] = [0, 1] term it can be

seen that γ(i+j−k)/2 = γ(1−k)/2 is zero for all valid k = 2, 3, 4, . . . , since γa is

only non-zero for positive integer values of a. For both the [i, j] = [2, 1] and

the [i, j] = [3, 0] terms, γ(i+j−k)/2 = γ(3−k)/2 and so, for valid k, only the case

16
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Figure 1: The resonant response for Eq. (28) for the case where ωn = 1, µ = 0.08 and

α = 0.04 and forcing amplitude is P = 0.4. The line shows the normal form prediction, it

is dashed and dotted in regions where the solution is unstable based on Eqs. (26) and (27)

respectively. The dots and circles show the time-stepping simulation result for increasing

and decreasing frequency steps respectively.
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Figure 2: The system response at (a) zero frequency, (b) 2ωr and (c) 3ωr for ωn = 1,

µ = 0.08 and α = 0.04 and P = 0.4. The lines shown the normal form prediction and the

dots and circles time-stepping simulation results (with steps of increasing and decreasing

in frequency respectively). The stability is defined by the curves in Fig. 1.

where k = 3 is γ 6= 0 giving

h(3) =
U3

32ω2
r

[−µωr sin(3ωrt− 3φ) + α cos(3ωrt− 3φ)] (31)

Figure 2 shows the constant offset and higher harmonic resonance am-

plitudes for the system. It can be seen that the normal form prediction

shows good agreement with the time-stepping simulation results in the re-

gions where the constant amplitude solution is stable.

4. Conclusion

In this paper we have developed expressions for the resonance response

functions (RRFs) of a class of nonlinear oscillators with polynomial nonlin-
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earities based on a constant amplitude steady-state response using the second

order normal form technique of [4]. Using this framework, the contributions

of the polynomial type nonlinear terms to the resonance response function

and the system response have been categorised. Sample results for different

types of polynomial nonlinear terms are presented in Tables 1 and 2. Table

3 summarises the effect of odd and even i j values in the polynomial non-

linearity, and the subsequent contributions to both the resonance response

function and the harmonic response at other frequencies. The stability of

the constant amplitude steady-state response has also been considered and

results in two simple conditions that must be met for solution stability.

The method has been applied to an example system, a forced Van der

Pol oscillator with an additional cubic stiffness nonlinearity. The resonance

response function results show excellent agreement with time stepping simu-

lations for the stable solution regions. In addition the harmonic contributions

away from the primary resonance have been computed, and are also in close

agreement with time stepping simulations.

In summary, this analysis has defined a clear relationship between the

polynomial nonlinearities and their subsequent contributions to the resonance

response function (RRF). The complete resonance response function is given

by Eq. (15). The harmonics term is given by Eq. (A8), the constant shift

as Eq. (18) and the higher harmonic terms are given by Eq. (19). These

are summations of individual contributions, and the complete response is

given by Eq. (20), which is also a summation of the different contributions.

The summation can be interpreted as a form of indirect superposition which

is a useful feature of the normal form method in terms of helping us to
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characterise the response of nonlinear systems. This superposition feature

associated with normal form methods has previously been noted by Jezequel

and Lamarque [11] using a first order normal form approach.
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Appendix

Appendix A. Summary of the second-order normal form method

for single-degree-of-freedom systems

Normal form analysis is a method of transforming the equation of motion

for a weakly nonlinear system into a form in which the response is at just

one frequency – the dominant response frequency. The response at other

frequencies being captured by the transform equation.

Consider oscillators of the form of Equation 1. The following discussion

gives the near-identify transformation between transformed coordinate u and

x. Initially it is necessary to introduce ε as a bookkeeping device to estab-

lish the different magnitudes of each orders when using Poincaré asymptotic

expansions

Nx(x, ẋ, r) = εnx1(x, ẋ, r) + ε2nx2(x, ẋ, r) + · · ·

Nu(u, u̇, r) = εnu1(u, u̇, r) + ε2nu2(u, u̇, r) + · · ·

h(u, u̇, r) = εh1(u, u̇, r) + ε2h2(u, u̇, r) + · · · (A1)
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Substituting Eqs. (3) and (A1) into Eq. (1), yields

Pur− εnu1 + εω2
nh1 + εnx1 + ε

d2

dt2
h1 + · · · = Pxr (A2)

where terms of order ε2 or larger have been ignored and where nu1 and h1

are the function vectors whose variable parameters are u, u̇, r and nx1 is a

function of x, ẋ, r. In order to make the functions have the same variables we

substitute x = u + h(u, u̇, r) into nx1, and apply a Taylor expansion results

in nx1(x, ẋ, r) = nx1(u, u̇, r) + O(ε1). Substituting this into Eq. (A2), and

equating powers of ε, gives

ε0 : Pu = Px (A3)

ε1 : nu1 = ω2
nh1 + nx1 +

d2

dt2
h1 (A4)

where nu1, h1 and nx1 are all written as functions of u, u̇ and r.

The next step is to select nu1(u, u̇, r) and h1(u, u̇, r) for the given nonlin-

earity nx1(u, u̇, r) to satisfy Eq. (A4). To do this we set u = up + um, where

up = U
2
ei(ωrt−φ) and um = U

2
e−i(ωrt−φ). Substituting this into nx1(u, u̇, r)

results in terms of the type up, um, u
2
p, u

2
m, ....etc. The expansion of the non-

linear terms in up and um is defined by a vector u∗ which consists of all the

combinations of up and um for that particular nonlinearity and the forcing

terms rp and rm. This is an important step because then all the function

vectors can be rewritten as a coefficient matrix multiplied by vector u∗ [26]

such that

nx1(u, u̇, r) = nxu
∗, nu1(u, u̇, r) = nuu

∗, h(u, u̇, r) = hu∗ (A5)

Define the form of any element in the vector u∗ by writing the lth element

as

u∗
ℓ = r

vℓp
p rvℓmm u

sℓp
p usℓm

m , (A6)
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where the vℓp, vℓm, sℓp and sℓm, constants indicate the power of the rp, rm, up

and um terms respectively. When considering Eq. (A4), the second deriva-

tives of the u∗
ℓ are also needed, which are given as

d2u∗
l

dt2
= {i[(vℓp − vℓm)Ω + (sℓp − sℓm)ωr]}2 u∗

ℓ = −ω̂2
ℓu

∗
ℓ (A7)

from which we infer that ü∗ = −ω̂2u∗ where ω̂2 is a diagonal matrix con-

taining the ω̂2
ℓ elements. Using this and substituting Eq. (A5) into Eq. (A4),

yields

(−hω̂2 + ω2
nh− nu + nx)u

∗ = 0 (A8)

and for non-zero u∗ solutions we can write

nx − nu = hω̂2 − ω2
nh = h̃. (A9)

It is convenient here to apply a detuning approximation [4] in which we note

that ωr ≈ ωn such that ω2
n = ω2

r + εδ. Substituting this into Eq. (A9) and

recalling that this equation represents the ε1 terms in Eq. (A2) gives

nx − nu = hω̂2 − ω2
rh = h̃. (A10)

Note that the εδ term modifies the equation relating the ε2 terms in Eq. (A2).

The ℓth row of this vector equation may be written as

nxℓ − nuℓ = h̃ℓ. (A11)

where the ℓth element of nx is nxℓ etc. Using Eqs. (A7) and (A8), the

relationship between h̃ℓ and hℓ may be written as

h̃ℓ = hℓ{[(vℓp − vℓm)Ω + (sℓm − sℓm)ωr]
2 − ω2

r} = βℓhℓ. (A12)
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The coefficients in nx are known, they are defined from the nonlinear

terms in the original equation of motion. Now using these equations the

coefficients of nu and h may be selected. Ideally we want as many of the nu

coefficients as possible to be zero, which will eliminate nonlinear terms in the

transformed dynamic equation. Therefore the default is to write, for each

element ℓ in turn, nuℓ = 0 and hℓ = nxℓ/βℓ. However for the cases where

βℓ ≈ 0, which corresponds to a resonant term, this would result in large terms

in the near-identity transform and hence invalidate the assumption that the

transform terms are of order ε1. Therefore for elements where βℓ ≈ 0 we

write nuℓ = nxℓ and hℓ = 0 and retain the nonlinear term in the transformed

equations. For more details about this transformation see [4].

Appendix B. Application of normal forms to polynomial nonlin-

earity

Here we identify the resonant and harmonic terms present in the gener-

alised polynomial nonlinearity defined by Nx in Eq. (1)

Appendix B.1. The nonlinear resonant terms

Considering the process to select the near-identity transform, the key

coefficient for the ℓth term is βℓ, see Eq. (A12), which is given by

βℓ = [(mℓp −mℓm)Ω + (sℓp − sℓm)ωr]
2 − ω2

r = 0. (A1)

When βℓ is equal to (or close to) zero, the corresponding nonlinear term is

resonant and so the ℓth element in nu matrix, nuℓ, is set equal to the term in

the nx matrix, nxℓ. With no parametric forcing terms present we can write,
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for the lth term, that if

|sℓp − sℓm| = 1 (A2)

then the term is resonant, and hence nuℓ = nxℓ and hℓ = 0 such that the

term is kept in the equation of motion. Taking the nonlinearity in the form

of the summation, Eq. (8), i.e. the terms present in vector u∗ are ui+j−k
p uk

m

for k = 0 to k = i+ j, and with reference to Eq. (A6), Eq. (A2) becomes

|i+ j − 2k| = 1 (A3)

for the kth element.

Inspecting Eq. (A3) it can be seen that for the case where i+ j is even no

resonance terms exist and hence Nij is removed from the dynamic equations,

its effects being represented in the transform equation. When i + j is odd

two resonance terms exist. These cases can be summarised as

even i+ j: Nij,res = 0 (A4)

odd i+ j: Nij,res = αij(iωr)
j
(

γku
k+1
p uk

m + γk+1u
k
pu

k+1
m

)

, k = i+j−1
2

where the subscript res indicates that only the resonant terms are included.

Appendix B.2. The harmonics in the system response

As with N , Eq. (6), taking h to be a summation over i and j where terms

consist of uiu̇j, the (i, j)th term in h may be written as

h(ij) = αij(iωr)
j

i+j
∑

k=0

δkγku
i+j−k
p uk

m, (A5)

i.e. in a similar way to Eq. (8). Here δk is determined by whether ui+j−k
p uk

m is

resonant or non-resonant and, using Eq. (A12) and the subsequent discussion,
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is given by

non-resonant: δk =
1

[(i+ j − 2k)2 − 1]ω2
r

, k 6= i+ j ± 1

2
(A6)

resonant: δk = 0, k =
i+ j ± 1

2
. (A7)

To proceed the terms in the summation are collected in pairs, ui+j−k
p uk

m

and uk
pu

i+j−k
m , by writing

h(ij) = αij(iωr)
j



δkγku
k
pu

k
m

∣

∣

k=(i+j)/2
+

(i+j−2)/2
∑

k=0

δkγk(u
i+j−k
p uk

m + (−1)juk
pu

i+j−k
m )



 ,

(A8)

using Eq. (A5) and noting that δk = δi+j−k. Note that when i+ j is odd the

first term in the square brackets is set to zero.

Appendix B.2.1. The constant time-invariant response

Considering the first term in the square bracket of Eq. (A8), making the

substitutions up =
U
2
ei(ωrt−φ) and um = U

2
e−i(ωrt−φ) and using Eqs. (A6) and

(A7) gives

δkγku
k
pu

k
m

∣

∣

k=(i+j)/2
=















− γk
ω2
r

(

U

2

)2k
∣

∣

∣

∣

∣

k=(i+j)/2

even i+ j

0 odd i+ j

(A9)

This term represents the constant off-set due to the nonlinearity in the sys-

tem. Note that this expression can be further simplified by realising that

γk = 0 for k = (i + j)/2 for odd values of j, using Eq. (A5). Recalling that

the near-identity transform h is made up of a summation of h(ij) terms over

i and j, the full constant off-set response may be written as

h(0) =
I

∑

i=0,e

J
∑

j=0,e

αij(iωr)
j−2γ(i+j)/2

(

U

2

)i+j

(A10)
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where the subscript (0) for h indicates the zero frequency response and e in

the summation indicates only even terms are used (elsewhere o is used for

odd terms).

The general form of this constant off-set value is contributed by different

nonlinearities suggests that a form of superposition can be used here.

Appendix B.2.2. Response at higher harmonic

Now, considering the second term in the square bracket in Eq. (A8) and

making the substitutions up =
U
2
ei(ωrt−φ) and um = U

2
e−i(ωrt−φ) gives

h(ij,∅) =























2αij(iωr)
j

(

U

2

)i+j i+j
∑

k′=2

1

(k′2 − 1)ω2
r

γ(i+j−k′)/2 cos[k
′(ωrt− φ)] even j

2αiji(iωr)
j

(

U

2

)i+j i+j
∑

k′=2

1

(k′2 − 1)ω2
r

γ(i+j−k′)/2 sin[k
′(ωrt− φ)] odd j

(A11)

where subscript ∅ indicates that the zero frequency response is excluded, the

substitution k′ = i + j − 2k has been made and Eq. (A6) has been used.

Note also that for non-integer values and negative values of a; γa = 0 is

defined. Again, recalling that the near-identity transform h is made up of a

summation of h(ij) terms over i and j, the response at the kth harmonic may

be written as

h(k) =
I

∑

i=0

J
∑

j=0,e

2αij(iωr)
j

(

U

2

)i+j
1

(k2 − 1)ω2
r

γ(i+j−k)/2 cos[k(ωrt− φ)]+

I
∑

i=0

J
∑

j=0,o

2αiji(iωr)
j

(

U

2

)i+j
1

(k2 − 1)ω2
r

γ(i+j−k)/2 sin[k(ωrt− φ)]

(A12)

Note that the harmonic response is potentially non-zero for either k =

2, 4, . . . i + j for the case where i + j is even or k = 3, 5, . . . i + j when
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i + j is odd (since at other k values the corresponding γa has a non-integer

a).

Appendix C. The coefficient γ

The definition of coefficient γk is given in Eq. (9)

γk =
∑

v

Cv
i C

k−v
j (−1)k−v (A1)

where C is the binomial coefficient, taking C0
0 = 1 and Ca+b

a = C−b
a = 0

for positive values of b. Here a simple relationship between γk and γi+j−k is

derived. To do this consider γi+j−k, given by

γi+j−k =
∑

v

Cv
i C

i+j−k−v
j (−1)i+j−k−v (A2)

and make the substitution v = i− v′ to give

γi+j−k =
∑

v′

C i−v′

i Cj−k+v′

j (−1)j−k+v′ . (A3)

Using the relationship Cb
a = Ca−b

a and noting that (−1)a = (−1)−a results in

γi+j−k =
∑

v′

Cv′

i C
k−v′

j (−1)−j+k−v′ . (A4)

Inspecting Eqs. (A1) and (A4) leads to the relationship

γk = (−1)jγi+j−k (A5)

The resonant terms for the i, j term of N , Eq. (8), will now be considered,

followed by the harmonic terms.
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