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Abstract 

Highly ordered mesoporous alumina was prepared via evaporation induced self-assembly and was 

impregnated to afford a family of Pd/meso-Al2O3 catalysts for the aerobic selective oxidation (selox) of allylic 

alcohols under mild reaction conditions. CO chemisorption and XPS identify the presence of highly dispersed 

(0.9ʹ2 nm) nanoparticles comprising heavily oxidised PdO surfaces, evidencing a strong palladium-alumina 

interaction. Surface PdO is confirmed as the catalytically active phase responsible for allylic alcohol selox, 

with initial rates for Pd/meso-Al2O3 far exceeding those achievable for palladium over either amorphous 

alumina or mesoporous silica supports. Pd/meso-Al2O3 is exceptionally active for the atom efficient selox of 

diverse allylic alcohols, with activity inversely proportional to alcohol mass. 

 

1. Introduction 

The drive towards greener and more sustainable chemicals manufacture requires the development of new 

synthetic protocols and processes, offering enhanced atom-economy and energy efficiency [1]. In this 

respect, the green synthesis of allylic aldehydes, an important class of polyfunctional chemical intermediates 

that find widespread application in the agrochemical, fragrance/flavourings and pharmaceutical sectors, has 

been the focus of intense academic and commercial research, with the direct, aerobic selective oxidation 

(selox) of the corresponding alcohol derivatives offering a low temperature, low cost and clean approach [2]. 

By this means, cinnamaldehyde, an insecticide [3] and common food/perfume additive can be obtained via 

cinnamyl alcohol from the leaves of Cinnamomum verum. Other naturally occurring allylic alcohols, whose 

aldehyde derivatives are valuable chemical intermediates, include prenol (genus citrus) and geraniol (genus 

Rosa and Cymbopogon): citral, a product of geraniol selox, shows appreciable antimicrobial activity against 

diverse micro-organisms [3] and is a precursor in the commercial synthesis of vitamin A [4] and [5], while 

crotonaldehyde is a precursor to the food preservative sorbic acid [5]. 

 

Heterogeneous, late transition metal catalysts, notably gold and palladium, are particularly active for the 

liquid and vapour phase aerobic selox of allylic alcohols [2], with catalyst performance a strong function of 

the metal electronic structure and support textural properties. We have extensively investigated the 

behaviour of Pd nanoparticles on mesoporous silica supports, wherein high activities for crotyl and cinnamyl 

alcohol selox towards crotonaldehyde and cinnamaldehyde respectively are possible through tuning the 

mesopore architecture [6] and [7]. Detailed kinetic investigations, alongside in situ [8], [9] and [10] and 

operando studies [11], [12], [13] and [14] have provided conclusive evidence that allylic alcohol oxidation 

occurs via a redox mechanism, catalysed by electron deficient, surface Pd(II) species present as PdO. Kumar 

et al. [15], Scott et al. [16] and Hara et al. [17] have likewise reported a heterogeneous Pd(II) active species 



responsible for aerobic alcohol selox, while homogeneous Pd(II) complexes are well known to catalyse such 

alcohol oxidations [18], [19] and [20]. Interestingly, surface PtO2 has also been recently reported as the 

active phase in the analogous Pt catalysed aerobic selox of allylic alcohols [21]. 

 

Surface oxidation of palladium nanoparticles is a strong (inverse) function of their attendant particle size, 

hence low Pd loadings favour highly dispersed and heavily oxidised palladium. However, a key barrier to the 

commercialisation of Pd selox catalysts is their on-stream deactivation via in situ reduction to metallic 

palladium, even under atmospheric pressures of oxygen or air. In part, this reflects the weak interaction of 

palladium with (non-reducible) silica supports largely employed to date, necessitating recourse to high 

surface area forms of silica with complex, interconnecting architectures [6] and [7]. Amino-functionalised 

silica supports offer one route to help stabilise highly dispersed Pd nanoparticles [22], [23] and [24], but 

require additional preparative steps, generating associated waste, and narrow the pore dimensions 

hindering intra-pore mass transport. An alternative approach to stabilising highly dispersed palladium is to 

select a support material with a greater affinity for the element, such as alumina [25] or silica-alumina [26], 

wherein Al-rich supports favour sub-2 nm (or even atomically-dispersed) palladium. 

 

In contrast to silicas and carbons, the synthesis of high surface area mesostructured aluminas is relatively 

undeveloped, with early surfactant-templating approaches employing carboxylic acids achieving high surface 

areas (760 m
2
g

-1
), but small (2 nm diameter) randomly ordered mesopores [27]. Large mesopore (10 nm 

ĚŝĂŵĞƚĞƌͿ ɶ-alumina has been fabricated through the use of room temperature ionic liquids as a co-solvent 

and template; however this material comprises randomly debundled nanofibres embedded in a wormlike 

porous network, and hence presents a disordered environment for the preparation of uniformly dispersed 

catalytic centres and reactant/product diffusion. Evaporation-induced self-assembly (EISA) utilising 

poly(alkylene oxide) block copolymers affords a simple route to highly ordered 2D hexagonal (p6mm) 

mesoporous materials [28], and has been successfully applied to synthesise ordered mesoporous aluminas 

with high thermal stability [29] and [30], large pores up to 7.5 nm [31], diverse transition metal dopants [32] 

and [33], or hierarchical architectures containing complementary macropores via colloidal crystal co-

templating with polystyrene microspheres [34]. 

 

Here we exploit the EISA route to produce a high surface area, highly ordered mesoporous alumina in order 

to stabilise dispersed palladium nanoparticles in an oxidised form, with the goal of enhancing the selective 

oxidation of allylic alcohols. The resulting Pd/meso-Al2O3 catalysts are active towards diverse allylic alcohols, 

and exhibit significantly higher turnover frequencies (TOFs) than their silica counterparts, with initial rates 

inversely proportional to palladium loading, reflecting a higher density of surface PdO active species and 

stronger Pd-alumina interaction. 

 

2. Experimental 

2.1. Mesoporous alumina synthesis 

Highly ordered mesoporous alumina (meso-Al2O3) was prepared adopting the procedure of Yuan and co-

workers [29]. Pluronic P123 surfactant (3 g, Sigma-Aldrich) was dissolved in anhydrous ethanol (60 cm
3
, 

Sigma-Aldrich > 99.5%) under agitation, and nitric acid (4.5 cm
3
, Fisher Scientific 65 wt%) and aluminium 

isopropoxide (6.2 g, Sigma-Aldrich 98%) subsequently added under stirring until dissolved and the mixture 

aged for 5 h. EISA was initiated by slow ethanol removal upon heating at 60 °C under static conditions. After 



96 h, the resulting yellow solid was ground to a fine powder, and then heated at 0.4 °C min
о1

 under flowing 

O2 (50 cm
3
min

о1
) to 600 °C for 3 h. 

 

2.2. Pd impregnation 

Palladium incorporation was achieved via incipient-wetness impregnation. Mesoporous alumina (1.5 g) was 

saturated with aqueous tetraammine palladium(II) nitrate solution (1.5 cm
3
, with Pd concentrations adjusted 

to achieve nominal loadings spanning 0.05ʹ5 wt% Sigma-Aldrich 10 wt%) at room temperature. The resulting 

slurries were stirred for 18 h before heating to 50 °C. Agitation was stopped after approximately 5 h, and the 

residual solids left to dry for 24 h at 50 °C. The dry powders were subsequently heated in static air at 1 °C 

ŵŝŶо ϭ ƚŽ ϱϬϬ ΣC ĨŽƌ Ϯ Ś͕ ƉƌŝŽƌ ƚŽ ŚĞĂƚŝŶŐ Ăƚ ϭϬ ΣC ŵŝŶо ϭ ƚŽ ϰϬϬ ΣC for 2 h under flowing H2 (10 cm
3
min

о1
). 

Samples were then cooled to room temperature and stored in air. A nominal 1 wt% Pd on commercial 

DĞŐƵƐƐĂ C ɶ-alumina (surface area 180 m
2
g

о1
) was also prepared following the same protocol. 

 

2.3. Materials characterisation 

Nitrogen porosimetry was performed on a Quantachrome Nova 1200 porosimeter using NovaWin 2 v2.2 

analysis software. Samples were degassed at 120 °C for 2 h prior to N2 physisorption. Powder X-ray 

diffraction (XRD) patterns were recorded on a PANalytical X'Pert PRO diffractometer fitted with an 

XΖCĞůĞƌĂƚŽƌ ĚĞƚĞĐƚŽƌ͕ ƵƐŝŶŐ Ă CƵ Kɲ ;ϭ͘ϱϰ ÅͿ ĞǆĐŝƚĂƚŝŽŶ ƐŽƵƌĐĞ͕ ǁŝƚŚ ƉĂƚƚĞƌŶƐ ĐĂůŝďƌĂƚĞĚ ĂŐĂŝŶƐƚ Ă Sŝ ƐƚĂŶĚĂƌĚ͘ 
Transmission electron microscopy (TEM) and high angle annular dark field scanning transmission electron 

microscopy (HAADF STEM) images were recorded on a FEI Tecnai F20 FEG TEM operated at 200 kV and 

equipped with a Gatan Orius SC600A CCD camera. Samples were prepared by dispersion in methanol and 

drop-casting onto a copper grid coated with a holey carbon support film (Agar Scientific Ltd). Images were 

analysed using ImageJ 1.41 software. Actual Pd loadings were determined by MEDAC Analytical and 

Chemical Consultancy Service Ltd, with samples digested in HF prior to ICP analysis. X-ray photoelectron 

spectroscopy (XPS) was performed on a Kratos Axis HSi X-ray photoelectron spectrometer fitted with a 

ĐŚĂƌŐĞ ŶĞƵƚƌĂůŝǌĞƌ ĂŶĚ ŵĂŐŶĞƚŝĐ ĨŽĐƵƐŝŶŐ ůĞŶƐ͕ ƵƐŝŶŐ ŵŽŶŽĐŚƌŽŵĂƚĞĚ Aů Kɲ ƌĂĚŝĂƚŝŽŶ ;ϭϰϴϲ͘ϲ ĞVͿ͘ SƉĞĐƚƌĂů 
fitting was performed with CasaXPS version 2.3.14. Binding energies were referenced to the adventitious C 1 

s peak at 284.6 eV. Pd 3d XP spectra were fitted adopting a common asymmetric peak shape determined 

from that of a palladium oxide standard, and a spin-orbit doublet separation of 5.3 eV in agreement with 

literature values from the NIST surface database. Pd dispersion was measured via CO pulse chemisorption on 

a Quantachrome ChemBET 3000 system. Samples were outgassed at 150 °C under flowing He (20 cm
3
min

о1
) 

for 1 h, prior to reduction at 100 °C under flowing hydrogen (20 cm
3
min

о1
) for 1 h before analysis at room 

temperature. 

 

2.4. Allylic alcohol selox 

Catalyst screening was performed using a Radleys Starfish carousel batch reactor on a 10 cm
3
 scale at 90 °C 

under a bubbled O2 flow (3 cm
3
min

о1
 at 1 bar). Catalyst (50 mg) was added to a reaction mixture of allylic 

alcohol (8.4 mmol, Sigma-Aldrich purity of all > 95%), mesitylene (0.1 cm
3
, Sigma-Aldrich 99%) as an internal 

standard, and toluene (10 cm
3
, Fisher Scientific 99.8%). Control reactions in the absence of any solid phase 

or presence of bare alumina supports, were conducted in parallel with tests on Pd/meso-Al2O3 and gave 

negligible conversion of any alcohols. Reactions were periodically sampled, with aliquot (0.25 cm
3
) 

withdrawn, filtered, and diluted with toluene (1.75 cm
3
, Fisher Scientific 99.8%) for triplicate analysed on a 

Varian 3900GC with CP-8400 autosampler (CP-Sŝůϱ CB ĐŽůƵŵŶ͕ ϭϱ ŵ ǆ Ϭ͘Ϯϱ ŵŵ ǆ Ϭ͘Ϯϱ ʅŵͿ͘ IŶŝƚŝĂů ƌĂƚĞƐ ǁĞƌĞ 
calculated from the initial linear region of the alcohol conversion profiles (typically 0.3ʹ1 h reaction), with 



selectivity and overall mass balances calculated using calibrated response factors for reactants and products. 

Conversion and selectivity values are reported within ± 3 % error, with mass balances in all ĐĂƐĞƐ ш ϵϱ й 
ĚƵƌŝŶŐ ƚŚĞ ĨŝƌƐƚ ŚŽƵƌ ĂŶĚ ш ϵϬ й ŽǀĞƌ Ϯϰ Ś͘ CĂƚĂůǇƐƚ ƌĞĐǇĐůĂďŝůŝƚǇ ǁĂƐ ĂƐƐĞƐƐĞĚ ďǇ ƐĐƌĞĞŶŝŶŐ Ă ƐƉĞŶƚ ƋƵĂŶƚŝƚǇ 
of catalysts from a scaled-up (by a factor of 2.5) to ensure significant catalyst recovery by hot filtration. Spent 

catalysts were stirred in 50 ml toluene at 90 °C for 10 min (three times) before drying at 120 °C for 2 h and 

subsequent catalytic testing under identical conditions to those stated above. 

 

3. Results and discussion 

3.1. Catalyst characterisation 

The successful synthesis of alumina possessing a p6mm 2D hexagonally packed, cylindrical pore architecture 

(meso-Al2O3) with a high degree of mesopore ordering is evidenced in Fig. 1. Low-angle XRD confirmed a 

p6mm mesostructure, which was readily visualised by TEM (see also Fig. S1). Textural properties were in 

good agreement with the literature [29], with meso-Al2O3 exhibiting a mean pore diameter of 6.5 nm, a type 

IV nitrogen adsorption isotherm and type H1 hysteresis characteristic of independent, cylindrical mesopores, 

and surface area of 280 m
2
g

о1
 (Table S1). 

 

 

Fig. 1. (Left) Low-angle XRD pattern and TEM micrograph of parent meso-Al2O3; and (right) corresponding 

adsorption/desorption isotherms and inset BJH pore size distribution. 

 

Subsequent palladium impregnation resulted in a family of Pd/meso-Al2O3 materials with bulk Pd loadings 

spanning 0.05ʹ4.11 wt%. HAADF STEM images of the 0.74 wt% Pd/meso-Al2O3 sample in Fig. 2 show the 

presence of well-distributed Pd nanoparticles with a relatively narrow size distribution and mean diameter of 

1.1 (± 0.5) nm. 

 



 

Fig. 2. (Left) HAADF-STEM micrograph of 0.74 wt% Pd/meso-Al2O3; and (right) corresponding Pd nanoparticle 

size distribution. 

 

Palladium dispersions, and corresponding mean particle sizes, were estimated via CO chemisorption and are 

presented in Table 1: these respectively increase from 63 % to 93 % and decrease from 1.8 to 0.9 nm with 

falling palladium loading, consistent with the concomitant rise in palladium surface oxidation observed by 

XPS (Fig. S2) from 9 % PdO (4.11 wt% Pd/meso-Al2O3) to 50 % PdO (0.05 wt% Pd/meso-Al2O3). The degree of 

surface oxidation compares favourably with that attainable over mesoporous silicas, for which maxima of 

only 25 % and 34 % PdO were observed over higher area SBA-15 and KIT-6 supports respectively [6] and [7], 

indicating that alumina is indeed better able to stabilise palladium in a higher oxidation state than silica as 

hoped due to a stronger metal-support interaction [35]. 

 

Support Pd loading
(a)

 /wt% Dispersion
(b)

 /% Ave. particle size
(b)

 /nm PdO content
(c)

 /% 

meso-Al2O3 4.11 63 (± 1) 1.8 (± 0.1) 8.7 (± 0.9) 

meso-Al2O3 1.75 67 (± 1) 1.7 (± 0.1) 14.9 (± 1.5) 

meso-Al2O3 0.74 74 (± 1) 1.5 (± 0.1) 21.9 (± 2.2) 

meso-Al2O3 0.44 84 (± 1) 1.2 (± 0.1) 28.1 (± 2.8) 

meso-Al2O3 0.07 88 (± 2) 0.1 (± 0.1) 44.4 (± 4.4) 

meso-Al2O3 0.05 93 (± 5) 0.9 (± 0.1) 49.9 (± 5.0) 

ɶ-Al2O3 0.79 68 (± 1) 1.7 (± 0.1) 14.4 (± 1.4) 

SBA-15
(d)

 0.89 52 (± 1) 2.3 (± 0.1) 6.0 (± 0.6) 

KIT-6
(d)

 0.78 71.5 (± 1) 1.6 (± 0.1) 11.3 (± 1.1) 

Table 1. Comparative structural properties of Pd nanoparticles over alumina and silica supports. (a) ICP-OES, 

(b) CO chemisorption using average CO:Pd stoichiometry of 1:2, (c) % PdO from fitted Pd 3d XP spectra, (d) 

From Ref. [6] and [7]. 

 

3.2. Allylic alcohol selox 

The performance of our highly ordered Pd/meso-Al2O3 family was first benchmarked against cinnamyl 

alcohol selox for comparison with our previously reported Pd/meso-silicas [6] and [7]. All Pd loadings 

exhibited excellent activity profiles (Fig. S3) under the mild reaction condition employed (90 °C and 1 bar O2). 



For palladium on silica supports, such as amorphous silica gel, SBA-15, SBA-16 or KIT-6, the initial rate of 

cinnamyl alcohol selox slows with increasing Pd loading due to a corresponding rapid decline in surface PdO 

concentration. Similar behaviour is seen for the present Pd/meso-Al2O3 catalysts (Fig. 3), however the initial 

rates are far superior to those obtained even over the most active silica counterpart published to date, with 

a maximum rate of 73,960 mmol gPd
о1

 h
о1

 for 0.05 wt% Pd-meso-Al2O3 (versus 19,532 mmol gPd
о1

 h
о1

 for 

comparable loading Pd/SBA-16), consistent with the superior stabilisation of surface PdO evidenced in Table 

1. In order to confirm that PdO is the active surface species responsible for cinnamyl alcohol selox over Pd-

meso-Al2O3, as is known for Pd/silicas [6] and [7] and colloidal Pd nanoparticles [12] and [14], these initial 

selox activities were normalised to the surface concentration of PdO (derived from XPS) or Pd metal (derived 

from CO chemisorption) in order to calculate TOFs with respect to either potential active species. Fig. 3 

reveals a constant TOF across the Pd-meso-Al2O3 family upon normalisation to surface PdO, entirely 

consistent with a common oxide active phase independent of loading, precisely as report for silica supports 

[6] and [7]. However, it is interesting to note that the TOF value for cinnamyl alcohol selox of ~ 14,100 h
о1

 for 

meso-Al2O3 supported palladium nanoparticles far exceeds that of 5,800 h
о1

 for Pd/silicas, indicating 

important differences in their respective Pd-oxide interactions [36] and [37]. While it is conceptually 

interesting to consider whether palladium loadings below 0.05 wt% (the lowest explored in this work) may 

offer even higher activities, it is virtually impossible to reproducibly synthesise and accurately characterise 

solids with lower palladium concentrations; solids with such extreme dilutions are not amenable to analysis 

by laboratory XPS or XRD, and extremely challenging for synchrotron XAS or HRTEM. 

 

 

Fig. 3. (Left) Rate dependence of cinnamyl alcohol aerobic selox on bulk Pd loading for Pd/meso-Al2O3; and 

(right) corresponding cinnamyl alcohol aerobic selox TOFs as a function of surface PdO or Pd metal content. 

 

Selectivity profiles for major products (> 1.5 % of total yield) are shown in Fig. 4 for representative low and 

high loading Pd/meso-Al2O3 catalysts. The principal product was cinnamaldehyde throughout reactions, with 

smaller amounts of 3-phenylpropan-1-ol formed via cinnamyl alcohol hydrogenation, and ethylbenzene, 

styrene and trans-ɴ-methylstyrene (in a 1:1:1 ratio) via hydrogenolysis [38]. Cinnamaldehyde selectivity 

exhibited a rapid, but small, initial decrease during the first hour of reaction, which we attribute to in situ 

reduction of a small fraction of surface PdO to metal by hydrogen liberated during cinnamyl alcohol 

adsorption and subsequent dehydrogenation [6], [7], [11], [12], [13] and [14]. Limiting cinnamaldehyde 

selectivities remained > 65 % after 24 h in all cases, but increased with the initial degree of surface oxidation, 

consistent with observations from single crystal Pd(111) [10] and PdOx/Pd(111) [8] model surfaces that PdO 



favours cinnamaldehyde desorption, while metallic palladium promotes competitive hydrogenation and 

decarbonylation. 

 

 

Fig. 4. Representative selectivity profiles for major products of cinnamyl alcohol selox over (left) 1.75 wt% 

Pd/meso-Al2O3 and (right) 0.05 wt% Pd/meso-Al2O3. 

 

The stability of active sites was assessed post-reaction via XPS analysis of a spent 0.74 wt% Pd/meso-Al2O3 

catalyst recovered from the reaction solution. Pd 3d XP spectra evidenced a small change in the 

concentration of surface PdO species with respect to the fresh catalyst as a result of in situ reduction after 

24 h selox (Fig S4). This loss amounts to only 25 % of the initial surface PdO present in the as-prepared 

catalyst, and we attribute this as the primary origin for the loss in selectivity observed in Fig. 4. Some carbon 

deposition was also apparent in the corresponding C 1 s XP spectra (not shown), which may also contribute 

to lower cinnamaldehyde yields as a result of site-blocking. Despite these changes in surface composition, 

post-reaction catalysts could be readily recycled, an important consideration with respect to their 

commercialisation, by simple washing in toluene to achieve complete regeneration of their initial activity 

and selectivity (Fig S5). Such facile regeneration rules out any irreversible active site deactivation on-stream 

by e.g. palladium leaching, nanoparticle sintering or incorporation within the alumina matrix, or adsorption 

of strongly bound hydrocarbons or CO as a result of decarbonylation side reactions. 

 

In order to evaluate to the wider potential of highly ordered mesoporous alumina as a preferred support for 

Pd catalysed allylic alcohol selox chemistry, the 0.74 wt% Pd/meso-Al2O3 sample was screened against a 

variety of primary, secondary and tertiary allylic alcohols, and benzyl alcohol, and benchmarked against 

similar Pd loadings (~ 0.8ʹϬ͘ϵ ǁƚйͿ ŽŶ ĐŽŵŵĞƌĐŝĂů ɶ-alumina, SBA-15 and KIT-6 supports (Table 2). Of the 

allylic substrates investigated, only linalool, a tertiary allylic alcohol, was unreactive, reflecting the absence 

ŽĨ ŚǇĚƌŽŐĞŶ ďŽƵŶĚ ƚŽ ƚŚĞ ɴ-carbon and higher activation barriers towards methyl CʹH bond activation [39]. 

It is immediately apparent that initial selox rates for the 0.74 wt% Pd/meso-Al2O3 catalyst outperform those 

for the analogous amoƌƉŚŽƵƐ ɶ-alumina support by at least a factor of two, and provides a 5ʹ10 fold 

enhancement for crotyl and cinnamyl selox over mesoporous silica counterparts. Absolute rates scale 

inversely with molecular mass, decreasing in the order C4 > C5 у ďĞŶǌǇů ĂůĐŽŚol > C9 > C10 > > C15 as 

anticipated from the slower bulk and intra-pore diffusion (and greater steric constraints) of the bulkier 



alcohols [40]. For all substrates, the TOFs indicate a common form of active surface PdO is present over both 

alumina supports, but which differs from that present in the (less active) Pd/SBA-15 and Pd/KIT-6 catalysts. 

We speculate that this difference arises from subtle changes in the local coordination environment of Pd
2+

 

centres on alumina versus silica supports, which appear otherwise electronically indistinguishable by XPS. 

The desired allylic carbonyl products are always formed selectively, particularly allylic ketones for which 

selectivities exceed 97 %. In contrast, the 0.74 wt% Pd/meso-Al2O3 catalyst was ineffective towards a range 

of unactivated, saturated and non-allylic alcohols including 1-pentanol, cyclohexanol, 1-octanol, 2-octanol, 3-

methyl-3-buten-1-ol, 2-phenylethanol and 3-phenyl-1-propanol, evidencing that the allylic functionality is 

critical role to the selox reaction. We postulate that this reflects stronger chemisorption (di-ʍͬʋ 
coordination) of the allylic function to the oxidised surface of palladium and weaker C-H ďŽŶĚ ŽĨ ƚŚĞ ĂůůǇůŝĐ ɴ 
carbon, that in concert serve to preferentially stabilise and activate allylic alcohols [10] under our reaction 

ĐŽŶĚŝƚŝŽŶƐ ǁŚŝĐŚ ĂƌĞ ƐŝŐŶŝĨŝĐĂŶƚůǇ ͚ŐƌĞĞŶĞƌ͛ ŝŶ ƌĞƐƉĞĐƚ ŽĨ ůŽǁĞƌ ƚĞŵƉĞƌĂƚƵƌĞ ĂŶĚ ƉƌĞƐƐƵƌĞ ƚŚĂŶ ĐŽŵƉĂƌĂƚŝǀĞ 
selox literature. 

 

Alcohol Support Time 

/h 

Conversion 

/% 

Selectivity 

/% 

Initial rate 

/mmolgPd
1
 h

-1
 

TOF (PdO) 

/h
-1

 

Crotyl alcohol meso-Al2O3 1 61 55 33,237 17,389 

ɶ-alumina 1 43 49 18,228 17,641 

SBA-15 1 11 72 3020 6253 

KIT-6 1 18 67 6237 6303 

3-buten-2-ol meso-Al2O3 0.5 82 98 10,3111 53,946 

ɶ-alumina 0.5 69 99 54,357 52,608 

Prenol meso-Al2O3 1 57 67 29,252 15,304 

ɶ-alumina 1 38 68 14,647 14,176 

3-penten-2-ol meso-Al2O3 1 57 97 30,348 15,878 

ɶ-alumina 1 44 98 16,601 16,066 

2-hexen-1-ol meso-Al2O3 3 40 57 21,573 11,287 

ɶ-alumina 3 29 55 11,718 11,341 

Benzyl alcohol meso-Al2O3 1 70 97 31,811 16,643 

ɶ-alumina 1 55 93 16,275 15,751 

Cinnamyl alcohol meso-Al2O3 3 100 66 25,595 13,391 

ɶ-alumina 3 76 65 13,671 13,231 

SBA-15 3 40 78 2950 6108 

KIT-6 3 47 79 5782 5843 

Trans-2-methyl- 

3-phenyl-2 

meso-Al2O3 3 77 76 21,171 11,076 

ɶ-alumina 3 48 72 10,415 10,081 

Geraniol (a) meso-Al2O3 3 13 62 2011 1052 

ɶ-alumina 3 12 57 1075 1040 

Farensol (a) meso-Al2O3 5 12 70 731 425 

ɶ-alumina 5 11 65 439 383 

Table 2. Comparative aerobic selox of allylic alcohols over alumina and silica supported Pd nanoparticles. (a) 

100 mg catalyst employed. 

 

 

 



4. Conclusions 

The use of highly organised mesoporous alumina produced via EISA synthesis as a support for Pd 

nanoparticles affords exceptionally active and highly selective catalysts for the atom efficient, aerobic 

oxidation of allylic alcohols to aldehydes/ketones under mild reaction conditions. A strong palladium-

alumina interaction helps to stabilise highly dispersed (0.8ʹ2 nm) nanoparticles, which possess high 

concentrations of surface PdO even at bulk loadings of 4 wt%. Kinetic analysis confirms surface PdO as the 

catalytically active species responsible for allylic alcohol selox, with rates that exceed those over commercial 

alumina or analogous mesoporous silica supports. 
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