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Abstract — A sequential fuzzy clustering algorithm is proposed based on a modification
to the objective function used in the fuzzy competitive learning algorithm. The new learning
algorithm can be used to enhance the excitation on the non-winning centroids and to reduce
the excitation on the winning centroid when the fuzziness parameter is close to unity. The
excitation on the winning centroid can be further reduced when the input pattern is far away
from the winning centroid. An excitation-inhibition mechanism can also be introduced into
the learning such that the non-winning centroids move towards the input pattern while the
winning centroid moves away from the input pattern when the winning centroid is far away
from the input pattern. The new algorithm overcomes the problem of under utilization of
centroids found in the k-means or related clustering algorithms and in the fuzzy competitive
learning algorithm when the fuzziness parameter is close to unity. The performance of the
new algorithm is demonstrated on the IRIS data set.
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Abstract — A sequential fuzzy clustering algorithm is proposed based on a modification

to the objective function used in the fuzzy competitive learning algorithm. The new learning
algorithm can be used to enhance the excitation on the non-winning centroids and to reduce
the excitation on the winning centroid when the fuzziness parameter is close to unity. The
excitation on the winning centroid can be further reduced when the input pattern is far away
from the winning centroid. An excitation-inhibition mechanism can also be introduced into
the learning such that the non-winning centroids move towards the input pattern while the
winning centroid moves away from the input pattern when the winning centroid is far away
from the input pattern. The new algorithm overcomes the problem of under utilization of
centroids found in the k-means or related clustering algorithms and in the fuzzy competitive
learning algorithm when the fuzziness parameter is close to unity. The performance of the
new algorithm is demonstrated on the IRIS data set.

Keywords — Fuzzy Clustering, K-means, Sequential Clustering

1 Introduction

Clustering techniques are often used to organize unlabeled data samples into clusters such -
that the similarity among samples within a cluster and the dissimilarity among samples be-
longing to different clusters are maximized. Many classical clustering methods are presented
in the texts by Kohonen (Kohonen, 1989), Everitt (Everitt, 1993), Anderberg (Anderberg,
1973) and others. Among these methods, the sequential k-means and related methods have
been extensively studied in recent years due to the widespread interest in neural networks.
One serious problem with the sequential k-means or related algorithms is that some initial
centroids may get stuck in regions with few or no input data samples. Several algorithms
were proposed to deal with this problem, including the frequency sensitive competitive
learning algorithm (Ahalt et al., 1990), maximum-entropy clustering (Rose et al., 1990),
the neural-gas network (Martinetz et al., 1993), generalized clustering networks (Pal et al.,
1993). the fuzzy competitive learning algorithm (Chung and Lee, 1994) and the optimal
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adaptive k-means algorithm (Chinrungrueng and Sequin, 1995). All these methods con-
sider not only the relation between the input pattern and the winning centroid but also the
structural information presented in all the centroids and their relations to the input pat-
tern. These algorithms either move all the centroids towards the input pattern according to
their distances from the input pattern or they move the winning centroid, but the winner
is determined in the sence of a modified distance measure. As a result, all the centroids are
updated and the problem of under utilization may be eliminated.

In the present study, a modification to the fuzzy competitive learning (FCL) algorithm
(Chung and Lee, 1994) is proposed. We call this algorithm enhanced sequential fuzzy clus-
tering (ESFC). A new objective function is proposed by introducing a non-unity weighting
on the winning centroid. The new algorithm achieves better clustering performance when
the fuzziness parameter is small. An excitation-inhibition behaviour can also be introduced
into the learning process.

The layout of the paper is as follows. The fuzzy competitive learning algorithm is
presented in Section 2 and the disadvantages of this are explained. An enhanced sequential
fuzzy clustering algorithm is then derived. Comparetive studies of the two algorithms when
applied to the IRIS data are reported in Section 3 and conclusions are given in Section 4.

2 Enhanced Sequential Fuzzy Clustering

The fuzzy competitive learning algorithm (Chung and Lee, 1994) incorporates the fuzzy
membership function derived in the fuzzy k-means (Bezdek, 1981) algorithm into the se-
quential k-means algorithm. At each step, all the centroids are moved towards the input
pattern. If the fuzziness parameter in the algorithm is selected appropriately, the problem
of under utilization associated with the sequential k-means algorithm may be eliminated.
The algorithm is given as follows.

1. Store unlabeled input patterns X = x;,X2,....X, € RP, where n is the number of
input patterns and p is the dimension of the input patterns.

2. Set the number of centroids k, 1 < k£ < n. Set the fuzziness parameter m, 1 < m < co.
Set the learning rate 0 < ag < 1. Set the maximum number of iterations T and the
initial centroids ¢j,09,€2,0,...,Ck0 € RP.

3. For t;= 1to T, set a; = ag(l—1t/T)

(a) Choose randomly an input pattern x; € X.
(b) Forl=1tok

-1

7
k , 2\ =y
Xi = C!,t—l”
Hiie = E : ({1'1 |2>
j=1

Ixi - C;‘,t—11

Crp = Cre-1+ el (X —Cie-1)

(c) Nextl
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4. Next t.

Assume x € K7 is a stochastic input vector with a time invariant probability distribution
f(x)and X = x3,%3,...,Xn € RP is aset of samples drawn from f(x)att =1,2,...,n. The
centroids obtained by the fuzzy competitive learning algorithm are given by the stochastic
approximate minimization of the following objective function

3= 33 e - (2)

where

ko f 2 mz—lj - | |
X;—C

It is well known that the fuzzy membership function p;; tends to unity and 1/k when
the fuzziness parameter m tends to one and oo respectively. When the fuzziness parameter
m tends to one, the algorithm becomes the sequential k-means algorithm. Therefore, the
algorithm may still under utilize the centroids when the fuzziness parameter is close to
one. When the m parameter tends to oo, all the centroids will move towards the input
pattern at the same rate and all the centroids will converge to the grand mean of the data
samples. The fuzziness parameter m is critical to the performance of the fuzzy competitive
learning algorithm. To overcome the problem of under utilization, larger values may be
used. However, the clustering results may deteriorate because several centroids may move
at similar rates. To avoid this, Chung and Lee (1994) proposed that the fuzziness parameter
should be monotonically decreased during learning. However, this will considerably increase
the learning time.

When the fuzziness parameter m is close to unity, the fuzzy membership functions of
the centroids which are far away from the input patterns become smaller. At the same time
the membership functions of the centroids which are closer to the input patterns become
larger as more data are presented to the inputs. The learning algorithm therefore tends to
distribute too much excitation but no restriction or inhibition on the winner while putting
too much restriction and too little excitation on the loser.

To overcome this problem, we propose the introduction of a weighting parameter to
balance the excitation inhibition in the learning algorithm.

. n

k
Je=3 | X wlllxi—cll® +BuTllx: - el (4)

i=1 \l=1,l#r

where ¢, is the winning centroid. If there is a tie break, the centroid with the lowest index

will be the winner :
. _
k ] 2\ (m-1
||x: — ci| .
g = _— 5
‘ Jzzl(uxf—cjnz )

A sample function of the objective function Je is

k
Ix= Y ufllxi—cill® + 3uTllx — oo ? (6)

I=1, %
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The objective function Je may be approximately minimized by moving the centroids in the

direction of the negative gradient of the function Jx. The gradient of the sample function
Is

(Jx)i:r:*?(xi—cr)p’,’fi{l.p(ﬁ'l)(m“’»"_l)} )

m =1
(e, = =20 = {1+ LTy (®)

A new learning algorithm can then be obtained by replacing step 3 in the fuzzy com-
petitive learning algorithm by the following.

3. Fort =1to T, set oy = ap(l — t/T)

(a) Choose randomly an input pattern x; € X.
(b) Forl=1tok

2
k . 2\ (m=-1)
X;—Cli—
pliz = Z (H 1 ,t 1“ )

2\ [ =l

—~1

5 - 1)(muy. it = 1)
Crt = Crp-1+oupry, {1 + ( Nt }(Xi = Cre-1)
i m-1
m B—1mp-i:) ,
Clt = Clt—1T Ol {1 + _( m)— 1,u ”} (x; —cpe-1) L#7T

(9)
(c) Nextl

This algorithm will be refered to as the enchanced sequential fuzzy clustering (ESFC) rou-
tine. Note that the ESFC algorithm becomes the fuzzy competitive learning (FCL) algo-
rithm when the weighting parameter 5 is unity. When the fuzziness parameter is close to
unity, the weighting parameter § should be larger than unity. This has the effect of in-
creasing the learning rate for both the winning and non-winning centroids when mu,; > 1.
The increament on the learning rate for the winning centroids is smaller than for the non-
winning centroids. Therefore, the weighting has the effect of enhancing the excitation on the
non-winning centroids and reducing the excitation on the winning centroid. If my,; < 1,
the excitation on the winning centroid is further reduced. For larger weighting, the win-
ning centroid may even move away from the input pattern while the non-winning centroids
always move towards the input pattern. An excitation-inhibition mechanism is then intro-
duced into the learning. Because of the weighting, the clusters tend to be more compact.
When the fuzziness parameter is larger, the weighting may also be used to distribute com-
paratively more excitation on the winning centroid and less excitation on the non-winning
centroids by using a weighting smaller than unity. In this case. all the learning rates are
reduced and this may increase the learning time.
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Table 1: Subsample Means of the three IRIS Subspecies and Initial Centroids

Subsample Means Initial Centroids

subspecies 1 | 5.0060 3.4280 1.4620 0.2460 | 0.9563 0.9570 0.1796 0.8507
subspecies 2 | 5.9360 2.7700 4.2600 1.3260 | 0.7169 0.4361 0.7920 0.5934
subspecies 3 | 6.5880 2.9740 5.5520 2.0260 | 0.1419 0.6295 0.1439 0.5399

3 Simulation Results

In this section the FCL and the newly proposed ESFC clusterinig algorithm are applied
to the IRIS data (Fisher, 1939). The data set contains 130 physically classified patterns
in R* with 50 for each of the 3 IRIS subspecies. The IRIS data has been used in many
papers to demonstrate the properties of various clustering and classifier algorithms. In the
present paper, the final centroids obtained by the algorithms are compared to the physically
classified subsample means. The subsample means of the three subspecies are given in Table
L.

In all the simulations, the initial learning rate ap was set to 0.3 except when stated
otherwise and the initial centroids are given in Table 1. The physical classes of the IRIS
data were used only to produce the confusion matrix and were not used in the learning. The
element ¢; ; in the confusion matrix represents the number of samples in the ith subspecies
being classified as the jth subspecies (Pal et al., 1993). The confusion matrices were com-
puted by applying the nearest prototype classifier (Cover, 1967) to each of the 150 patterns
in the IRIS data. Each input pattern is classified as the same class to the centroid which is
the closest to it.

In Table 2, the fuzziness parameter m is 1.2 which is close to unity. When the FCL
algorithm (3 = 1.0) was applied to the data set, two of the centroids move rapidly while
the second centroid moves very slowly. When 3 is increased to 1.6, the second centroid
moves slightly faster. Increasing the weighting parameter § further induces all the three
centroids to move to the correct positions. Similar results were obtained until the weighting
was increased to 3.0. For larger weighting, the algorithm applies too much inhibition onto
one of the centroids so that the centroid is pushed away from the data.

In Table-3, the fuzziness parameter was increased to 1.5. The FCL (3 = 1.0) algorithm
still had similar problems to those in Table 2. If the weighting 3 is increased to 1.2,
the second centroid moves slightly faster but is still not fast enough to reach the correct
position. Further increases in ( are sufficient to move all the centroids to the correct
positions. However when the weighting was 2.6, two of the centroids moved at more or less
similar rates initially. Further learning seperated the two centroids and they all reached the
correct positions. Increasing the weighting parameter further produced good results until
the weighting reached 3.5.

In Table 4, 5 and 6, the fuzziness parameter m was set to 2.0, 2.5 and 3.0 respectively.
These are the settings at which the FCL algorithm achieves good clustering results. When
the weighting parameter 3 was small (< 1.0), one of the centroids moved slowly. When the
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Table 2: Results of FCL (3 = 1.0) and ESFC (3 # 1.0) on the IRIS Data
(CIQ = 0.3, T'= 30)

Parameters Final Centroids Confusion Matrix
m=1.2 =10 5.0012 3.3441 1.5936 0.3054 50 00
(FCL) 0.3831 0.7656 0.2057 0.5233 0 4 46
6.3878 2.9230 5.1394 1.808% 0 0 50
m=12 f=1.6 4.9998 3.3609 1.5682 0.2943 50 00
(ESFC) 0.8951 1.0506 0.3385 0.4886 0 4 46
6.4140 2.9343 5.1826 1.8448 0 0 50
m=12 f=1.8 4.9966 3.4034 1.4891 0.2614 50 0 0
(ESFC) 5.8829 2.7405 4.4923 1.4815 0 48 2
6.8347 3.0942 5.6987 2.1128 0 15 35
m=1.2 8 =3.0 4.9912 3.3833 1.5166 0.2745 5000
. (ESFC) 5.8981 2.7478 4.5504 1.5223 0 48 2
6.8346 3.1018 5.7107 2.1335 0 15 35
m=1.2 =35 4.9942 3.3582 1.5654 0.3017 50 00
(ESFC) -0.5468 0.0320 -0.2607 1.0875 4 0 46
6.4809 2.9679 5.3265 1.9405 0 0 50

Table 3: Results of FCL (3 = 1.0) and ESFC (3 # 1.0) on the IRIS Data

(O-'G =0.3,)
Parameters Final Centroids Confusion Matrix
m=1.5 f#=1.0 | 5.0119 3.3509 1.6002 0.3064 50 0 0
T=230 1.0829 1.1099 0.4889 0.5204 4 0 46
(FCL) 6.3971 2.9278 5.1541 1.8171 0 0 50
m=1.5 B =12 | 5.0150 3.3529 1.6031 0.3073 50 0 0
. o T = 30 1.2511 1.1823 0.6000 0.5408 0 4 46
| . (ESFC) 6.4077 2.9326 5.1753 1.8312 0 0 50
__ | m=15 B=1.4149987 3.4009 1.4966 0.2636 50 0 0
5 T = 30 5.8817 2.7531 4.4428 1.4550 0 47 3
(ESFC) 6.8105 3.0752 5.6847 2.0946 0 14 36
m=1.5 8 = 2.6 | 5.0000 3.3926 1.5116 0.2686 50 0 0
T = 30 6.3622 2.9141 5.0976 1.7875 0 47 3
(ESFC) 6.3645 2.9140 5.0920 1.7813 0 7 43
m=15 =26 | 49993 3.3970 1.5039 0.2667 50 0 0
T=60 5.8755 2.7574 4.4159 1.4348 0 43 7
(ESFC) 6.7949 3.0675 5.6689 2.0887 0 14 36
m=15 =235 | 49914 3.3696 1.5394 0.2836 50 0 0
T = 30 5.8860 2.7664 4.5060 1.4891 0 48 2
(ESFC) 6.8068 3.0824 5.6643 2.1114 0 14 36
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Table 4: Results of FCL (3 = 1.0) and ESFC (8 # 1.0) on the IRIS Data
(ap = 0.3, T = 30)

Parameters Final Centroids Confusion Matrix

m=2.0 8=1.0 | 5.0010 3.4038 1.4964 0.2612 50 0 0
(FCL) 5.8944 2.7662 4.4230 1.4340 0 47 3
6.7773 3.0633 5.6499 2.0787 0 14 36

m=2.0 8 =0.7 | 5.0333 3.3904 1.5812 0.2946 50 0 0
(ESFC) 3.1922 1.8989 1.8267 0.7360 4 0 46
6.3999 2.9317 5.1493 1.8148 0 0 50

m=2.0 §=0.8 | 5.0018 3.4109 1.4860 0.2568 50 0 0
(ESFC) 5.8343 2.7415 4.3340 1.3918 0 46 4
6.7327 3.0461 5.5918 2.0475 0 11 39

m=2.0 f =12 | 5.0004 3.4014 1.4999 0.2626 50 0 0
(ESFC) 5.8961 2.7702 4.4241 1.4325 0 47 3
6.7667 3.0613 5.6386 2.0787 0 13 37

m=2.0 8=1.4 | 50050 3.3926 1.5225 0.2715 50 0 0
(ESFC) 6.3487 2.9101 5.0593 1.7622 3 44 3
6.3491 2.9105 5.0598 1.7624 0 15 35

weighting parameter was large (> 1.0), two of the centroids moved at more or less similar
rates. These results are very similar to those observed in the FCL algorithm when the fuzzi-
ness parameter was either close to unity or large. The weighting parameter was introduced
to improve the clustering performance of the FCL algorithm. When the fuzziness parameter
is around 2.0, the FCL algorithm usually achieves good clustering results. Therefore it is
resonable to expect that the weighting parameter should be close to unity as shown in these
simulations. The weighting parameter can however still be used to fine tune the balance
between excitation and inhibition during learning.

When the fuzziness parameter is large, the FCL algorithm tends to move all the centroids
at similar rates and the final centroids may converge to the same position which resembles
the grand mean of the whole data set. The weighting parameter 8 can then be used to
enhance the excitation on the winning centroid and reduce the excitation on the non-winning -
centroids.;}_{owever the enhancement is limited since the fuzzy membersihp function u,; ¢
is generally small and a large fuzziness parameter m will further reduce this enhancement.
Since a small weighting (< 1.0) reduces the updating rate for the centroids, the learning
process converges very slowly. As shown in Table 7, when the learning rate in the FCL
algorithm is small, two of the centroids move at more or less similar rates. The second
and third centroids are close to each other. A weighting parameter of less than unity can
make these two centroids move away from each other. The effect of the weighting is more
clear when the initial learning rate is larger and the number of iterations are higher. Note
that the square distances from the centroids ¢;,! = 1,2, 3 to their corresponding physical
subsample means €,l = 1,2,3 decrease with the increase in the initial learning rate and
the number of iterations. In real applications however a high fuzziness parameter should
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Table 5: Results of FCL (3 = 1.0) and ESFC (8 # 1.0) on the IRIS Data

(ap = 0.3, T = 30)

Parameters Final Centroids Confusion Matrix
m=2.5 §=1.0 | 5.0021 3.4000 1.5016 0.2614 50 0 0
(FCL) 5.9109 2.7835 4.4239 1.4262 0 47 3
6.7362 3.0543 5.6043 2.0684 0 13 37
m=25 8=0.5 | 50114 3.4187 1.4910 0.2567 50 0 0
(ESFC) 5.4325 2.5769 3.7855 1.1847 0 32 18
6.5638 2.9894 5.3658 1.9317 0 1 49
m=25 f=1.2 | 50018 3.3981 1.5040 0.2622 50 00
(ESFC) 5.9155 2.7885 4.4284 1.4267 0 47 3
6.7245 3.0523 5.5917 2.0675 0 13 37
m=25 =14 | 50049 3.3924 1.5189 0.2680 50 0 0
(ESFC) 6.3411 2.9110 5.0403 1.7536 3 46 1
6.3412 2.9111 5.0405 1.7538 0 14 36

Table 6: Results of FCL (3 = 1.0) and ESFC (3 # 1.0) on the IRIS Data

(a0 = 0.3, T = 30)

Parameters Final Centroids Confusion Matrix
m=3.0 §=1.0 | 5.0038 3.3976 1.5032 0.2604 50 0 0
(FCL) 5.9262 2.7971 4.4288 1.4246 0 47 3
6.7034 3.0463 5.5646 2.0563 0 13 37
~7 [ m=3.0 §=0.5| 5.0041 3.4040 1.4970 0.2586 50 0 0
(ESFC) 5.8877 2.7745 4.3834 1.4062 0 47 3
6.7230 3.0467 5.5852 2.0532 0 12 38
m=3.0 §=1.2 | 5.0038 3.3961 1.5048 0.2609 50 0 0
(ESFC) 5.9330 2.8024 4.4356 1.4267 0 47 3
6.6919 3.0438 5.5517 2.0539 0 13 37
m=3.0 f=14 [ 50056 3.3922 1.5144 0.2646 50 0 0
(ESFC) 6.3311 2.9112 5.0170 1.7425 342 5
6.3311 2.9112 5.0170 1.7426 0 13 37
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Table 7: Results of FCL (3 =1.0) and ESFC (3 # 1.0) on the IRIS Data

(m:T.O)
ag = 0.3, T=200, 8 =1.0 (FCL) ||t = &]J* oo = 0.3 T=200,8=10.5 llei — &|*
41978 2.5230 2.3042 0.8104 2.4999 3.6113 2.1915 2.1440 0.8477 4.3012
5.5552 2.7787 3.8627 1.2819 0.3049 4.8699 2.6076 3.0595 1.0199 2.6978
4.1978 2.5230 2.3042 0.8104 4.3162 5.8650 2.8641 4.2261 1.4038 2.6799
oo = 0.3, T=400, 8 =1.0 (FCL) |Jc: = &][* oo = 0.3, T=400, 8 =0.5 [ler — &
5.0159 3.3996 1.5036 0.2525 0.0027 4.9373 3.2923 1.6032 0.3035 0.0464
6.1548 2.8900 4.6951 1.5789 0.3191 5.5059 2.8234 3.5110 1.0972 0.8013
6.2707 2.9184 4.8645 1.6744 0.7001 6.4485 2.9567 5.1914 1.8470 0.1819
oo = 0.6, T=200, 8 =1.0 (FCL) |[[ci—é&]* oo = 0.6 T=200, 3 =0.5 et — &
5.0162 3.3995 1.5040 0.2528 0.0027 4.9376 3.2911 1.6064 0.3051 0.0478
6.1442 2.8879 4.6828 1.5691 0.2951 5.5001 2.8264 3.4957 1.0915 0.8323
6.2838 2.9205 4.8889 1.6878 0.6495 6.4498 2.9572 5.1947 1.8494 0.1782
. ao = 0.6, T=400, 8 = 1.0 (FCL) |lei —¢&i|* ag = 0.6 T=400, 8 =0.5 ller — &i?
5.0160 3.4008 1.5008 0.2513 0.0024 5.0159 3.4024 1.5001 0.2520 0.0022
6.0249 2.8587 4.5004 1.4584 0.0911 5.9138 2.8172 4.3619 1.3923 0.0175
6.5323 2.9942 5.3250 1.9318 0.0639 6.5864 3.0102 5.4086 1.9717 0.0248
oo = 0.8, T=200, B =1.0 (FCL) |ler—&lf* ag = 0.8 T=200,8=0.5 lle: = &i]]*
5.0165 3.4004 1.5023 0.2521 0.0025 5.0188 3.4036 1.5037 0.2538 0.0026
6.1332 2.8810 4.6598 1.5423 0.2578 5.7632 2.7642 4.1003 1.2859 0.0570
6.4063 2.9458 5.1098 1.8058 0.2779 6.5388 2.9923 5.3429 1.9359 0.0546
oo = 0.8, T=400, 8 = 1.0 (FCL) [[et — &]? ao = 0.8 T=400, f = 0.5 lles — &
5.0162 3.4010 1.5007 0.2513 0.0024 5.0153 3.4016 1.5003 0.2520 0.0023
5.9943 2.8480 4.4592 1.4393 0.0620 5.9522 2.8287 4.4111 1.4156 0.0346
6.5583 3.0033 5.3681 1.9525 0.0410 6.5922 3.0123 5.4145 1.9754 0.0229

be avoided if possible.

4 Conclusions

In this paper an enhanced sequential fuzzy clustering algorithm has been proposed. The

\ algorithm overcomes the under utilization problem usually seen in the k-means and related

; clustering -algorithms. The weighting parameter introduced in the new algorithm can be

' used to balance the excitation on the winning and non-winning centroids. An excitation

. inhibition mechanism can also be introduced for certain parameter settings. The algorithm
achieved better clustering results on the IRIS data set than fuzzy competitive learning when
the fuzziness parameter is close to unity.
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