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The use of posterior knowledge in statistical pattern
recognition with particular application to fault diagnosis.

S. Marriott and R. F. Harrison.

Department of Automatic Control and Systems Engineering
The University of Sheffield
Mappin Street
Sheffield, S1 3JD, U.K.

Abstract

This paper considers the problem of posterior knowledge inclusion into fault diagnosis
systems. The problem is framed in the context of set theory and elementary probability
theory. A methodology of posterior probability updating is proposed for cases where
fault conditions are rejected on the basis of external knowledge. Cases of exclusive,
conditionally independent and dependent faults classes are considered. A possible fault
hierarchy is generated following the estimation of fault class probability functions. Itis
shown that a simple renormalisation of existing probabilities does not apply in the
dependent class case and can lead to erroneous results; the fault hierarchy may change
following the exclusion of fault classes known not to have occurred. A radial basis
function network with second-order regularisation is proposed as a solution to the
underlying probability function estimation problem.

Key Words: Condition Monitoring, Posterior Knowledge. Fault Diagnosis, Radial
Basis Function Networks.

1. The Problem

In condition monitoring applications, it is not uncommon for more than one condition
type to be indicated at any one time. Hence the need for m from n classification or
status indication systems where each fault condition is associated with a class, as
opposed to 1 from n classification systems which are capable of indicating a single
condition only. Furthermore, any predictions are tentative and may need revising
when posterior knowledge becomes available about the true outcome, following a
prediction. Posterior knowledge is knowledge about the outcome supplied by an
operator, or some other source which is not available to the predictive system at the
time of prediction. It is new evidence about the posterior probabilities which have
been predicted for the current classification in the form of an updated output
classification and differs from the new evidence about the state of the system which is
typically encountered in sequential decision theory.

Any automated system which makes predictions about fault conditions will require the
ability to revise probability estimates when supplied with posterior knowledge. How
can such knowledge be incorporated so that all estimated probabilities are revised




immediately? This paper considers the problem from first principles to give an
indication of possible steps towards an architecture capable of automating the process.

The condition monitoring problem involves the estimation problem in that various
probability density functions are assumed to be known and must, in practice have been
estimated. The inclusion of posterior knowledge will require these density functions to
update the posterior probabilities.

Section 2 introduces the basic ideas behind the particular formulation of posterior
knowledge inclusion presented in this paper and continues the discussion of relevant
set theory introduced in the remainder of this section. The ideas illustrated in section 2
are expanded upon and formalised throughout the paper.

Section 3 discusses briefly general ideas concerning possible causal relationships in
fault diagnosis systems. Sections 4 to 7 expand and develop earlier ideas towards a
more general problem framework.

The discrete case examples of section 8 illustrate the theoretical results of previous
sections. Bayes’ theorem is discussed in section 9. Sections 10 to 14 consider the
three cases of exclusive, independent and dependent faults respectively and derives
results of relevance to the calculation of updated posterior probabilities. The hierarchy
of fault possibilities is discussed in section 13.

The posterior probability function estimation problem is discussed in Sections 18 and
19 where results are derived indicating that an explosion in the number of terms (hence
network outputs) is the worst-case scenario.

A result is derived in Section 20 showing that partitioning the input space into
mutually exclusive events is a valid way of simplifying the estimation problem. The
radial basis function network is applied to the estimation problem in Section 21.

The input space or sample space (e.g. Grimmet and Stirzaker,1992) may be divided
into N, possibly overlapping, classes given by U = C, U C,.....uC, . This space is
exhaustive and contains all possible outcomes or conditions A four class example is
represented by a Venn diagram in Figure 1.
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Figure 1. Abstract representation of a four class problem showing the maximum number of
overlapped regions. Note that some of the possible regions of overlap may contain no members and.
thus, would not exist.
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Venn diagrams provide a useful way of representing the probabilities involved in
updating class predictions. Figure 2 represents schematically the probability of class |
faults occurring in a four class problem.

Figure 2. The shaded circle represents the total probability of class 1 occurring.

The representation of probabilities by Venn diagrams can be justified by appealing to
the frequentist interpretation of probability (e.g. Kneale, 1949). Letting n, represent
the number of elements in set i (class i) and N represents the total number of elements,

then P(Cl) can be defined as
n
PIC V= Thomr—.
(C)=lim
From this definition (e.g. Durrett, 1994) many other expressions involving the union
and conjunction of sets and their respective probability definitions can be derived.

Classes may be:

i) independent
ii) dependent and exclusive
ii1) dependent and non-exclusive

These three cases will be examined within this paper. Classes of type (iii) will be dealt
with first being the most general—(i) and (ii) are special cases of (iii).

Independence in this context is taken to be conditional independence (Bernardo and
Smith, 1994; Grimmet and Stirzaker, 1992). More detail is given in the relevant parts
of later sections.

2. The Representation of Posterior Knowledge

There are many possible ways of representing posterior knowledge. In a probabilistic
context, it is useful to represent it as a set of revised probabilities, that is, a revised
probability for each class following observations of the current situation (current
datum) consisting of external information. For example, a set of class posterior
probabilities will be predicted for a single input datum. If it is then possible to exclude
one or more classes on the basis of knowledge or reasoning not available to the




predictive system, then the list of class probabiliti;s must be revised to give a more
accurate estimation of new class posterior probabilities.

Using the definition of conditional probability for discrete events (e.g. Durrett, 1994,
Grimmet and Stirzaker, 1992)

P(AIB):i(-;(—g)E)’, P(B)>0

where event A is conditional upon event B, the inclusion of posterior knowledge in the
form of excluded classes, that is where a given system condition is known not to have
occurred, can be represented by statements such as

P(c,nC3)
P(cy)

p(ciCs)=

and

P(Cc,nCiNCY)
P(C:nC)

P(cICi N Cy)=

the superscripted ¢ indicates the compliment operation with respect to the universal
set, (Grimmet and Stirzaker, 1992) thus C; and C, signify that classes two and four
respectively have been excluded; this constitutes the new knowledge that those classes

are now known not to have occurred. The revised probabilities P(CIIC;) and

P(C,IC;' N C4) now represent the state of knowledge regarding the occurrence of

class 1, after external knowledge has been incorporated, in the form of revised
posterior probabilities.

Formally, the revised posterior probabilities require that the inclusion of external

knowledge (evidence) be explicitly included in the notation e.g. P(CJC; ms).

and P(C,IC_: i me) where the symbol ‘€’ denotes the external knowledge or
evidence.

Here, probabilities are required of the form P|C,IC; ne ), P\CIC; " C, me ), and
q i ] i J k

P(c,.|c;: NCENCE N e) with the general form given by P{Ql Nc: me}where A,
keA,

denotes the set of indices of the excluded classes; the exclusion being based upon

external evidence.

Here, the inclusion of posterior knowledge is given in terms of classes which are
known not to have occurred as indicated by the external knowledge. It is convenient
to represent the updated posterior probabilities in terms of probabilities estimated from
previous observations of system conditions, i.e. classes which have occured; these

probabilities we call positive probabilities and they can be estimated from empirical
data.




The probability of class 1 occurring given three possible classes and given the posterior
information that class 2 has not occurred is denoted by
Plc.ngg)  Ploug)-Pc,)

p(cICs ne)= PC) PCucuc)-P(c)

using the definition of conditional probability (See Appendix A).
This situation is shown schematically in Figure 3.

Figure 3. The diagrammatic representation of P(Cllcf r\g) for three dependent classes. It is the
probability of the remainder of C, (without C, ) divided by the probability of C, and C; combined
(without C,).

The probability of class 1 occurring given a total of four possible classes and given the
posterior information that class 2 has not occurred is also denoted by

§ C,NC:
! P(Cllcgme):%.

This 1s illustrated in Figure 4.

€

1

Figure 4. The diagrammatic representation of P(CJC_: I g) for four dependent classes. The

probability of the remainder of class | occurring is divided by the total remaining probability
excluding class 2 to give the remaining probability of class | occurring.

o

For dependent classes, the underlying general pattern appears to consist of finding the
difference of unions of those sets involved in the numerator and denominator of the
conditional probability expression and finding the ratio of the respective probabilities.

For example, for the four class problem, P(CIICQ F\E) can be written as




¥

. g BE ne;) PlGuC)-BlG)
P(C,IC2 ms)— ) = P(U;C[)—P(CI)

P(Cs
where the posterior information has been included in terms of positive probabilities,
that is, those which can be estimated directly, or computed from estimated
probabilities. Similarly, the inclusion of further posterior information that class C, has
also been excluded can be written as

P(c,ncincs) P(cuc,uc,)-P(C,uc,)

P(ciC; nCine)= ST
(€)les T, ) P(CiNCY) p( 4C,)—P(C2uC4)

=1
Here, the class unions have increased by a single member (class 4) which is to be
excluded to give the revised probabilities. This is shown in Figure 5.

C,

¢

Figure 5. A representation of P(Cl o mg) where class 4 has also been excluded from Figure

4.

The set of fault classes is taken to be exhaustive with the universal set given by the
union of all classes including a “no-fault™ class.

3. Cause and Effect

Figure 6 shows a possible sub-system of a larger system to illustrate the ideas of cause
and effect. Conditions in components A and C occur independently of those in
component B and vice-versa. However, the occurrence of a condition in component A
entails a condition in component C. A condition in C can also occur independently of
conditions in A. Thus, there is a causal link between A and C.

Figure 6. A schematic representation of a group of interconnected sub-systems which form part of a
system model. Here, sub-systems A and C are causally connected.




Figure 7 illustrates this situation in terms of sets. For Ac C, (A # C) the condition

de;loted by class C will always occur when the condition denoted by class A occurs.

Thus,

P(AnC) _ P(4)
p(A) ~ P(A)

This is not necessarily the case the other way round where

Cc) PlA
P(A|C): P(ﬁ(g) ) = chi <1 if class A and class C are distinct (not equal). The

P(c1a)=

case that A = C is excluded because two such classes would be indistinguishable.
C

([

B

Figure 7. A Venn diagram showing the relationships between the event sets of figure 6. When class
A occurs it causes class C to occur. Note that class C events do not necessarily generate a class A
event.

4. The General Form of Posterior Knowledge Inclusion Where One Or More
Dependent Classes Are Excluded.

For the general case, where a set of dependent classes is excluded, the following
notation is introduced:, A, and A, denote the index sets of included and excluded sets
respectively where A = {5, 8,,..,8,, } andA, = {8‘\,,,_, .6.\.”3_....,6.\.} N, is the
number of included classes, N is the total number of possible classes. The delta
notation is used to denote that the class indices are not necessarily selected on the basis

of ordering e.g. it could be that for a five class problem, A, = {1,3,5} and A, = {2 ,4}

inwhichcase 8, =1, 8, =3, §, =5, §, =2 and &, =4 where classes two and four
have been excluded.

In general, to calculate the updated probabilities, given posterior knowledge,
P(C& nC NG n.nG )

P(Caﬂci\__l NG, N.NG ms):
R =

Sar-1

P[U Gy, ] o P[ij £, ) L

!

fue )

{

M Cg'\ B m...ngv)




e

where &, is the i th index, J, e{l,’l,...,N}.je{Sl}uAE. keA, ,and le A, UA,.

For the numerator, the probability of the union of all classes omitted is subtracted from
the probability of this union augmented by the class of interest i.e.

P[Ca ) [U G, D o P[U G, ] . For the denominator, the probability of the union of
j - >

all excluded classes is subtracted from the probability of the total number of classes i.e.
the certain event. This calculation suggests that an incremental procedure is possible
(see Section 8)

The proof of equation (1) is reserved until Section 7 when the dependence of the class
on the data is included.

5. Union of Overlapping Sets.
Now that the general form of the updated posterior probabilities
P(CE, G, NG, .N.NG N E) is given in terms of unions of sets. the general

form of P(UiI C‘al) is required (e.g Durrett, 1994.Grimmet and Stirzaker, 1992)

where K is the number of sets involved in the union. This is expanded to give

AU 6)-2P(c)
.
. 2 Pl m_c,.)l_)
.
+ Z P(Cﬁl NG, N C‘m) (2)

i<j<k

+ (=1 P(Ca, NG, m..nCax)

in terms of positive probabilities.

Recall that the 8 notation is used to reflect the fact that the indices i,j,k... are not
necessarily consecutive or ordered sequentially.

5.1 Examples:
5.1.1 Example 1

For three sets, the union is given by

P(C, U C, T )= P(C )+ P(C. )+ P(C;)
-P(C,nC,)-P(C,nC,)-P(C,NC,)
+P(C,NnC,NC,)




as shown in Figure 8

C3

Figure 8. The union of three sets. Itis calculated by subtracting all overlaps and replacing the
missing “centre”

5.1.2 Example 2

For four sets we have

P(C,uC,uC,LC,)

I
]
5

)+ P(C, )+ P(C, )+ P(C,)
C,nC,)-P(C,nC,)-P(C,NC,)
(C,nC)-P(C,nC,)-P(C,nC,)
(€ NECr O +PIC NG Ty)
(G, PG AC Y+ PC, A G E,)
(C,NC,NC,NC,)

6. Posterior Probabilities In Terms of Overlapping Sets: Examples

Applying the formula for unions of overlapping sets (equation (2)) to the general
formula for the inclusion of posterior knowledge (equation (1)) allows the posterior
probabilities to be computed.

6.1 Examples of Posterior Knowledge Inclusion in Terms of Positive
Probabilities.

6.1.1 For Three Classes where a Single Class has Been Excluded:

P(c,nCY)
P(C;)
P(c,uc,)-p(c,)

iy He witu B )-He)

P(CIC ne)=

P(Cl)_P(C: F\C:)
P(c)+ P(c,)- P(c,nc,)-P(c,nC,)-P(C.n C,)+ P(C, N C,NC)




6.1.2 For four classes:

P(CIICgmg):f_(i_l(E%

rle ve,)-2la)
P(Ci v UG C4)_ P(Cl)

P(c,)+ P(c.)+ P(c,)
-p(c,nc,)-Plc,nc,)-P(cnC,)
-p(c,nc,)-P(c,nc,)-P(C,nC,)

+P(c,nC,nC)+P(C,nC.nC,)
+P(C n G )+ PO, mCreC,)
—P(C 1 Gy G mC)

6.1.3 The Exclusion of two Classes in the Four class Example:
P(c,ncincy)
P(cincy)
p(c,uc,uc,)-P(C.uc,)
~Plcuc,uc,uc,)-P(c.uc,)

P(C,IC: N C: ne)=

P(c,)- P(c, nC,)

_fP(ClmC4)+P(C,mC3r\C4)
- P(c,)+P(c,)
(;mcz)—P(C,m:)—P(Cl nC,)
¢,)-p(cincy)
BlE; n€y, 6, )+ PlC nEyn €,)

,p(

- PG

+P(
+P(C Gy mC)+P(C ] mC)
_p(

C,NC,NCNC,)

10




7. All Probabilities are Conditional Upon the Input Space

So far, the dependence of the classes on the underlying data space has been lomitted.
In actuality, these classes are labels attached to regions of the space. Denoting the
underlying data variable by the n-dimensional vector x, and assuming for now that the
elements of x are discrete random variables, the expression that the updated class
probabilities including posterior information can be stated as

P(Ca, NG, NG, N.NCG, N x)
P

By

gpder]
A(Ue Jox)-A (U, )]

where j € {5‘ }u A., keA,,and e A, UA,. From equation (3) we get

3 Cc ﬁCfﬂmmemme): ! 4
P(Cbg] 6.\“1 O -2 = mCé\ ‘ﬁ..-mCé\ mx)

fys o
‘”MQ - J"“". - P((Lj% )r‘\x]

PG x |Px)-P UG,

P(c, 1€, NG N.nC nxne)=

PG Ix |Px)- P UG, [x
! ‘ &

PG |x —P(UC&
i ’ k

PG x —P(UCB‘
! k

where the rule P(A N B) = P(A|B)P(B) has been applied.
The above expression reduces to

oy J-Aola)
P(x)- P(x A Q G, ]

if all input vectors have class labels associated with them i.e. the set of classes is
exhaustive.

The final expression for the revised probabilities




(4)

ue f-Alu=

e T

] by definition of conditional
J} by P(AnB*)= P(Au B)- P(B)

by de Morgan’s law(e.g. Applebaum, 1996)

follows:

(A =Aand Un A=A

P[CS' N (O G, Jm X

.\||/\||f/\||.|l/\.|avﬂ1l/\|l.|l/

| x}— "{m G,

;{UL(QCQTF}—PQ(EVQJF

{ae)

Ays

el vy

F ol

P{C& U[O o] J

Equation (4) can be proved formally as



(S

lye p-Alys
(e Jo)-A(ys k|

where the fact that the union of the classes i1s exhaustive has been used.

If x is real-valued (continuous) then appropriate probability density functions of the

form
p(x N {U G, D = P{[U G, JXJP(X)
J J .
are substituted into the previous argument where p(.) denotes a probability density
function.

After including the dependency upon x, equation (2) is now written in terms of
probabilities conditional upon the input
> Plc

x)= > )
K

Y e na k)
i<j '

4
+ Z P(Ca, NG NG, Ix) (5)

i<j<k

K

K
PUL G,

+(=1)* P(CBI Py, Pl iy, ‘x)

to include the conditional probabilities of equation (4). Equation (5) can be proved
easily by using the distributivity of set relations and substituting C; mx for C; in
equation (2).

8. A Simple Example in Terms of Relative Frequencies.

In principle, the probability estimation problem can be solved by counting the number
of occurrences of classes on a case-by-case basis. Here, the probabilities are
represented by relative frequency observations. In practice, this method requires a
large amount of data (Bishop, 1995) and may not be accurate thus necessitating the
use of a continuous (i.e. not discrete-valued) estimator. The example presented here is

intended to illustrate the principles discussed in the previous section in a simple
context.

The probabilities of single classes are approximated by

13




P(Cl N x)
P(x)
rz(Q f‘\x)/ N(x)
n(x)/ N(x)
n(CI M x)

- oalx)
where N(x) is the total number of condition occurrences within a given region of the
data space x. Similarly for two classes occurring simultaneously

P(C{Ix)z

P(Ci mC,-Ix): P(Ci ;(3 ﬂX)
n(C,. Yy Cj M x)
= n(x)

or for all classes:
P(C sy N, )

P(x)

P(Cl M sz'\...r‘\CNIx) =

_ n(C, NC,N.NC, mx)

B n(x)
A numerical example of overlapping classes with all elements associated with x is
shown in Figure 9.

Cl

Figure 9. A diagrammatic representation of the numerical example.
The class frequency counts are given by

n(C‘l mx): 28, n(C2 r\x)z 26, n(C3 ﬁX): 26, ”(Q mx): 25,

n(Cl 1 s ﬂx): 13. n(C, N C, ﬁx): 5 ”(Cl G, ﬂx): 13
n(C,nC,nx)=18, n(C, A C, nx)=12, n(C, A C, nx)=13,




”(Cl mCEmC3mx):8, n(C}mCEQOx):?, n(Ci mCImCh,mx):?,
II(CIQC3F'\C4 mx):Q,

n(C,nC,NnC,NC, Nx)=5

The total number of condition occurrences across the four classes is given by
N{x)=28+26+26+25-13-12-13-18-12-13+8+7+7+9-5

= 105 81+31-3

=50
Now the relative frequencies (probabilities) of the singleton classes (the total
probability of each class as a whole) can be calculated by

n(C mx) 28
P(C Ix)= T](x)_ =55 =056
Similarly,

26 26 25
P(C,Ix)= 55 =052 P(C,lx)= g =052 and P(C,1x)= =5 =05

4

Note that Z P(C‘ ) # ] because the classes are not exclusive, instead. the union of the
i=1 '

4
four classes P{U L= J =],

=1

The class pairs are given by

n(C Yy mx) 13
S =—=026
N(x) 50

P(C, N C.Ix)=

)

P(C, N Cylx) = ;6 =03, BlE mi)x)= ;—3 =026, P(C,nC,)= % =036

12 13
P(C,nC,Ix)= 55 =024, P(C,nCilx)= g =026
the class triples by
PE, M, rrE; )= (€, ﬂi;(:)g ald =386:0.16

7 7

P(C,nC, N C,Ix)= 55 =014, Ple,nE,nE)= =5 =014
P(C,nC,NC,Ix)= 5% =018
and finally, P(Cl Y O C4|x) = ”(Cl i L R r\x) = 2, =0.1.

N(x) 50
- The revised probabilities given the posterior knowledge. C%, (i.e. not class 2 in this
case) are given by




P(C,IC: nxne)= P(C, v Glx)-P(C,x) _ P(CIx)- P(C, N Clx)

1- P(C,Ix) 1- P(C,1x)
28 13
_M___0675
50_26 24 7
50 50
Similarly,
26 _18
, __ 50 s50_38 _
P(C_.,lczmxe)_@_z_()_24 0.333
50 50
26 _13
( _ 50 50 _13_
P(CJCmeme)_@ % S5 = 05417
50 50

If class 4 is also excluded, the revised probabilities become
P(C, N Ci N C; Nx)
P(c:nC)
P(c, uC, uC,lx)-P(C, U C,Ix)
B P(C} G uCu C‘jx)— P(Cl U CJI.\')

P(CIC; N Cs nxne)=

P(c,1x)- P(C, nC,Ix)
_—P(c,nCIx)+ P(C, N C. A C,lx)

P(C,Ix)+ P(C.Ix)

- P(C, " C.Ix)- P(C, N C,ix)~ P(C, A C,Ix)
- P(C, n G,Ix)- P(C. ~ C,Ix)

+ P(C, nC. N C,Ix)+ P(C, " C, N C,Ix)
+P(C,nC,nC,Ix)+ P(C, n C, " C,Ix)

- P(C,nC, N C,NC,Ix)

8 1313 7
ey 50 50 50 50
286 26 13 12 13 18 13 8 7 7 9 5
— e — o — o —
50 50 50 50 50 50 50 50 50 50 50 50

*-9——0818"
_11_ B et

and

16




26 18 13 9

+7
. 4
P(C,IC5 N G nxme) = 202030 30 == 03636

50

Note that had a simple renormalisation been used following the exclusion of class 2,
the results would have been given by

P(c 1x) P(c,Ix)
PCx)= p(c,ucyx)  P(CIx)+ P(C,Ix)- P(C, A Cilx)
28
—_rr%_ﬁ = 2, = 06666
5050 50
Similarly,

P(C,Ix)= i—f = 06190

A simple renormalisation is not sufficient because the classes are not exclusive or
independent and, consequently, the exclusion of classes 2 and 4 affects the probabilities
of occurrence of classes 1 and 3 depending upon the extent of ‘coupling’ between the
respective classes (see Table 1). '

Class Adjusted for overlap | Simple Renormalisation
1 0.56 0.6666
3 0.52 0.6190

Table 1 The effects of adjusting the new posterior probabilities by taking into account the overlaps
with the excluded classes. Note that the probabilities obtained using a simple renormalisation are
only valid for exclusive or independent classes.

9. The Use of Bayes Theorem.

As will be discussed in sections 18 and 19, posterior probabilities can be estimated
directly if certain techniques are used. In some cases, however, it may be more
appropriate to use Bayesian decision theory, and compute the posterior probabilities
indirectly rather than directly estimating them. Bayesian decision theory is a
framework for calculating the required conditional probabilities from other empirically
derivable probabilities (e.g. Duda and Hart, 1973; Gelman et al, 1995). Bayes’
theorem for real valued data variables is of the form

p(qm) - M (6)
p(x)
where P(C,Ix), is the posterior probability, p(xiC,) is the likelihood , P(CJ), is the

prior probability of class i occurring and p(x) is the unconditional densitv function.
These probabilities are estimated from the data.

17




For a set of exclusive classes, the form of p(x) is given by

N

p)= 2 olxnC)= oluc)e(c)

£

as x belongs to a single class only (Appendix A). Equation (7) ensures that the
posterior probabilities sum to unity, i.e.,

Y P(CIx)=1 (8)

i=l

Equation (7) is a special case of the more general case involving non-exclusive classes
given by

p(x)=p(xnU)=

e (UL €)= olxnc)
—}Ep(pmc nC,)

IC‘,‘

+ ip(me,mC}mCi)

i< j<k

+=D""p(xnC A CNNC)

N

=2, p(xC)P(C))

=

—Z (xc ~c,)P(c.nc)

<

- i p(xic, nc,nc,)p(c nc,Ac,) (9

i< <k
+=D" p(xIC, A Cyn...nC)P(C, N Cy.NCy)

where equation (9) ensures that the probability of the union of the classes conditional
upon x is unity, i.e every input is classified.
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P(le)z

N

P(UC Jix)= Z P(C 1)

'

-y P(C, N Clx)

1<y

5 iP(C‘mCJﬁCAIx) (10)

i< jek

+ (= )" PIC, ™, i nCylx)
=1
where P(C,- N C_;|X) = P(X|Ci & C}.)P(Ci - CJ) etc.

p(x)

Equation (10) reduces to Equation (8) when C, nC, =0, 1.e. the classes are exclusive

giving rise to the usual definition of Bayes’ theorem (e.g. Walpole and Myers, 1989):

Given a partition of the event space, {B, ..... B }that is BMNB =0, Vi# j.anda

N
set A such that A ¢ UBk , the conditional probability, P(B;IA) can be written as
k=1
P(B 1A P(B )P\AlB
(o) PBIA)__P(B)p(ain)
P(A) ‘
P(s,)p(ais))
bl
Note that the condition that B, M B, =0, Vi # j is required.

10. Posterior Knowledge Inclusion For Exclusive Classes

The next four sections examine the inclusion of posterior knowledge for the exclusive,
independent and dependent class cases where only members of a single type of class
are to be excluded. The more general case is examined in Section 14 where it is shown
that the three class types can be decoupled and, thus, treated individually.

For exclusive classes, the situation is shown schematically in Figure 10.




Figure 10. A set of exclusive classes.

Because the classes are exclusive, P(Cr M lex) =0 Vi, jie. all probabilities of joint
classes are zero, only the single class probabilities P(C, Ix) are required to calculate

the class union probability. P(U;l C,Ix) in Equation (5). This fact leads to the

following theorem:
10.1 Theorem: Exclusive Class Renormalisation (ECR) Theorem

For a set of exclusive classes, the updated posterior probabilities, following the
exclusion of the set. will be given by a renormalisation of the remaining probabilities.

Proof:

From equation (4)

P{U & b\'] - P(U Cs, li
i k

P(U G lx] - P(U G |x]
! k ;

P(C&IO CF rrere =

where je{Sf}uAE. keA,,and e A, UA,.

For the set of exclusive classes, the following equations hold:

P(U G |xJ =Y P, x)= P(c, 1x)+ )) p(c,, ) (1)

P[Q%'X}Z‘P(CBJX) (12)

k
and

P[L}JC&"‘J:ZP(CE,_|X)+ZP(C5‘1X) (13)

k




where re A,
Substituting (11), (12) and (13) into (4) gives

| P(G, Ix)
P(CGIIOCgk mx}:—’ (14)

> PG 1x)
Equation (14) ensures that

{_ P(c, Ix)
)y P(C& ne, n x) =X, 5 oS P(IC& N 3 P(G 1x)=1

r

where i e A, 2l

10.1.1 Example:

A three class problem is specified as follows:
The input variable x = x is one dimensional.

1
;|

Likelihoods: P(xIC,)= N(3,2), P(XIC.)= N(6.3). P(xIC,)= N(8.2) .
Where N(...)denotes the normal distribution.

Priors: P(C1 ) = ,D(C2 ) = P(CS):

The likelihoods are shown in Figure 11. Note that there are no occurrences of two or
more classes together because the classes are exclusive.

0.2r

Likelihoods
o

0.06 -

-2 0 2 4 6 8 10 12
Input variable

Figure 11 Likelihoods for a three class example where the sets are exclusive.
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The posterior probabilities are given by Bayes’ theorem

p(xIC,)P(C,)

‘ =123
p(x)

P(Cx)=

where

3

p(x>:ip(mc,->=zp(xlcw,)

[

%

The posterior probabilities are shown in Figure 12.

0.8

0.7r

Posterior Probabilities
o o = o
w IS n =)
T T T

o
N
T

0.1k

-2 0 2 4 6 8 10 12
Input variable

Figure 12.Posterior probabilities for the three class example of Figure 11.

At the point x =6, P(C16)= 02032, P(C,I6)=04172, P(C,I6)=0.3796, and

3

> P(clx)=1

i=1

as expected.

Given the posterior knowledge that class three has been excluded, in this case, the
updated posterior probabilities are given by equation (4) and shown in Figure 13.




o
o
T

Posterior Probabilities
o
o
T

0.4 4
0.3f 4
0.2r s
01r .
|

0 . = .
-2 0 2 4 6 8 10 12

Input variable

Figure 13. Posterior probabilities where class three has been excluded. At each point. the remaining

class probabilities are renormalised.
At the point x =6, P(Cl6)= 03275, P(C,I6)= 06725,

From the original posterior probabilities, owing to the exclusivness of the classes, by
the ECR theorem, there is a simple renormalisation giving

0.2032
16)= =0.3275
P(C‘](S) 02032+04172 03275
and
04172
P(Cl6)= =0672
( : ) 02032+04172 Uias

as expected.

In Equation (13) it has been assumed that the set of remaining classes (with indices
r e A ) are also exclusive. This is a special case of the more general non-exclusive

case. Equation (13) may be modified by substituting P(U g Ix) for ¥ P(C;, Ix)

and using Equation (9) to ensure that the probability of the union of the remaining
classes is equal to unity.




11. Independence of Classes

So far, the independence of classes has not been dealt with in any detail. This case is
also subsumed within equation (4) for updating the posterior probabilities and it will be
shown that the exclusion of one or more independent classes does not affect the
probability of occurrence of the remaining classes.

What is meant by independence in the context of this paper is conditional
independence (Bernardo and Smith, 1994; Grimmet and Stirzaker, 1992) (Appendix
A.) which involves the independence of posterior probabilities. For example, for

pairwise independence we have P(C‘. PR ‘x] = P(C.’J)\;)P(CJ ‘x) and for triplewise

independence, P(Ci. NC;, NG, 'x) = P(C,.‘x)P(Cj x)P(Ck |x) In general,

P{ﬂ c, xJ =[] rcclo
i !

The probability of the intersection of the set of classes
K
P[(ﬂ C; ]x]

can be expanded to give

)

= . by the definition of conditional probability

p(x)
K-l ‘ K-l ‘
PG, [ﬂcaf meJP[(ﬂcé\ )mx)
p(x) '
Continuing this process gives
K

P (ﬂC‘S‘JXJ

K-1 K-2
e P[CSK Nes J mij[c&_l [ G, J A x]

P(G1C; m x)P(Ca, Ix)p(x)p_(lgj




- p{cax |[ﬁ &k Jm XJP[QK-E

e o).
. P(G1G;, nx)P(G, 1)

where there are K members in the set of independent classes.

All set intersections can be decomposed on this way.

K
Given the revised posterior probability P(CB‘ Iﬂ G, M x] expression of Equation (4),

its calculation requires subtracted terms of the form

plc, m(gc&jx}: P(O(Ca_ NG M and
(CIRCY

sum and difference of terms. For example, take the numerator term

XJ which can be decomposed into a

J-A0f(ua o)

K
P U(C,3 NG ){xj which can be expanded using terms of the form

X

M x | where all terms include G .

Y
If all classes are independent, for all terms. P{Ca Iﬂ G, r’\x] = P(Cd !x)
Q < K because P(Céf Ix) does not depend upon the other classes. Furthermore

0-1
[ﬂ G, ] e x} = P(Cﬁg ‘x),VQ giving

P G,

PlC, A [ﬁ G, J A xJ = (g, |x)ﬁ P(c; x)

For this case, all intermediate terms can be calculated from the estimated single-class

probabilities e.g. P(CS‘ M Cﬁj|x)= P(Cc;,'X)P(Ca Ix)

For I independent classes involved in an intersection,

(89]
wn




A(na)r(na}
AosJos kA
0= Flosb

- (H PG, IX)JPH Ne, x}

:

sed, redy

For the case of all excluded classes being independent:
11.1 Theorem: Independent Class Renormalisation (ICR) Theorem

For a set of independent classes. the updated posterior probabilities, following the
exclusion of this set, will be given by a renormalisation of the remaining probabilities.

Proof:

From equation (4)

P[Lj} =3 IxJ - P[ij & li
P(u G lx} - P(Q 24 Ixj

P(Cé NG mxmsJ:
] k &

where je{8,}uA,, keA, and I A, UA,.

)

x)+ P(LIJ 74

Now,

P[L}J o |xJ = P{[LEJ & JU &

Further expansion gives

P[L}J CSJIxJ = (¢,

XJ (15)

]— PHLIJ 2, }m &

and
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fuea) Al e

- {Uc kAU A(Ua oy,

x)

where re A,

For independent sets,

P((‘L*JCE‘ ]U R xj ) P(Ca‘ X)P[LAJ a X} E (17)
and
P({U “ )m (L:J , }XJ ) P[U G ;]P(LIJ S, x] (18)

substituting (17) and (18) into (15) and (16) respectively gives

‘x} (19)

P{L]J G ,x} - P(Ca. .\')+ P(LAJ G,

,\-J e, Ex)P{LkJCs.,

and

P{Q Cﬁ;lx] = P(Lrj C,

xj + P(LLJ G,

| Aueie

k

XJ (20)

Finally, substituting (19), and (20) into (4) gives

e A A
A 1%, p[LrJ G, x}+ P(LAJ o] }_ p(u c, "JP[LAJCG‘ X}
giving

P(Ca,

ﬂCg" mxms]:
k

(21)
J

P[LJ C,




Where the fact that P(U G, x] =0 has been used to indicate that these classes have
k

been excluded in this particular case.

Equation (21) ensures that the union of adjusted posterior probabilities is equal to 1.

For the specific case were the remaining sets are exclusive

Apafp o2 oo T e

r i
where i€ A, e

Where excluded classes are independent, the remaining probabilities are renormalised
as the excluded classes have no effect on the outcomes.

12. Non-Zero Posterior Probability Adjustment

The independent classes allow posterior adjustment of probabilities other than by class
exclusion alone. This is apparent by writing the probability for an intermediate term

.~ p(c& m[ﬁcﬁ\H
(et )

v=1

(e
= P(C& IX)PMQ G, Jm x] where Cj 1s independent of the other classes and Q < K
y=1

where K is the total number of independent classes.

P(c, |x)P£[é &, ) A xJ = PG, 1x)1j P(c, 1x)

Now, P(Ca‘ lx) can be revised (upwards or downwards) and, consequently,

‘. P[C& A [ﬁ &, Jlx}.




13. Posterior Knowledge Inclusion For Non-Independent Classes

For the non-exclusive case, as with the preceding cases involving exclusive and
independent classes respectively, only the K conditional probability functions, P(C, |X)
can be evaluated by a learning system as discussed in Sections 18 and 19.
Furthermore, even if the K output equations y, = f(C,,Cz,...,CK,x) were
independent and contained all the relevant terms (all intersecting class terms), there

would be 2% unknowns in K equations, thus rendering the system of equations
indeterminate.

Theorem: The Dependent Class (DC) Theorem

For non-exclusive and dependent classes, neither the ECR Theorem nor the ICR
Theorem applies.

Proof;

From (4)
p[cﬁ

where j € {8! }u A,.keA .and le A, UA,. Thisexpression may be expanded to

give

: mxme]:
&
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P(c;

x) - P[CE’ m[u A

e mxms}:
;

P(C& P[{u .

T e

There are intersecting terms in both the numerator and denominator which are non-
zero. This precludes using a simple renormalisation to give the revised probabilities.
These are only zero for exclusive and independent classes.

Now, for exclusive and independent classes

P[C&m[gcﬁljx]:o

and
A(vaofye)

which gives

J-o

P(C; Ix)

as stated by the ECR and ICR formulae.

P{C& Nc. x] =

13.1 An Example:
A three class problem was specified as follows:

Priors:

P(c,)=04, P(C,)=03, P(C,)=01
P(C,nC,)=005

P(C,nC,)=015

The likelihoods are given by:

(04N(35,2)+0.05N(4.1))
045

P(xIC,)z

30




(0.1N(6,3) + 005N (4,1)+ 015N (5,05))

P(xC,)=

(03N (8.2) +0.15N(5,05))

0.30

P(xICE):

P(xIC, N C,)=N(4,1)

P(xIC, " C,)= N(505)

The likelihoods are shown in Figure 14,

0.8

0.7

0.6

Likelihoods
= =
=y w

o
w

0.2

0.1

Figure 14

The posteri

P(xiC,)p(C,)
plcix) = EMCIPC) 05
="
and
Ale meys)= PRGN GG nE)

045

: { i goscs

Input variable

. Three class example likelihoods where the classes are not exclusive or independent.

or probabilities are given by Bayes’ theorem where

p(x)




P(xIC,n C,)p(C, N C,)
pl(x)

P(C, N Cilx)=
and where
plx) = Zp(xm Q)Hp(xﬁ C, N Cz)'— p(xnC, N c,)

=3 o(:iC)P(C)- PG A C)P(C A C)- plxiC, A C)P(C A )

to ensure that

p(U1x) = ip(Clx)—p(Cl N Clx)-p(C, A Clx)=1

The posterior probabilities are shown in Figure 15.
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Figure 15. The posterior probabilities for the three class example shown in figure 14.

At the point x=5, P(C,15)=03229, P(C,I5)= 06444, P(C,15)= 06210

and P(C, N C,15)= 00540, P(C, N C,15)= 05343
where

pUS)= 3 p(C.5)-p(C,  C.B)- (C. )=

as expected.




Given the posterior knowledge that P(Cﬁlx) = 0.0, in this case, the updated posterior
probabilities are given by equation (4) and shown in Figure 16.

1 T T T T T T

0.9 4

0.8 C1 )

= e
[=2] ~
T T
L 1

Posterior probabilities
(=]
(9]
T
1

0.4r T
0.3r i
0.2+ i
c2
0.1 .
C1&C2
0 . . . . . .
-2 0 2 4 6 8 10 12

Input variable

Figure 16. The three class example of figure 14 with class three excluded. This case does not allow a
renormalisation as the exclusion of the joint probabilities aftect the overall probabilities of the
remaining classes.

At the point x=5 P(C,15)= 08518, P(C.15)=02907 and P(C, nC,15)=0.2014

Because of the non-exclusive classes, the ECR theorem does not apply
making

03229
P(c,5)= = 0.3536
0.3229 + 0.6444 — 0.0540
0.6444
P(C,B)= = 07056
(c.6) 03229 + 0.6444 — 00540
and
0.0540
P(C, N C,B)= = 00591

0.3229 + 0.6444 - 0.0540
incorrect, using the original probabilities, as expected.
The true values are calculated using equation (4).

P(C,5)= 0.3229
T 03229+ 0.6444 — 0.0540 - 05343

= 0852
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0.6444 — 05343

_ = 02905
P(C.5)= 03739+ 06444 00540 - 05543
and

00540

03229 + 0.6444 — 00540 - 05343 ~

Figure 17 illustrates the situation schematically.

6

Figure 17 Schematic illustration of a three class problem. A region of class 2 is coupled with a class 3
region; this region will be subtracted from the remaining probabilities for non-independent classes o
give the revised posterior probabilities. When class 3 has not occurred, the probability of class 2 is
reduced relative to that of class 1.

Table 1 shows the effect of external knowledge on the hierarchy of fault classes.

Prior to External Probability Following External Probability
Evidence Evidence
£ 0.6444 (% 0.8518
Cs 0.6210 A1 0.2907
C, rvE, 0.5343 €, €, 0.2014
c; 0.3229 —
L M, 0.0540 —_—

Table 1. The fault class hierarchy both before and after the inclusion of external evidence.

Note that class 1 has risen to the top of the hierarchy following the inclusion of
posterior knowledge into the probability adjustment process. A simple renormalisation
would have placed class 2 at the top of the hierarchy which would have been incorrect.
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14. A Generalised Decoupling of Fault Cases.

So far in sections 10 to 13, the exclusive, independent and dependent cases have been
treated separately. The purpose of this section is to deal with the cases taken together
and show that the three cases may be decoupled, that is, resolved into separate (non-
interacting) sub-processes of the probability update procedure.

Equation (4) gives the revised probabilities:

P(L}J 5, ixJ - P{LJ o lx}
P{L{J G, lxj— P(HJCB‘ IxJ

P(Cal Ifle} rwxme}:
k

The numerator of Equation (4) determines the updated probabilities and is scaled by
the denominator. Thus, the numerator makes a convenient starting point for a more
general analysis of the three cases, that is, the exclusive, independent and dependent
cases taken together.

Recalling that j € {6‘. }u A, keA,, where A, is the set of excluded class indices. the
numerator is given by:

x} - P[LLJ £

P[Ca_ u[U C&) x} (22)

k
The set of excluded classes can be decomposed into unions of exclusive, independent
and dependent classes given by U €5, UCE,J and UCD respectively where AE,

reAE SeEA 1eAD
Al and AD represent the sets of excluded, independent and dependent class indices

respectively. Thus, the set of excluded classes is now given by

e (e e (e o

reAE ve Al reAD
14.1 Decoupling the Exclusive Fault Classes
Because set exclusivity is the simplest case, the exclusive classes will be dealt with
first. This case is straightforward owing to the absence of intersecting classes, i.e.

members of the exclusive classes are classified as belonging to a single fault class only.
For convenience, equation (23) is represented by

LAJC&Z(UCE’JU(UC}]“] (24)

reAE weAlD

where
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okl Hye) e

weAID yeAl 1eAD

is the union of non-exclusive independent and dependent classes with indices in the set
AID =Al UAD .

Equation (22) can now be written as

oY) s bl e (e

XJ (26)

Using the set union relation, P(AW B) = P(A) + P(B)— P(An B), on both terms of

equation (26) gives
ool s -l (o ] s )

(Y %
LNV VARV

which gives a denominator of the form

 Aaclyn B ofelue e

where

A( Yoo Yo -

because of set exclusivity.

Expanding further gives

P(cy |x )+P(UC x} P[Carﬁ{rELAJECBJ

. pﬂcf,, u(;@f ﬂ”(gg J }_ P[LQECE" H

and x)_ PHCB‘ u[gﬁr Hm[qu Jx} (27
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where
P{Csl m[ chrjx] =0
reAE

again, because of set exclusivity. Expanding (27) further using the set distributivity
property gives
XJ

Ao Y o o e )]

giving a denominator of
x} (28)

x)— PHCS' A (“ELJDCS“ ﬂ

By insertion of cancelling terms of the form P( U Gs. }imo Equation (28) it is clear

wedlD

- e |

P(c

plc,

that

P(C& \x)+ P( Jc ] - PHC& m( [ e H X
weAlD
gives the form

-la oy A ys) o

The resulting numerator is for a probability update when there are no exclusive classes
to be excluded. The significance of Equation (29) is that a simple renormalisation of
the probabilities involving the remaining classes to be excluded on the basis of external
knowledge is valid. This is expected for exclusive classes as discussed in Section 10.
Here, the more general form indicates that the exclusive class case can be decoupled
from the remaining two cases. That is, the separate treatment of exclusive classes as
detailed in section 10 is valid.

14.2 Decoupling the Independent Fault Classes

Continuing with the evaluation of the denominator, expanding equation (28) using
Equation (25) gives
x}

et dfsrlis Mool
, x) - {P[CBI A [g]qjjx) + P{C& A (,QDCB' )

= P(CE

A6 ~{ys {e ~{ua)

:

giving

37




(e n(u Jplen

p(cal

e n(Ua - Aan(ye)
teAD
For the second term of this expression,
P(c& m[UCSJ)xJ
seAl
P{C& m(UCSmeJ
ye Al

P(x)

by the definition of conditional probability.

Expanding this term further using the chain rule of conditional probability (Krause and
Clark, 1993) gives:

(e Jo oot

P(x)
-#{(ye.)

The set union L_JCE5 is independent of all other sets by definition giving the
yedf !
multiplicative rule

P[C& G[HC& )x

Similarly for term 4:

(el Jplar(yef
-A(ye Jar(ue
Ay Jeo{a o (s

giving the multiplicative rule

x)P(x)

1

C, mx] Pc,

J-{ye.
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xJ = P[U Cs

yeA

flueHarlys B Aueieolus

where the independence property has been used once again as in term 2.

The union of sets UCaJ has been excluded on the basis of posterior knowledge
sedS

therefore for this single instance given external knowledge, PH U G, ]x} =0 giving

yeA/

a final numerator of

x)- P[ca, “(,Qﬁ. )

The remaining numerator terms in equation (30) indicate that the independent class
case has also been decoupled from the exclusive and dependent class cases. The
remaining probabilities have been renormalised to give the updated class probabilities
following posterior knowledge. Now, only the dependent case remains where a simple
renormalisation is not applicable. Equation (30) indicates that intersections of the class
probabilities of intersections with the excluded dependent classes must be subtracted to
account for dependencies.

P(c,

o,

xJ (30)

For the denominators of Equation (4):
P(U & Jx} - P{U Cs, Ix]
I k

Defining the union of remaining sets by U C; . the initial denominator can be written
4

(T E(VARIVY R (VIR ITYY
.

Following a similar analysis to that of the numerator:

A(Ys (e Jo Yo J A Ys )y

Alye){ya )4 ya

which, with Equation (29) gives an updated probability of
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faolye b Agek

. weAlD |
Na, r’\xj-—» (31)

(A VoY s

welAlD
for the set of exclusive classes excluded, Equation (16) is simply a renormalisation
following the exclusion of all exclusive classes determined by the posterior knowledge.

e {ls(ue Ao
ey B Ak

where the remaining probabilities have been renormalised once again.

Similarly, when the independent classes are excluded,

reAD

X —P[Ucﬁ;

ﬂC‘Sl mxme}:
k

For the remaining case,

ﬂCa‘ mmeJ:
i

P[C@

G J-r{fen(ye
P{[g G, Jk} - P[Km &, ] - [LAJD ‘. H“}

e e e )

subtracted from the numerator and denominator respectively because of dependency
relations.

x} have to be

14.3 Example: a five set problem:

Two fault classes C,, and C,, whose posterior probabilities will be updated when

post-constraint knowledge becomes available. Three classes C,,C and C, which are
exclusive, independent and dependent respectively (that is, C, " C, = ¢ etc. ) are to be
excluded on the basis of external knowledge.
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14.3.1 Excluding the Exclusive Class

The updated probability for class C;, is given by Equation (4)
PlC, uC uCuCk)-Plc,ucucl)

P(Cnlci N NG “xme): P(Cm s W € qu‘x)_P(Ce v, UCL:”‘)

((c ve,)ulcuc, ) ) plc,ulcuc,)x)
e, uc>u< L) (w(cucm
(
)

)-#le.

((C uC,uC, UCJX) P(C U(Cj)

(C lJHE qu

Plc, wclx)+p(c,lx)- P “TUC)

x)— {P C‘,‘x)+ P(Ch, lx)— P(CH nC, |x)}

€, ){ﬂghﬁpkﬂﬂﬁMquﬁ

|
P(c, uC,uC )+ P(e,x)-P(c, uc, e

giving
P(c, wels)-p((c, v )nclx)-2lclx)+ P(c, ne )

Plc,,

) P((C UL )uClx (C W, RIE, |)— P(c.x)+ P(c, nc,

)-
_ Aeivel)-lle ve)n el e+ pe)
P((c, ve:)uch)-Pc, v ue)nauls)- A )+ Po)
(
(

Plc, vclx)-P(c. ve)nck)-Pelx)

P(c, ve,)uch)-Fc, ue,. ue)nclx)-Plcl)

Expanding the first term of both the numerator and denominator and cancelling terms

P(c, )~ P(c, ncf)- P(c, vc)nc, )

)-P(cves)ncl)- (e, ue, ue)ne )

P(c,|c: nCr nCy nxne)=

p(c,,

Expanding further and recalling that C, is exclusive of all other classes gives

P(c,[x)-P((c, nc,)u (c.nCy)x)

P(c, v, )= (¢, ue,.)ne, ol ne, )|x)

P(C,ifx)-P((c, nCu )

" P(c,, €, - P((c,ivc)ne

P(C; cincneg nxne)=

(32)

JJ)
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which is the updated probability for C,, given the posterior knowledge that classes C
and C, have not occurred. The effect of class, C, has been decoupled from the
probability update problem giving,

PC - FC G

): P(Cfl - C,r’:lx) - P((Cf‘ Ve, z)m Cu

p(c;,

CF il mill; mxmE

y

which represents the updated posterior probabilities with no exclusive classes.
14.3.2 Excluding the Independent Class

Now the case where the independent class is decoupled from the remaining dependent
class will be dealt with. Independence in this case means that C, is independent of the

remaining classes.

Expanding the numerator using C,, = C, U C, gives

P(c,x)-P((c,,nc)olc,na))

leading to

Fle, - {#{(c. )+ olle, e - (e ne)n(e, e

1
Using the chain rule of conditional probability (Krause and Clark, 1993) on terms 2
and 4 gives a numerator of

P(c,x)- P(clc, nx)P(c, )~ P(c,, ncfx)+ P(clc,, nc, mx)P(c, ~ O fx)

Recalling that class C, is independent of the remaining classes, and carrying out a
similar analysis for the denominator, gives

P(c,[c e ey nxne)=
P(c,.[x)- P(c, [x)P(cx)- P(c,, ncufx)+ P(cx)P(c,, ~ Cylx)

x)P(C,[x) - P[((Cﬂ uC,,)NC, jx) + P(C!\x)P((C},l uC,,)NC,

P(c,, uC,.lx)-P(c, v,

J

The independent class P(C,!x) has been excluded following posterior knowledge so,

setting P(C‘.\x) =0 to indicate that C, has been excluded in this particular case gives




€ G €y ﬁxme)=
P(c,Jx)-P((c, nc,)x)

X) - P[((Cf, uC.)ne, jx]

which is the updated probability for C;, given the posterior knowledge that class C,

P(c,,

PlC: G

has not occurred. The effect of class, C, has also been decoupled from the update
problem.

15. Probability Update Procedure

i) Using the estimated priors, determine the exclusive fault classes to be excluded on
the basis of external knowledge and renormalise the remaining class probabilities,

ii) From the estimated posterior probabilities, determine the independent classes to be
excluded and renormalise the remaining class probabilities,

iii) finally, use the probability update equation (equation (4)) to exclude the non-
independent classes.

16. Bounds on the Number of Probability Terms.

Forming the set of all classes U = {C, N } denoting the number of elements in a
set by | : I and denoting the power set of U by

pow(@)={0.{c }....{c, }{c.c.}. {eya.c e {c..c, 1] the number
of terms involved in calculating P(U; Cr) is now given by ‘pow(U)‘ =2" —1. This
follows, because each member of the power set of U determines uniquely a

corresponding probability term in equation 2.

At the worst case, 2" — | probability distributions must be calculated where N is the
number of classes giving complete coverage of all class combinations.

17. An Incremental Version of Posterior Knowledge Inclusion

K
Equation (4) requires that expressions such as PHU G, }bee evaluated in terms of

s=1

positive probabilities where &, signifies the index of a class involved in the union.

When a new item of posterior knowledge is made available (i.e. another class is
excluded following further inspection) the expression for the updated

probabilities, P(C8 ICE" NC. N.NCG N xme), becomes
' Nrel A2 N
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P(Q5 IC: NG, N.nG NC NxN E) where C, is the new excluded class and
| Nrel -2 ; é
ee {5, ,...,BNF}. This requires that the set union is increased by a single set giving

K+1
P(UCB,

y=1

xj for the sets of interest where 8, =e.

Using the relation P(A v le) = P(Alx)+ P(le)— P(A M le) and substituting in the
expressions

K
A= Uca, and B =C, =(;_ , the updated set union becomes
=1

{Gepef)ed)
. p[(fj G H +p(c, [x)- P([U G, Jﬂ (c..

v=1
Expanding using equation (5) gives

2
> P(Cﬁi x) - P(Cﬁl Fr g

i=] i<

(33)

)

Y
K
X): + P(C& A Gy PG !x) " P(C\. ||X)

1< j<k -
y
K

N
> PG, NG, %)~ 2 PG NG NG, 1Y)

i=1 1<y

K+l
})( w2l (:%‘

+(= 1! P(CE,I NG, M..NG,

N
o + Y PG, NGy NG, NGy 1)

i< j<k

+(=DY PGy NG NG, NGy Ix)

L

For incremental inclusion of posterior knowledge, the appropriate probability terms
must be added or subtracted for each excluded class.
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18. The Estimation Problem: 1 from n.

The unprocessed fault diagnosis data will consist of pre-classified input space vectors.
The inclusion of posterior information requires posterior probabilities to be estimated
either directly, or indirectly via Bayes’ theorem from this data.

A common method of estimating posterior probabilities is to use an artificial neural
network (e.g. Bishop, 1995; Richard and Lippmann, 1991). Where the classes are
exclusive, given N classes, there arises the 1 from N estimation problem, that is, for
each input, one condition class will be chosen on the basis of the posterior
probabilities.

The analysis given here is general and applies to both regression and classification
problems and involves minimising the mean square error (MSE). For classification
problems, however, the cross-entropy measure is more useful and a similar result for
cross-entropy will be found in Richard and Lippman (1991).

Assuming discrete outputs indicating class membership, d, where i signifies the output

and j signifies the discrete output value, for L output values, the (MSE) of
classification can be calculated by

E=tim XYY [5-afpl,ny) G0

for N, data points

For continuous output values and applying the law of large numbers (e.g. Bishop,
1995)

E= z” \ =/ d ﬁx)da’dx
_Zﬂ [y, - d.] p(dx)p(x)dd dx

where a’,. 1 a continuous variable.
From equation (34) using the law of large numbers and assuming that

P(d,j M X)z P(Cj M x) 1.e any network output value depends upon class membership,

E=J2 3 -4,] e i

"
~.
Il

-3 _\,;ip(mq)_z_\\,idyp(mcj);jd;p(mc,)}x 5
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For 1 from N classification d, =1, for xe C; and d, =0, for x ¢ C, .

Furthermore, as the classes are exclusive (1 from N) and x belongs to one of the

classes 2 p(x )l Cj.) = p(x), can be substituted into equation (35) to give
j=1

E= ZJ[\ plx)=23,p(x2 C)+ plx € i
= 3. ][50~ 23, P W)ple)+ PG )i
= z [[v7 =25, P(c1x)+ P(C1x)+ P* (c,.m)_ P (C,1x)|p(x)dx
—ZJ[ P(C1x)+ P(CIx)+ P*(CIx)- P*(C,1x)]p(x)dx

and, ﬁrllally,
E=3 [, - Pcx)] pwdax+ [ P(C1x)1- P(C,Ix))p(x)ax

To minimise E with respect to the parameters, the second term can be ignored because
it is not a function of the parameters. This leaves the first term which gives

¥ = p(QIx) for a minimum to occur as the integral will always be positive.

A number of assumptions have been made in the above derivation (Bishop, 1995):

i) alarge data set which approximates to an infinite set, is available
1i) parameters (weights) exist such that y, (x.w) — P(C!x) i.e. the approximating

function is able to approximate the required probabilities, and
ii1) the optimisation procedure finds the appropriate minimum.

It is also assumed that the classes are exclusive to ensure 2 p(x e, ) = p(x). This
j=1
can be written as

ZP(C Ix) = p(x) which implies that ZP(C lx) 1.

ji=1
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19. Conditional Expectation of Vector Output (M from N)

It cannot be assumed that all classes will be exclusive. Where more than one class is
likely at any one time, the problem becomes an m from n estimation problem. A

procedure analogous to the one above for deriving the result ¥, = p(CIx) is given

below for the more general m from n estimation problem where it is convenient to
formulate the class membership problem in terms of vector output.

It will be shown that although joint class information (m from n) is available in the
training vectors, a neural network will not be able to estimate the joint probability

function unless the output space is expanded to give an equivalent 1 from n problem.

For the continuous valued vector output case (regression problem) the MSE is given
by

E = |[[ly-df pld~x)dddx = [[lly - df* plaix)p(x)ddax
which implies that for a minimum MSE,
= (d|x) = [ dp(dix)ad

For the discrete output case (classification) which is of more relevance to the m from n
problem, the minimum MSE is given by

PN ]

=(d|x) = Zd P(d lx) where d. is a binary output vector.

i=l

Proof:

E=]| -E:‘I\i}’ —d [ P(d,Ix)p(x)dx

j Z ” (dix))+ ((dix) - j\ P(d,Ix)p(x)dx

N

- j Z (y - <dlx>)2P(d,1x)p(x)dx
+2] Z( ~{dix) () - d, )P(d Ix)p(x)ax

+J‘[ ((dix) - {) P(d,1x)p(x)dx (36)

For term 1:
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j Z —(dix)) (d Ix)p(x)dx

J( <d|x>) zP( Ix)p(x)dx

= _f (y- (dlx))2 1 p(x)dx
=[(y- (dix)) p(x)dx

For term 2:

2 2 ))((dix) - d, )P(d Ix)p(x)dx
=2f(y-(a x))zgl{@x)P(d,lx)— d,P(d 1x)}p(x)dx

_a(y- <d;x>){<mx>2§'p(d,.|x)_ S ra fx)}p(m

i=]

= 2_[ (y —(d w}){(dl x).1— (dlx)}p(x)dx

=0
For term 3:

k|

J Z ((aix)-a,) P(a,1x)p(x)dx

= jzl ((dnx)2 ~2{dix)d, +d? )P(d 1x)p(x)dx

Jia

¥
P(d,Ix)- ld > d,P(d,x)+ Zd}P(d,.lx)} p(x)dx
i=1

b
= [{(ax)” 1- 2@x)(dix) + (@1x)} px)x
[{(a@x) -

(ax)"} p(x)
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Substituting the above terms into equation (36) gives the expression for the MSE
E = [(y—{(ax)) px)ax+ [ ((@1x) - {dix) Jp(x)ax

As the second term is determined by the data, the minimum MSE will be where
= <dlx> in the first term

For three classes there will be 2° — 1 = 7 different binary output vectors and the
expected conditional output will be given by

(d|x) = Zd P[(Cﬂm...m(jml)_c) } n <3 where ¥,...yn € A, the set of class indices

involved for pattern i. The dash denotes the probability of any class or set of classes

occurring exclusively i.e. P[(C_;Ix) ] does not include P((C, M Q!x) J et.c.

(d|x) = [ C,lx J+d P((c,Ix))+d P( C, N Cylx) J+d4p((ci|x)j+dﬁp((c, mC“Ix)’j

+d P(CmCIx +d (CmC mCIx)J

J+
7 1 1 ’
(d]x >~ 0 P Clx + }P Clx + 1 PL(ClmCJx) )+ 8P((C,Ix))+ (I)P((C,mc,,m)]

+ :)P((C,mC_lx) J+ 1 P((C,mczm(j},lx)’]

This implies that

y, = P((Cl Ix)’ ] + P((C, A C}Ix)’ J + P[(Cl A Czlx)’ ] + P((Cl NC, N C_Jx)lj

={P(c,Ix)- P(c, n C,Ix)- P(C, n C,Ix)+ P(C, n C, A C,lx)}
+{P(c, ncx)- P(c, A C, nCix)]
+{P(c, nc,x)- P(c, A C, N CIx)}
+P(C,nC, N C,Ix)

= P(C,Ix)

Similarly, y, = P(Czlx) V= P(C_llx).
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In general, for calculating

28]

y={(dx)=>.d.P(dx)

i=1

o Loy o . .
for any output, y,, the class C, will occur in EZA =2""" terms in the summation

because the other class intersections form a partition of C, 1.e.

i

P(CIx)= P(CIx)+ P[(C,. A CJ),ix] + P((C, & €, "G, ),ix}-. N

+ P[(C, S TG s Gy PG |xj

Figure 18 shows an example of the results obtainable using a multilayer Perceptron to
estimate the posterior probabilities of a given a set of distributions. A data set
consisting of 1000 data points was used to generate the graph. Note that the classes
are not exclusive or independent. The MLP is an instantiation of the estimation
problem and is only able to estimate the singleton class posterior probabilities although
joint class data is available (i.e. more than one desired output bit may be active at any
one time).

Pasterior probabilities
o o =] o
w i n o

T T T T

o
N
T

o
-
T

Input variable

Figure 18 A graph showing the estimation of posterior probabilities by a Multilayer Perceptron. Note
that only the singleton class probabilities have been estimated as expected.

It is clear that the probability of class 1 occurring contains some occurrences of class 1

paired with class 2 i.e. P(Cl M Clix) # 0. Thus, even though the training data
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incorporates examples of two classes occurring together, any method using binary
outputs to indicate class membership based upon error minimisation as described in
sections 18 and 19 (including cross-entropy) is not able to extract this information
using N outputs alone where N indicates the number of classes.

To capture class combination information in general, an augmented output vector
consisting of 2" — 1 outputs is required.

Note the non-smooth approximation of P(C! ’x) and P(C‘2 x). This problem and a

possible solution, known as regularisation, is discussed in the context of radial basis
function networks in section 21.

20. Partitioning the Input Space

The motivation for seeking a partition of the input space is that we need to expand the
space to estimate all of the probabilities required for the update equation. In other
words, the class dependencies indicated by more than one ‘on bit’ in the output vector.

A partition of classified input space may be achieved by specifying that the class
intersections are pairwise disjoint, for example C only contains data points that belong

s

to C, and not C, N C, ete. Similarly, (C, M Cf) only contains data points that belong

to C; N C, andnotC, mC; nC, etc. This will ensure a partition of the space with

disjoint sets as required (e.g. C/M (C, M Cj) =0 ). The ‘dash’ notation is used

throughout to indicate partition members which compose the entire sample space.

Now, the original formula for the union of sets in terms of set intersections can be

specified in purely additive terms:
N

(UL c1x)= X P(cx)

i=l

+ Y P((C,. G, )’|xJ 37)

+ P((Cl N C,N..NCy )’Ixj

It is required to prove that the two representations formally are equivalent.
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For P(U:’=I Crlx), it must be shown that the probability term representing each

disjoint region only occurs once in the sum.

N

Foreadh C , C ¢ C, and P(lex) occurs only once in the summation 2 P(Cf.lx)

i=1
: ; N .
and in the expression P(Ur:l Crlx) because all other class segments consist of two or

more intersecting classes and, hence, do not have single class sets as subsets. The first

, N N N
set of terms of P(Lf=l C,Ix) become 2 P(C"Ix) where Z P(C‘.’Ix) = 2 P(C,.Ix).
=1 i=1

i=
Introducing the notation C(n,k) which signifies a combination of k objects selected
fromn. So for C; there is only a single set and a single way of selecting that set so
n=1 and k=1 giving C(1,1) =1.

For two or more intersecting classes the non-overlapping region of interest is

’ ’

(cnc,). Now, (c,nC)) cC.C,.C,AC, so, for
P(CIx) + P(C1x)- P(C, A C)lx)

where all three terms all include the term P[{(C, N CI) Ixn. the resultant term will

xJ - P((Ci AC, ) XJ - P{(C ey )

once. Here, the number of terms is given by C(2,1) — C(2,2) = | where each of the

be zp((c, AC, )

x] 1.e. the term only occurs

singleton terms P(C,Ix) and P(lex) can be selected once from a set of 2 (because

,

(¢ nc,) cc.c)) hence C(2.1).and the term P[(C! nC,)

’

XJ involving 2 sets

can only be selected once from P(C,. N C}Ix), hence C(2,2). Continuing this

!

(c.nc,nc,) cC.C,.C.C.AC,.CNC.C,NC,.C,AC, AC, and 5o the

’

argument for P[(C. NG, M C,c)

’

number of terms including P((C‘ NC, N Ck) x] will be given by

C(B,I)— C(3,2)+C(3,3) =3-3+1=1. For the general case, n class intersection
terms occur N, = C(n,1)—C(n.2)+ C(n,3) - CnA)+..+(=1)""C(n,n) times. It is
required to prove that N, =1, that is, each term only occurs once.




N =Y (1) C(n.k)

- (—l)i(‘n‘ Cln,k)

—(1)2(1” ) Cln.k)
2(1”‘ )" C(n, k)

=1+ (-1)(-1)" + (- )Z(l)“( 1) Cln.k)

h

=1+ (=) + (=D ()" (-1 C(n.k)

k=0
=1+(1-1)"
=1
Here, the expansion of (a—5b)" = > (=1)"a"*b* has been used with a =b=1. Now

k=1
any probabilistic function of the possibly overlapping classes U = {C, — C} can be
replaced with an equivalent disjoint set

U':{C,’,....C.'\.,(C, rWCZ)’,...,(C\.fl r\C‘\.)’ ..... (C‘r\ o v ) } which forms a

partition of the input space. Equation (37) can now be written in terms of Bayes
theorem:

P[(C, A CJ)’)P((C, A CI),IxJ

i=1,j=2 P(X)
Jj=k
X P((C, nC,NC,) ]P[xl(C{ nC,NC,) }
+
i=1,j=2.k=3 P(X)
i#j#k

p((c1 A C,yN...0Cy, )’ )P(xI(CI N Cyr..NCy )’ J

T P(x)
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21. Using Radial Basis Function Networks to Estimate the Posterior Probabilities

One way of estimating posterior probabilities is to use a radial basis function network
(RBFN) (e.g. Powell, 1987, Broomhead and Lowe, 1988; Moody and Darken, 1989;
Bishop, 1995). Radial basis function networks are capable of interpolating between
data points to approximate a given noisy function (regression) or probability density
function (classification). ‘

A basic RBFN consists of a weighted linear sum of basis functions. This will not be
gone into in detail here as there are many references dealing with this subject (e.g.
Bishop, 1993, 1995; Haykin, 1994; Wasserman, 1993).

This paper deals with classification problems which necessitates the use of the softmax
function (e.g Bishop, 1995). To prevent over-learning of the training data,
regularisation (Bishop, 1991, 1993,1995) may be used. The total cost function for
any error-driven neural network using regularisation will be given by

C=E+vQ

where E is the original error function, v is the regularisation constant and €2 is the
regularisation function.

For the simulations given below, the second-order differential regularisation function is
given by

Details of the implementation of an RBFN network with second-order differential
regularisation applied to a standard network configuration with a softmax layer will be
found in Appendix B.

Second-order differential regularisation penalises large changes in the curvature of the
output function thus smoothing the resultant function.

The following dependent condition classes were generated using Gaussian distributions
for the likelihoods of: C,,C,,C;, C,nC,,and C, nC,. The RBFN is expected to

x), P(CJx), P(C, A C,[x), and

approximate the posterior probabilities P(Cl |x) P(C’2
P(C2 N Cllx). The RBFN used had an expanded output set consisting of 5 outputs,
each output signifying that case alone e.g. P(C, lx) gives the posterior probability of

class 1 occurring alone. To be consistent with earlier notation: P(C,‘x) = P(C[Ix) and

Figure 19 shows the estimated posterior probabilities without regularisation.

e e
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Figure 19. A graph showing the estimation of posterior probabilities by a radial basis function
network. Note that only the output space has been partitioned to allow the joint probability functions
to be estimated.

The data density outside of the range [— 3,+12] is low giving inaccurate predictions of

the posterior probability functions as expected. The lack of regularisation allows over-
learning of the data and is indicated by the considerable curvature of the estimated
probability functions.

Figure 20 shows the estimated posterior probabilities with second-order differential
regularisation.
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Figure 20. A graph showing the estimation of posterior probabilities by a radial basis function
network using second-order differential regularisation as explained in the text.

Note that the approximated functions are considerably smoother in the region of higher
data density.
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22. Conclusions

Where the posterior knowledge is in the form of evidence indicating the exclusion of
classes, posterior probabilities may be revised by a renormalisation of the remaining
probabilities for exclusive and independent classes. For non-independent classes,
equation (4) may be used.

Posterior knowledge updating requires that a set of posterior probabilities be available,
either a priori or via estimation. For exclusive and independent classes, only the
posterior probabilities of the singleton classes need be known or estimated. For
problems in which two or more classes occur simultaneously where the singleton
classes are not independent, the joint distributions of posterior probabilities have to be
estimated; this entails the use of an augmented output vector to represent the joint
probabilities as singleton classes so that they can be estimated. The disadvantage is
that the number of outputs (and, thus, probabilities to be estimated) increases
exponentially. This could render even modest sized problems difficult to deal with.

However, preprocessing by exclusion of exclusive classes will reduce the complexity to

some degree dependent upon the number of exclusive classes. A priori knowledge
about the independence of some classes will also reduce the problem complexity.

The authors would like to acknowledge the support of both the Engineering and
Physical Sciences Research Council of the UK and Rolls-Royce PLC in the production
of this work.
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Appendix A
Exclusive sets:

Two classes A and B are mutually exclusive or disjoint if An B =¢, thatis, if A and
B have no elements in common,

Conditional Probability
P(AnB)

The conditional probability of B, given A, denoted by P(BlA) = P(A) It

P(A)>0

Proof of the result
P(AnB°)= P(AUB)- P(B)

used in the proof of equation (4).

P(AnB)= P(A)- P(An B)

= P(A)+ P(B)- P(B)- P(An B)
= P(A)+ P(B)- P(AnB) - P(B)
= P(AUB)- P(B)

Set Union

This can be proved by induction on n (e.g. Grimmet and Stirzaker, 1992).

AU, c)-3 ()
- ip(q ne))

i<j

+ iP(C,mqmq)

i<j<k

+(=D""P(C,nC,n..NC,)

Total Probability
Lemma (Grimmet and Stirzaker, 1992):

For any events A and B
P(A) = P(4lB)P(B) + P(AlB)P(B*)

More generally, let B,,B, ..., B, be a partition of U. Then,




N

i=l
Conditional Independence
(Bernardo and Smith, 1994; Grimmet and Stirzaker, 1992)
Definition:

Two events A and B are called conditionally independent given C if
P(An B|C) = P(AIC)P(BIC).

In general, a family of events {C;. } i =1---N 1s conditionally independent if

P(O & xJ =11 P(c|x)
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Appendix B.

Radial-Basis Function Network (RBEN) using Cross-Entropy
and Second-Order Regularisation

The following analysis is similar to the one carried out for the Multilayer Perceptron in
Bishop, 1993.

The Error Function

For a training set of P patterns classified into'N classes of conditions, the combined
error term consisting of cross-entropy and regularisation components is given by

p
E=Y{ES +vE!} (B1)
p=1

where the cross-entropy term per pattern is defined as

N tp
E% =Y i) — (B2)

P
n=1 -\’n

and the regularisation term per pattern is given by
1 N L a\’p -
R 2o - n
Ef _222[———-——8 ‘J)z} (B3)

The RBFN consists of a layer of L input nodes feeding into a layer of J basis function
nodes. The layer of J basis function nodes feeds forward into a layer of N output
nodes; the N outputs are then fed to softmax function which provides the final outputs.

The final outputs are given by

v, =fla) (B4)
where
e’
f(a)=% (BS)
> e
k=1
is the softmax function,
J
. = Z‘.vgz’,j (B6)
=l

is the net output feeding into the ith output node, and

z; =0,(x) (B7)
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is the output from the j th basis function.

oE
Gradient descent methods require the calculation of the gradient, —

au

The gradient can be decomposed to give

ET = ﬁ-{z[ﬁ’“ + Eﬁ]}

GEE  JEF
Now, the gradients o and 3 defined per pattern are required.
i Yy

To reduce notational complexity, the superscript p may be dropped.
The Cross-Entropy Gradient Component
Applying the chain rule of differentiation gives

JEE  JECE a

= B8
I, da, ow, o)
where
aECE _ N BECE a}"f‘ B9
da, 13 dy, da, e
by applying the chain rule once again.
From Equation (B
dEE g |& t,
ayr" _ayi‘ ;t” ln yn
=1
L =
=t.|— | .(=Dly t
[VJ =Bl
giving
OE™* 1
M . 10




(ieak %ear _ea"ea'
e
a a a

8= ¥ ) (B11)

da. 3 |
- = T = (B12)
ow, Iw {ZH“ f} / ' :

Substitute equations (B10), (B11) and (B12) into equation (B8)

0E*  (HOE™ 9y. \9g,
ow, & 9y, da

i(_ f’—](_\;..aﬁ. — ),

i'=1

=i( 1.9, +r)):

giving,
aECE
aw = (:\?{. — J‘I_ )Zj (B 1 3)
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The Regularisation Gradient Component

JER & OER
= (B14)
Wi =1 W
oE] . Y dy, 0 | oy,
ow, ;‘ dx; 'axf{ )

_iayn a
-4 6‘1, 8x, aa
v 3 [ 3 &y, 3
_zaxf' Bx,{aa ox, ax,[ ] ﬂ

-slas ) s B 53]

ady, zZ; S dy, d oy, |97, Loy, 97 [ Ay,
Z [ ]ax +2] = dx; dx [G‘au’ J X ! Z@.rf ox; [aad }'-’

n

This expression may be rewritten in the form

oL 0z; 0z,

=0T + 20—+ 0,2 B1S
au’ “a I x,‘ fivj ( )

where the following quantities have been defined (Bishop, 1993)

N 2
2 {aa ] (B16)

YR
w=Zaag{BJ (B17)

A N alyn az a}’,,

O = ; ox} ox; (aaui J (BI18)
Wy (s

8a - (am }5)}’n (Blg)

Now the component derivatives are required in order to evaluate (B15).

64




The first derivative is

d [y, ) 9 1o o
SR

giving

i ayn _ ayn_ )a}‘ﬂ_ ,i
ox,{ da | " ax, 7 ax, }"ax,'

which forms a component of (B17). Equatiog_a (B20) is differentiated again

Kl ) O P ) PR
7\ da ) ox | "ox, Tox, "ox,

9%y, 9%y, 9y 9y, 9y ay, oy

n

(B20)

=3

—Ft ey =y,
Ry Ty dndy & BB

giving

i dy, s 9%y, ‘83_\',: 2@8_\'n . d7y, B21
oxi\da, )" o T A Tayox, Ay 21)

which is substituted into (B18).

o, %
To evaluate (B20) and (B21) the derivatives % and 3 '\2"' are required.
x, _Y[
Now,
Py _ 5 9, 0y
g,  “du. on
N of aJz
= 8nn - yr:' yn 1"/n _:JJ_}
ICHES ) NS
giving
dy o dz..
= = Wrx‘ A Sn‘n - _‘-"n' -vn . (Bzz)
3, = 2 2 B g
and
'y, 0 |x dz;
1” — ) 6 _ ] J
ax[_ ax! {;;wnj ( n'n \n )\n axj
N ) a az a\ - EZ
- —(., - )y =L+(5, —y ) =L 45, -
;lzﬂ"v’l{at[( nn -\n)\'n ax_“ ( n —\n)dxl‘ ax[ (nn 1r! )\n ax_
giving
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J%y L dy, 9z, dy 0z, d’z
s W= ¥ +16,. — T — ¥ > (B23
a.lf. ;; n'j ax, n ar[ ( n'n \’rr )a : ar, ( nn 1M )"n 81,‘ ( )
9%y 2 dy. 0Oy 0z 9’z
_:’I - 6 -n n y il s 6 , . ;’
0x; n:l_."—l“)nj {( Ll )ax] dx, """ | dx, ( o~ 4 )}” ox;
_ , .. 0z 0’z
The evaluation of (B22) and (B23) require the derivatives 3 and EWaE
.Y‘, I[
For a specific radial basis function used in this work:
L 2
o) [ Ees)
ZJZEXp— 20_2 =exp _T
L 3
i__(‘(,—ljj)ex _;(xf \0) B4
ox, G’ P 26 (B24)

giving
L
¥ 3(
aax‘j'zj - (rfcf?}) __1_’ exp| - fvl(zozry)

The learning rule used to update the network weights was chosen to be a simple
gradient descent rule of the form

oE
w, (t+ 1) =w, (1)-7 m

where 1) is the learning rate. This rule was found to be sufficient to learn the desired
probability distributions.
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