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Abstract

One of the subjects which has received a great deal of attention i1s the overparametrization
problem. It is known that the dvnamical performance of the model representations deterio-
rates if the respective model structure is too complex. This paper investigates the problem of
model overparametrization. Two new tvpes of overparametrization, fired-point and dimension
overparametrization, are introduced and based upon this a new procedure for improving struc-
ture detection of nonlinear models is developed. This procedure uses all the information from

the cluster cancellation and the location of the fixed points. Numerous examples are given to

S illustrate the ideas.

1 Introduction

The system identification problem typically starts with the construction of a model form or type
followed by the estimation of the model parameters. Each model can be viewed as a means of
expressing the properties within the data. The aim in identification is to search for a model or a
class of models which best captures the properties of the data.

The single most important step in the identification process using empirical or black-box mod-
elling is to decide upon a model structure. that is. the mathematical form with which the unknown
svstem can be described. But first, it is necessary to define which model representation to employ,
linear or nonlinear models.

Linear models have been widelv used in system identification for two major reasons. First.

the principle of superposition holds for such models and as a result. the effects that different and
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combined input signals have on the output are easily determined. Second, linear systems are
homogeneous. However, for nonlinear systems neither of these principles are valid. For instance,
if an input containing different frequencies is used to excite a nonlinear system, the resultant
output can exhibit not only these frequéncies but also new frequencies due to the presence of
nonlinearities. Harmonic generation. intermodulation. chaos and other complex effects can be
generated by nonlinear systems.

Since many control systems encountered in practice are nonlinear, it seems reasonable to rep-
resent such systems using nonlinear models. The disvantage of using nonlinear models arises from
the inherent complexity compared with linear models which are supported by a well established
theory. One feature of this complexity is the possibility of a large number of model structures
within a chosen representation. Contrary to the linear case. model structure selection for nonlinear
systems is not restricted to the determination of the model order (dimension), but involves other
factors. For this reason, nonlinear model structure selection is not a simple subject.

The importance of structure detection can be exemplified by reviewing the use of polynomial
models in the identification of systems exhibiting chaotic motions. Katdke et al. (1993), and
Aguirre and Billings (1994) have demonstrated that polynomial models can successfully and fairly
fully reproduce chaotic behaviour provided the terms in the model or the model structures are
appropriately selected. Model structure which are too complex or overparametrized were shown
to introduce spurious dynamical regimes and bifurcations and ultimately may become unstable
(Aguirre and Billings, 1994).

In this paper two new types of overparametrization, called fired-point and dimension over-
parametrization, are introduced. In (Aguirre and Mendes. 1996) it was shown that the number
and location of the fixed points of global nonlinear polynomials can be specified in relation to term
clusters and cluster coefficients (Aguirre and Billings. 1995) of the respective models. Aguirre and
Mendes showed that if the structure, that is the model basis, of a nonlinear polynomial model of

“degree £ includes all possible terms then such a model will always have ¢ nontrivial fixed points.
In modeling problems, where the estimated polynomials are to reproduce fundamental invariants
of the original syst’é?ﬁ, this situation will not always be welcome and this therefore suggests that
the structure of polyhomia] models should be chosen carefully.

Polynomial models will be considered because they are far more amenable to analysis than other
model types. The structure of polvnomial models can also easilv be quantified and fundamental
dynamical properties such as the number. location and stability of the fixed points can be readily
obtained analytically when the degree of nonlinearity ¢ does not exceed four (Aguirre and Mendes,
1996). This is true for single input and single output polynomial NARMAX models but not for their
multivariable counterparts. In this case. numerical methods tend to be the more natural choice.
However an alternative method, called Grébner basis (GB). has recently been introduced in the
engineering field which allows fixed points to be calculated analytically in many cases (Forsman,

1991). Forsman also made use of the Grébner basis to solve some cases of the nonlinear realization




problem. In this paper the Grobner basis will be used merely as tool for calculating fixed points
for multivariable models.

Instead of inferring the importance of the clusters as suggested in (Aguirre and Billings, 1995)
from variations of the cluster coefficients a more physical quantity will be used, that is, the fired
point itself. The fixed point contains information which originates from the cluster coefficients and
provides an indication of how the system will behave. It is shown that by monitoring the values
of the fixed points, it is possible to determine which clusters are important to the model even for
dis::rete systems. Numerous examples will be used to demonstrate this new approach.

The question of which minimal dimension should be used is also addressed. Recently Parlitz
(1992) devised a method of determining the spurious Lyapunov Ezponents originated from embed-
ding the data with a dimension greater than necessary. Despite the inherent usefulness, the method
proposed by Parlitz cannot be emploved for NARMAX models. Instead. an alternative approach
based upon early ideas discussed in (Eckmann and Ruelle. 1985) will be used in this paper. In this
manner, the minimal dimension required to describe the original system is selected, hence avoiding
the problem of dimension overparametrization.

The paper is organized as follows. Section (2) includes the background concepts needed to
understand the paper. In this section the number, location and symmetry of fixed points are
reviewed in the light of term clusters and cluster coefficients. The concept of Lyapunov exponents
is also reviewed. In section (3) the different types of overparametrization of nonlinear discrete
systems are defined and analyzed. It is shown how the number and location of fixed points usually
alter when terms from different clusters are selected to compose a model. Section (3) also suggests
some ways in which the results presented in this work can be used to aid in selecting the structure
of polvnomial models. In section (4) a preliminary study of overparametrization in the context of

multivariable nonlinear models is made. The main points of the paper are summarized in section

(5).

—

2 Important Concepts

The aim of this section is to review the basic concepts of term clusters and cluster coefficients
proposed in (Aguirre and Billings, 1995). Recent results involving fixed points and clusters (Aguirre
and Mendes, 1996) are briefly discussed. Finally a short review of Lyapunov exponents is given.

Polynomial models will be used throughout the present study. A thorough discussion of the
advantages of using polynomial models in the context of chaos is given in (Aguirre and Mendes,
1996). Such models are a subset of the so-called NARMAX (/Non-Linear AutoRegressive Moving
Average with eXogenous inputs model (Leontaritis and Billings. 1985). Because polynomial NAR-
MAX models are linear in the parameters the structure of these models can be effectively detected
using available algorithms (Billings et al.. 1933: Mees, 1993a: INatdke et al., 1993; Judd and Mees,
1994).




2.1 Identification of Polynomial models and Structure Detection

It has been shown that the NARMAX model provides a unified representation for a wide class
of non-linear systems (Leontaritis and Billings, 1985). Several well-known models such as the
Hammerstein, Wiener and bilinear models are known to be a special case of the NARMAX model
(Billings and Leontaritis, 1981, 1982). This model can represented as follows

y(k) = Flylk=1),...,y(k=n,) u(k—d),....u(k—d - n,),
e(k=1),....e(k = n.)) + e(k) (1)

where y(k), u(k) and e(k) represent the output, input and noise. respectively. n,, n, and n. are
the corresponding maximum lags and {e(t)} accounts for possible noise, uncertainties, unmodelled
dvnamics. etc. d € Z* is the delay. F is some non-linear function, the form of which is usually
unknown.

It is interesting to note that the NARMAX model came as a natural extension of the well-known
ARMAX. An enormous amount of literature exists on estimation of ARMAX models from data.
For instance, see (Box and Jenkins, 1976; Soderstrom and Stoica, 1989).

For many real sampled nonlinear systems the exact NARMAX models, described by the function
F in equation (1), are very difficult to determine. Therefore it is often necessary to approximate
F by some known function. Polynomial NARMAX models have been shown to be a good choice
(Billings and Fadzil, 1985: Billings et al., 1989) and their use was studied in detail in (Chen and
Billings, 1989).

When the purpose is to identify polynomial nonlinear discrete models from data equation (1)
can be rewritten as

S

ylk) = Tl (k- 1)0y, + UL, (k—1)Oyu +elk) (2)

yue

—_

where WT (k—1) includes a constant and all the output and input terms as well as all combinations
of these up to degree £ and time £ — 1. These terms will henceforth be referred to as process terms.
The vector @, contains the parameters associated with these terms. The matrix W7, (k—1)and

the vector @y, are defined likewise. W7  (k — 1) will be referred to as noise terms.
Unfortunately equation (2) is not suitable for estimating the parameters of a polynomial NAR-
MAX model because the noise terms are not known. However the noise sequence e(k) can be

estimated interactively as

s(k) = y(k) - j(kl©) (3)




where £(k) is the residual at time k and g(k|©): the prediction of y(k), can be written as

JkIO) = Wi, (k = 1)Oyu + Ule(k—1)Oyuc . (4)

Finally, substituting equation (4) into equation (3) and rearranging vyields

e . 4 y(k) = UT(k=1)0 + (k) (

(W]
—

where U7 (k—1) = [V, (k-1) U]  (k-1)] and 0T = [6;}1 - wue) - Equation (5) clearly belongs
to the linear regression model

ng

y(k) =D pi(k)6i+ (k). k=1..... ] (6)

i=1

where N is the data length, p;(t) are column-vectors which represent process and noise terms, ng is
the number of distinct such column-vectors. 6, are unknown parameters to be estimated and ng is
the summation of n, process terms and n, noise terms. In the orthogonal estimator the parameter
estimation is performed for a linear-in-the-parameters model which is closely related to (6) and

, which can be represented as
Tig )
y(k) = Y owi(klg + &(k).  k=1,... (7)
1=1 ’

~where the orthogonal vectors w; and the parameters g, are constructed from equation (6). The
‘arigina,l parameters 6; of the model in equation (6) can be calculated from the {g;}.2,.

The possibility;gf,selecting the relevant vectors (terms) as a by-product is the great advantage of
the orthogonal estimator. To demonstrate this, consider again the orthogonal regression equation
(7). Assuming that the orthogonal property wlw; = 0 for ¢ # j holds. Therefore, multiply equation

(7) by itself and take the time average to give

1 L ot 1
j\TYTY =5 > giwiwi+ wacf (8)
¥ | 4 l’-_-l &

The output variance yTy/N consists of two terms. The first term 3¢, g?w w,/.V is the part of
the output variance explained by the regressors whereas the second term £7¢/\ accounts for the
unexplained variance. Because of the properties of the orthogonal estimator the increment towards

the overall output variance of each regressor (term or vector) can be computed independently as




g?wfw:. Expressing this quantity as a fraction of the overall output variance yields the Error
Reduction Error (ERR)

W ST
g]wiwz

T

Yy

[ERR], = 1 < i< ng (9)

ERR can be used as a simple and effective means of selecting the most relevant regressors
in a forward-regression manner. Therefore ERR imposes a hierarchy of terms according to their

contribution towards the overall output variance.

The orthogonal estimator will be used throughout this work to select the terms and estimate

their coefficients for polynomial models.

2.2 Term clustering

In order to review the concepts of term clustering it is necessary to expand the deterministic part
of the NARMAX model, that is. a NARX model, as the summation of terms with degrees of
nonlinearity in the range 1<m</¢ '

{ m Ny.Nu P m
y(k) =3 > 3 Cmoplmeoonm) [Jutk=ni) J] ulk—ny), (10)
m=0p=07n1.m 1=1 1=p+1
where
T Tlu Ty Ny
=2 X
ny.,Nm =1 nm=1

and the upper limit is the maximum lag n, if the summation refers to factors in y(k — n;) or
“the maximum lag n, for factors in u(k — n;). For m = 0 equation (10) is reduced to y(k) = co,
that is, a constanijerm. It can be noticed from equation (10) that there are many possible
terms in a polynomial model. Although there is no term repetition it seems natural to consider
groups of similar terms which describe the same type of nonlinearity. For instance, terms such as
y(k—1)u(k=2), y(k —2)u(k—1) and u(k - 3)y(k — 1) can be considered as members of the group
which includes all the terms of the type y(k — nj)u(k — n2) (ny=1,...,ny and np =1,....ny).
These groups of similar terms have been named as term clusters in (Aguirre and Billings, 1995).
In a mathematical notation, the set of terms represented by ,5,m-» contains terms of the form
y(k = ni)Pu(k — n;)™"P for m=0,...,{ and p=0,....m.
The summation of the coefficients of all the terms which pertain to a certain cluster is the

cluster coefficient (Aguirre and Billings. 1995) denoted by &, m-». Generically, for equation (10)

¥R
the cluster coefficients are S0 7¥ ¢ . (ny.....n). For example, if the maximum degree of

np.Mim

nonlinearity in equation (10) is { = 2 all clusters can readily be determined as Qg (that is. the




constant term), £y, Qu, Qyu, Q2 and Q2. Setting ny = 1 and n, = 2 the cluster coefficients can
also be determined: 3 5 = coo. 3., = c10(1). &, = coa(1) + c0.1(2). Tow =c11(1,1) + ¢11(1,2),
Y2 =c20(l) and 3 .2 = co2(1) + co2(2).

From the definitions above it can be concluded that the set of candidate terms for a NARX
mode! is the union of all possible clusters up to degree £. This can be represented as follows

{all possible terms} = U Qpum-r

yPu
=il s
=i B

= constantUR, U, UQ 2 UR,, UQ:U...

...U all possible combinations up to degree £ . (11)

In (Aguirre and Billings, 1995) it is stated that it is highly desirable to eliminate certain clusters
prior to term selection because in this case the number of candidate terms would be considerably
reduced. If a certain cluster is not required_to reproduce the underlying dynamics such a cluster
is said to be spurious as opposed to effective clusters which are required to obtain a dynamically
valid model.

It has been shown that if a certain term cluster is spurious. the respective coefficient will
gradually become small or will oscillate around zero as the number of terms in the model is increased
Aguirre and Billings (1995). This procedure called cluster cancellation is simple, quite robust and
can be used in structure selection problems.

When the main interest is to estimate global nonlinear discrete models directly from data
Mendes and Billings (1996a} have established that the aforementioned cancellation is not always
obvious. In fact, in the cases where the data do not contain information at all the fixed points
(reviewed in the next section) cluster cancellation does not indicate the spurious terms. In these

"Tases Mendes and Billings showed that several different model structures can only reproduce the

local dynamical characteristics of the system under study.

—_—

2.3 Fixed Points

The objective of this section is to investigate some relationships between the structure of nonlinear
polvnomials and their respective fixed points. The concept of using cluster coefficients for charac-
terizing the number of fixed points of 2 map and the location of such fixed points will be briefly
reviewed.

Based upon the definition of fixed points. that is. y(k) = y(k + 7). ¢ € Z and using the cluster
coefficients, the fixed points of an autonomous polynomial with degree of nonlinearity ( can be

~ calculated by finding the roots of the following “clustered polvnomial™ (Aguirre and Mendes. 1996)

Sy Syl + (S, - Dy + So=0 . (12)




where Xp = cpp is a constant. From equation (12) it can be seen that an autonomous polynomial
with degree of nonlinearity £ will have ¢ fixed points if Ly #0.

One important aspect in the study of nonlinear systems is to verify if the fixed points are
symmetric. Aguirre and Mendes (1996) investigated the simplest nontrivial symmetry of fixed
points in IR, that is Z;, for nonlinear polvnomial models. These authors pointed out that the data
used for identification purposes will always be real and only real fixed points should be considered.
This conclusion and the procedure of determing the fixed points directlv from the data (described
in the sequel) can be used as an aid to structure detection. This will be explored in the last sections

of this work.

2.3.1 Determining Fixed Points directly from the data set

Recently Glover and Mees (1993) devised a very simple method of estimating the position of the
fixed points directly from the data. For the sake of clarity, their method is now briefly described.

The method is based on the fact that a fixed point corresponds to a measurement which remains
constant. Trajectories, which come closer to a fixed point, mimic this behaviour by remaining
relatively constant for a short period of time. Just by looking at a time series, the influence of one
or more fixed points can often be readily seen. This constitutes a strong result since it allows the
important clusters to be defined be fore estimating a model.

By fitting local AR(m)! models to sections or windows {y(1),....y(2 * m + 1)} of the time
series. the nonlinear dynamics can be locally represented. The fitted AR models can then be used
for estimating the fixed point p. This procedure is performed repeatedly so that values of the fixed
points are calculated over the entire time series using overlapping windows of size 2xm+1. The next
step is to calculate the distance 7 between the m-dimensional point vy = (y(k),...,y(k+m—1))

-and the candidate m-dimensional fixed point gv = (ps,...,px). If they are far apart the value of
Pk is rejected. However if vy is near the fixed point so is its estimate. A plot of p; against ry will
show the location of-the fixed points.

2.4 Lyapunov Exponents

Lyapunov exponents and Lyapunov dimension are two of the most studied diffeomorphic invariants
of autonomous dynamical systems. The dimension of the attractor describes approximately the
number of degrees of freedom whereas the Lyapunov exponents quantify the sensitivity of the
system to initial conditions. Algorithms for estimating Lyapunov exponents have been described
in, for instance, (Wolf et al., 1985; Sano and Sawada. 1985; Eckmann et al.. 1986: Sato et al.. 1987)
and constitute an active field (Briggs, 1990: Brown et al., 1991; Bryant et al., 1990; Gencay and

Dechert, 1992; Kruel et al., 1993) etc. In these references the main concern is to calculate the whole

'm is the dimension of an AutoRegressive Model.

]
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Lyapunov spectrum. When only the largest exponent needs to be estimated, simpler algorithms
can be used (Wolf et al., 1985; Kantz, 1994).

It is normally accepted that any system containing at least one positive Lyapunov exponent is
considered to be chaotic, with the magnitude of the exponent reflecting the time scale on which
the system dynamics become unpredictable. The magnitudes of Lyapunov Exponents quantify
an attractor’s dynamics in information theoretic terms. The exponents also measure the rate at
which system processes create or destroy information. For systems whose equations of motion are
explicitly known there is a straightforward technique for computing a complete Lyapunov spectrum.

A great problem when Lyapunov exponents are calculated is how to define the dimension =
maximum lag n,. Recently Parlitz (1992) rediscovered and explored an earlier idea described by
Eckmann and Ruelle (1985) that under time reversal of the data, the true Lyapunov exponents
will reverse in sign, that is, positive exponents become negative and vice-versa. Parlitz argues that
the spurious exponents do not behave in the same way, that is, the sign remains unchanged when
the time is reversed. Abarbanel and Sushchik (1993) pointed out that such behaviour would be
difficult to see when the exponent is close to zero. Although Parlitz has been quite successful in
determining the true Lyapunov exponents from experimental data (Parlitz, 1993), Abarbanel and
Sushchik also claimed that such a method is not robust to noisy data. They advocate the use of
the method of false neighbours instead (Kennel et al.. 1992; Abarbanel and Kennel, 1993; Kennel
and Abarbanel, 1994).

It seems quite reasonable to think that even with the pitfalls of Parlitz's method, this could be
extended to polynomial NARMAX models. In a case in which the identified models are invertible
(usually not many), it could be argued that if the time reversal procedure were applied, the spurious
exponents would not change signs. Unfortunately when the inverted model is free run the signs
of the spurious exponents change as occurs to the true Lyapunov exponents. As a result Parlitz’s
method can only be applied when local models are directly fitted to the data. Fortunately, Eckmann

—~and Ruelle (1985) pointed out that the spurious Lyapunov exponents tend to be multiples of the
effective exponents. This simple procedure will be used in this work to detect the spurious exponents

hence avoiding thedeleterious effects of overparametrization.

3 Overparametrization of Nonlinear Systems

In the context of analysis of both linear and nonlinear systems a model where the structure is more
complex than necessary is said to be overparametrized. In other words the Principle of Parsi-
mony should ideally be adhered to. This principle states that the complexity of the model should be
penalized so as to produce the simplest model possible. There are sound and technical reasons for
always penalizing overparametrization (See Tong. 1992, for details and references). Such parasitic
effects occur very commonly in nonlinear modelling. For some discussion on overparametrization
of radial functions, see (Mees, 1993b: Judd and Mees. 1994; Mees and Judd, 1993).




The objective of this section is to define the different types of overparametrization according
to the spurious dvnamics introduced into the model. For instance, it will be shown how over-
parametrization of nonlinear models affects the number and location of the respective fixed points
and how it affects the number of Lyapunov exponents. Numerous examples will be given to illus-
trate the various types of overparametrization.

Some aspects of structure selection will also be addressed and analyzed in this section. The
results developed in the previous section will be used as a framework both to illustrate the effects

of overparametrization in nonlinear models and also to aid the structure selection.

3.1 Different types of Overparametrization: Definitions

When overparametrization is mentioned in the literature, it is often associated with linear system
modelling. The inclusion of more terms than necessary in a linear system model implies that the
model order is overestimated. In the nonlinear case such terms do not always lead to an increase in
dimension as will be elaborated shortly. Owing to the variety of terms that are possible in nonlinear

models, overparametrization may be classified into three different types:

Definition 3.1 Term Overparametrization

This kind of overparametrization occurs when a model has more terms than necessary.

This is the commonly held and understood definition of overparametrization. In the case of
linear systems. this would imply an increase in model order (dimension). A possible consequence

of such an overparametrization is the loss of predictability of the model.

Definition 3.2 Dimension Overparametrization
Overparametrization occurs when an n-dimensional system is represented by a model whose dimen-
stonisn+1i (1> ().

—

In the identification of linear systems this kind of overparametrization can be detected by
cancelling pole-zero pairs especially when the data are noise-free. It is well known that exact
cancellations are not possible in real data., but nevertheless the principle still applies. In the
nonlinear case, such cancellations are often not obvious, although they can occur when the linear

part is considered. This will be illustrated in the following example.

Ezample 3.1
The system considered in this example is the Duffing-Ueda oscillator (Ueda. 1983) described by

the following differential equations:

j+ kg + Y = (13)




where £ = 0.1. This equation exhibits chaotic behaviour when the the input u(t) is a cosine of
amplitude 11 and frequency w = 1.0 rad/s. To simulate the system, a square wave with increasing
amplitude with a superimposed Gaussian sequence was applied as input. Only 200 data points were
used for the identification although over 1500 points were available. Insofar as dimension (lag) is
concerned, such a system can be represented fairly well by models of dimension 2 or greater. As the
da‘na} are noise-free. the great majority of models were able to reproduce the system dynamics. The
means of verifying cancellation amongst the linear terms in the models was achieved by studying
the linear transfer functions (TF}) (which are obtained by keeping only the linear terms from an
estimated nonlinear model). The TF; can easily be obtained via inspection of the linear clusters £
and Q,. For this example, three different models were considered. Each one represents a specific

dimension:

Model of dimension 2

The linear transfer function of the model estimated from the Duffing-Ueda with dimension

By = 2 15

+0.1169%x 1072z + 0.1554 x 102

TEL = ;
f 22— 0.1995x 1071z + 0.9953 x 10+° 14)
from equation (14). the poles and zeros can easily be calculated as
0.9976 + 0.003323;
Poles = Z_ Zeros = { —~1.329 (15)
0.9976 — 0.003323:

Model of dimenjsﬁgn 3

The linear transfer function of the model estimated from the Duffing-Ueda with dimension

Ry =23 Is

4+0.1165% 107222 +0.1121x 1072z — 0.543x 1073

o= 16
Thy 23 —0.2356x 10122 4+ 0.1716 x 10+1z1 — 0.3598 x 10+0 (16)
from equation (16), the following poles and zeros can be calculated.
1.002 -
Poles ={ 0.9920 Zeros = S (17)
- 0.3541
0.3617

— s 11




Model of dimension 4

The linear transfer function of the model estimated from the Duffing-Ueda with n, =4is

+0.1168x 107222 + 0.1101x 107222 — 0.3263 x 103! + 0.2957 x 103

TE, = ?
T T 02369% 10722 7 0.1935 X 107 12% — 0750 x 10791 4 0.1028x1070  (10)

with poles and zeros

1.002

0.9931 =Lalis
Poles = o _. Zeros =¢ 0.1813+ 0.4014; (19)
0.1871 + 0.3985; ,
0.1813 — 0.4014;

0.1871 — 0.3985:

The pole-zero cancellation is evident from equations (17) and (19). It is worth pointing out that
TF, and T F;, are not stable since one of the poles is placed outside the unit circle. This seems a
characteristic of chaotic systems especially when time series (NARMA models) are considered. The
cancellation is however not so easy to detect when noise is added to the data. This is a common

situation when real data are analvzed.

"Definition 3.3 Fized-Point Overparametrization
Overparametrization occurs when spurious term clusters are included in a model. As an immediate

consequence the model will have a spurious fized point.

Both dimension overparametrization and fized-point overparametrization can be thought of as
special cases of term overparametrization. However the latter definition will only be used when the
model has more terms than necessary but does not introduce spurious clusters and higher order
terms.

A diagram of overparametrization of nonlinear systems is depicted in Figure (1). The dashed
lines indicate that both dimension and fized-point overparametrization can possibly occur as a
consequence of term overparametrization. However their effects are different as will be demonstrated

in the following example.




Overparametrization

Dimension R oo s e = Term F -------- -1 Fixed-Point

Figure 1: Overparametrization of nonlinear discrete systems.

Ezample 3.2
Consider the Hénon map (Heénon, 1976):

r(k) = 1 + az(k-2) + Bz(k-1)? (20)

where & = 0.3 and 3 = — 1.4. the values often used in the literature. For the Hénon map. the
fixed points are placed at (-1.131.0.6314). the Lyapunov exponents are (0.425,-1.629) bits/s and
‘the Lyapunov dimension is Dy = 1.2609. The poles of the linear part are (0.5477,-0.5477). To

illustrate the types\gf overparametrization. two variants of equation (20) are analyzed:

Model A

z(k) = 1 + az(k-2) + B3z(k-1)* + vz(k-3) (21)

and

Model B

(k) = 1 + az(k=2) + Jr(k-1)7 + qe(k =1 2(k-2) (22)




It can readily be seen that, compared to equation (20). Model A is dimension overparametrized
and Model B is fixed-point overparametrized. The coefficient v is then varied (v < a;v < 8) so as
to assess the influence of the spurious term.
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Figure 2: First return map of (a) Hénon Map. equation (20), (b) Model A, equation (21). with
v = 0.05 and (c) Model B, equation (22), with v = 0.05.

Figure (2) depicts the first return map of the Hénon map and its variants. When figures (2-
b) and (2-c) are compared to (2-a) no apparent differences can be noted although they do exist.
The bifurcation diagrams shown in Figures (3). (4) and (3) reveal quite clearly the differences
between the models which are, of course. due to overparametrization. They also show that the two

overparametrized models have distinct behaviour. In Model A which is dimension overparametrized
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the distortions are accentuated. The model invariants are shown in Table (1) fora = 0.3, 3= -1.4
and 7 = 0.05. Note that the fixed points of Model A are similar to the original fixed points. Whereas
Model B has a spurious fixed point owing to the cluster €,:. It is important to stress that the
spurious fixed point is placed far from the original fixed points which tends to affect the bifurcation
diagram only mildly. Once the parameter ~ is increased beyond a certain value so that spurious
fixed point is moved to be near to the original fixed points, the effects of overparametrization are

more devastating,.

Figure 3: Bifurcation diagram of the Hénon Map (equation (20)): (a) the parameter 3 is varied
from —1.5 to —0.3, (b) Zoom over the region between —1.4 and —1.1 and (c) Zoom over

the region between —1.1 and —0.9.

The same analysis can be done for Model A. In this case there is no spurious fixed point.
However the spurious Lyvapunov exponents and the pole shown in Table (1) can be accounted
for by the effects of overparametrization. Firstly, the Lyapunov spectrum of Model A is not as
good as that of Model B. Consequently the Lvapunov Dimension is higher for the previous model.

Also owing to the inclusion of the extra dimension. the poles of the linear part have lost the
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original symmetry. Secondly, when the parameter v is increased the model becomes unstable.
After numerous simulations it was conjectured that the increase of dimension is largely responsible

for the identification of unstable models and should therefore be avoided.

’7 ‘ Hénon Map i Model A | Model B |
Fixed Points (-1.131,0.6314) |  (-1.109,0.6443) (28.47,-1.104.0.6366) |
Lyapunov Exponents | (0.425.-1.629) | (0.4138.-1.327.-2.082) (0.406,-1.519)
Lyapunov Dimension 1.2609 ) 1.3118 1.2672
Poles (0.5477,-0.5477) | (0.6173,-0.428.-0.1893) |  (0.5477,-0.5477)

Table 1: Fixed Points, Lvapunov exponents. Lvapunov dimension and poles for Model A and Model
B. equations (21) and (22) respectively.

3.2 A Fixed-Point approach to structure selection

The objective of this section is to introduce a new approach to structure selection based upon
term clusters and cluster coefficients. The central idea of using cluster methods in model structure
selection is that if terms of an unnecessary cluster are selected (this will often be the case for
short sampling times or when the data are noisy) the parameter estimation algorithm will usually
counteract this situation by estimating parameters in such a way that the effects of the terms
within the inappropriate cluster cancel out. This cancelling effect is indicated by a small absolute
value of the respective cluster coefficient (Aguirre and Billings, 1995). According to the authors,
In situations when the coefficient of a spurious cluster is not convincingly small, it is often helpful
to monitor the behavior of the cluster coefficients as the number of terms in the model is gradually
increased. By folloi?{ﬁg this procedure spurious clusters are usually revealed either by decreasing or
oscillating cluster coefficients. In (Mendes and Billings, 1996a) it is shown that such a procedure is
only useful when the data contain information about all the fixed points. Moreover the procedure
is valid only for discrete models identified from data generated from a continuous system.
Another alternative, the concept of zeroing-and-refitting has been investigated in the context
of model structure selection (Kadtke et al.. 1993). Briefly, in this approach the terms which have
coefficients smaller than a certain threshold are eliminated from the original structure. Although
this method is quite effective in some situations. it was pointed out that noise in the data and
also the sampling time usually affect the term coefficients in such a way that the absolute values
of spurious terms increase and therefore it becomes very difficult to decide which terms should be

removed from the original structure (Aguirre and Billings. 1995).
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Figure 4: Bifurcation diagram of Model A. equation (21): (a) the parameter £ is varied from —1.5
to —0.3, (b) Zoom over the region between —1.4 and —1.1 and (c¢) Zoom over the region
between —1.1 and —0.9.

The new procedure named the fixed-point approach uses all the information from the cluster
cancellation togetﬁ’er with the location of the fixed points. It will be shown that the degree of
nonlinearity £ can be determined when the location and values of the fixed points are extracted

from the data. Consider an example to illustrate the approach.

Ezample 3.3
The objective of this example is to illustrate how the fixed point approach can often be used
to determine not only the effective clusters but also the degree of nonlinearity £. The system

considered in this example is Chua’s circuit (Chua and Hasler, 1993) represented as follows




1.5

-
oL ..

Figure 5: Bifurcation diagram of Model B. equation (22): (a) the parameter § is varied from —1.5
to —0.3. (b) Zoom over the region between —1.4 and —1.1 and (c) Zoom over the region
between —1.1 and —0.9.

7 = ay — h(z)) miz + (mo—mi1) z21
y=z—-y+z , h(z)=4 moz B! (23)
= -By miz — (mg—m;) z < -1,
where @ = 9.0, 8 = 100/7, mg=—1/7 and m; =2/7. For these values of parameters the system

settles to the so-called double scroll attractor. Equation (23) was simulated using a Runge-Iutta
of 4th-order with step size 0.001. The data from the z-coordinate were then sampled at T, = 0.15.
It has been shown that when the attractor settles in the well-known double scroll. it is possible
to determine the effective clusters precisely (Mendes and Billings, 1996a). It was also shown that
the fixed points can easily be identified directly from data by. for instance, using the procedure of
Glover and Mees (1993). The same results could be achieved when NARMAN models are fitted to

'
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the data. This is the basis of the fixed point approach.

To determine £ for the double scroll, polynomial NARMAX models with increasing number of
terms and degrees were identified from 1801 noise-free data points. In this example the structure
of such models was automatically selected by the ERR criterion. All the models identified were
of dimension n, = 3 which is the minimum dimension to describe Chua's circuit. The results will
remain qualitatively the same even when higher dimensions are used. Tables (2), (3) and (4) show
the values of the fixed points for £ varying from 2 to 4. At this point, it is worth mentioning that
the true fixed points, despite being easily calculated from equation (23), were caiculated using the
procedure of Gloves and Mees described in section (2.3.1). For the polynomial models the fixed
points can readily be calculated using equation (12). For ¢ = 2. the fixed points diverge indicating
that the OLS algorithm could not determine the real fixed points. This situation dees not occur for
the fixed points of Table (3) and (4). Clearly two fixed points hardly vary even with an increasing
number of terms suggesting that they pertain to the original set of fixed points. To detect the
trivial fixed point, only the cluster Qg needs be inferred (Aguirre and Mendes, 1996; Mendes and
Billings, 1996a). Verifving the cancelling effect is obviously not a valid procedure for such a cluster
since it is a singleton. A solution to this problem is now suggested. From the two fixed points
already detected the symmetry of the double scroll can be reviewed. A necessary condition to have
such symmetry is that the coefficient of cluster Qo equals zero. To further confirm this, Tables (3)
and (4) show that the constant term is included only after 16 terms have been selected and has a

small coefficient.

[ ng I Fixed Points I
10 |-003913 | 4635 | - |
9 _0.2796 | 3.588 | -
8 .0.3809 | 2.703 | -
i [0.08267 | 5.458 | -
- 6 0.1589 | 53.92 | -

[TRCE] o | 15 |-13]

—

Table 2: Fixed Points for models estimated from the z coordinate of Chua’s circuit, equation (23),
with the degree of nonlinearity £ = 2. ng is the number of model terms. The true fixed
points were calculated using the procedure of Glover and Mees described in section (2.3.1).

For the polynomial models the fixed points can easily be calculated using equation (12).

The last column of Table (4) shows that a spurious fixed point is introduced in all models of
degree of nonlinearity £ = 4 due to the the presence of the cluster _s. It can readily be noticed that
such fixed points are placed beyond the range of the data (-3.18.3.1761) and change considerably
with the number of terms indicating that this fixed point is indeed spurious. Therefore ( = 3
appears to be the most appropriate degree of nonlinearity for the models. Following this procedure

fired-point overparametrization is therefore avoided.
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ng | Fixed Points

20 | -0.004343 | -1.542 | 1.542
19 -0.001639 | -1.542 | 1.543

18 -0.001513 | -1.542 | 1.542

17 -0.001406 | -1.342 | 1.542

’ 16 | 0 -1.542 | 1.543
15 | 0 -1.542 | 1.543

4| 0 -1.542 | 1.343

13| 0 -1.542 | 1542

12 0 1537 | 1537

11 0 -1.53 | 1.33

10 0 133 | 133

9 0 1527 | 1597

8 0 -1.582 | 1.382

T 0 -1.524 | 1.524

6 | 0 -1.547 | 1.547

[TRCE] o [ -5 | 15 |

Table 3: Fixed Points for models estimated from the = coordinate of Chua’s circuit, equation (23),
with the degree of nonlinearity { = 3. The true fixed points were calculated using the
procedure of Glover and Mees described in section (2.3.1). For the polynomial models the

fixed points can easily be calculated using equation (12).

The properties used above to distinguish true fixed points from spurious fixed points are lost
when noise is added to the data. Table (5) shows the fixed points of models identified from noise
contaminated data with a signal to noise ratio of 42 dB (= 20 logio(o2/c2)). Since the only fixed
point whose value varies considerably is the fixed point listed in the first column, it seems reasonable

“to suppose that the cluster Qg is spurious (This is in perfect agreement with the results presented
in (Aguirre and Mendes, 1996)). All the values of the remaining fixed points are largely unchanged.
However it can beTioticed that the fixed point shown in the fourth column of Table (5) is placed
outside the range of the data and must therefore be spurious. This is in perfect agreement with
the results presented in (Mendes and Billings, 1996a). The reason for this is that the data do not
have information about fixed points located outside of the range. It is worth stressing that the
noise added to the data has brought the spurious fixed points closer to the true ones. This effect
has been observed in numerous simulations and causes distortions to bifurcation diagrams.

The symmetry can be detected in table (5) from the fixed points of columns two and three.
The model terms automatically selected by the ERR criterion indicates that. when nj is equal to
6 or 7, the cluster Q.2 is not present in the model and as a result the fixed points are symmetrical
around the origin. As soon as more terms are included in the model. the symmetry is lost. However

the values of the fixed points remain almost constant which indicates that the cluster 2.2 is not




‘ ns Fixed Points _]
21 -0.002234 | -1.542 | 1.542 [ -1130 |
20 -0.002073 | -1.542 | 1.542 | -1044 |
19 -0.001364 | -1.542 | 1.543 | -5008
18 -0.001313 | -1.542 | 1.542 .
17 -0.001406 | -1.542 | 1.542 i
16 0 -1.542 | 1.543 i
15 0 | -1.542 | 1.543 .
‘ 14 0 | -1.542 | 1.543 -
13 0 18542 | 1.542 -
12 0 -1.537 | 1.537 -
11 0 -153 | 153 .
10 0 -1.33 | 1.53
9 0 -1327 | 1.527 -
8 0 -1.582 | 1.582 -
7 0 | -1.524 | 1.524
6 0 -1.547 | 1.547 -
TRUE ] = -15 1.5 -

Table 4: Fixed Points for models estimated from the = coordinate of Chua’s circuit, equation (23),
with the degree of nonlinearity £ = 4. The true fixed points were calculated using the
procedure of Glover and Mees described in section (2.3.1). For the polynomial models the

fixed points can easily be calculated using equation (12).

necessary and can be eliminated.

Finally it is worth mentioning that the results presented above show that the orthogonal es-
timator can be taken as a procedure to determine the location and number of the fixed points.
Simulations have shown that even when the data are corrupted by noise the orthogonal estimator

is able to identify the location of the fixed points directly from the data.

O

Erample 3.4

This example demonstrates that the fixed-point approach is similar to cluster cancellation.
Though some differences should be pointed out. Consider the following model (Aguirre and Mendes,
1996)

1.4260 y(k — 1) — 0.41549 y(k — 3) + 0.012 y(k — 2)
+0.11736 w(k — 3) — 0.04904 y(k — 1) + 1.2007 y(k — 1)*u(k — 3)
+0.252 y(k — 3) u(k — 2) — 0.078346 u(k — 2) = 047750 y(k — 2)y(k — 3)ulk - 3)

9

—0.030695 y(k — 3)% + 0.05343 y(k — 2)° = 0.30072 y(k — 2) u(k — 3)

y(k)
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Ue J . Fixed Points

21 -0.552 1.59 -1.627 | 12.08 |
20 | -0.5474 | 1.581 | -1.641 | 12.03
19 | -0.5228 | 1.582 | -1.637 | 12.36
18 | -0.4501 | -1.388 1.6 15.35
17 -0.394 1.579 -1.619 | 15.16

16 | -0.3499 | 1.548 -1.68 | 13.76
15 | -0.3391 | 1.544 | -1.684 | 13.79
14 | -0.3461 | 1.525 | -1.662 | 13.75
13 | -0.3376 | 1.542 | -1.684 | 13.59
12 | -0.3323 | 1.543 | -1.681 | 13.61
11 | -0.4019 | 1.5361 | -1.664 | 15.35

10 | -0.4261 1.538 -1.63 15.34

9 | -0.3298 | -1.509 | 1.653 =
8 | -0.1554 | -1.5306 | 1.661 =
7 0 1.601 | -1.601 -
6 ! 0 1.615 | -1.613 =

Table 5: Fixed Points for models estimated from the z coordinate of Chua's circuit, equation
(23), with the degree of nonlinearity £ = 4. Noise contaminated data were used for the

identification.

—1.0272y(k — 1)%u(k — 2) + 0.44083 y(k — 2)y(k — 3)u(k — 1) — 0.20771 x 102
+0.032643 y(k — 1)* — 0.054208 y(k — 2)° + 0.023113 y(k — 3)* (24)

which was estimated based on data generated by the Duffing-Holmes oscillator (Holmes, 1979)

y = =,

i = —015y4+z—z3+u(t), (25)

with a signal to noise ratio of 54dB (= 20 loglo(ai/of)) and an input u(t) = 0.3 cos(t).

In (Aguirre and Mendes, 1996) it was shown that the cluster coefficients of model (24) are
£,=1.0234, £,3=-2.1305x 1072, £,=3.9019x107% T2,=-1.9184x 107", Su=-2.0771x107° and
Lp=1.54771x 1073, From the analysis of these cluster coefficients it seems reasonable to suppose
that the spurious clusters are Qp, Q,2,. and Q2. Indeed, the fact that Q,. 2, and Q2,2 seems to
be the effective clusters® can be verified from extensive simulations and calculations of bifurcation
diagrams and also from higher-order spectral analysis (Chandran et al.. 1993). although the higher-

order spectral analysis only detects properties exhibited in the data. The fixed-point approach leads

2Note that the coefficients of the clusters are ten times smaller than the coefficients of the true clusters.
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to similar results but nothing can be said about the cluster £,2,. Such a cluster vanishes completely
when fixed points are calculated. However it has been shown in (Mendes and Billings, 1996b) that
this cluster results from the process of discretization. Models with this cluster can also reproduce

the bifurcation diagram quite well.

O

Ezample 3.5
The following polynomial model was estimated from a set of 300 data points with a signal to

noise ratio of 50dB generated by the Hénon Map (Hénon. 1976) (See equation (20))

z(k) = =0.22005x10"z(k = 1)z(k — 1)z(k - 3) +0.71496 x 10*°
—0.74714% 10*% 2 (k — 1)z(k = 1) + 0.31391x10*% z(k — 2)
—0.23093%x 107 z(k — 2)z(k — 2)z(k — 2) + 0.37603x 107 2(k — 2)z(k — 2)
+0.84738x 1010 z(k — 1)z(k — 2)z(k = 2) — 0.81355% 10"  z(k — 3)
—0.17482x10*% z(k — 1)z(k — 3) — 0.3471x 10" 2(k — 1)

+UT(k—1)0 + &(k) (26)

This map has fixed points at (1.22.0.6262.-1.166) whereas the Hénon Map (equation (20)) has fixed
points at (-1.131,0.631). The fact that the map in equation (26) has one fixed point in excess can
be justified by the appearance of the cluster Q.2 in the model structure.

Figures (6a-b) show the first return map and bifurcation diagrams of the map in equation
(26). When compared to Figure (2), the first return map is quite similar, whereas the bifurcation
diagrams show significant differences which are a consequence of overparametrization. Equation

"T26) is overparametrized in two different ways. Firstly, the degree of nonlinearity is £= 3 instead
of £=2 and secondly, the order of the system is np =3 instead of n,=2. As a consequence of these
two aspects of ove?p;érametrization, the total number of terms ng (parameters) of the estimated
model in equation (26) is more than three times larger than the number of terms in the Hénon
map.

It should be noted that the two worst effects of overparametrization are present in equation
(26): i) a spurious fixed point within the data range and ii) a spurious Lyapunov exponents less
negative than the actual Lyapunov exponent which leads to a larger Lyapunov dimension (D =
1.3778). Models with such effects can be avoided by using the fixed point procedure.

In order to illustrate this. consider models with an increasing number of terms identified from
the noisy Hénon data. The order and degree of nonlinearity are both 3. The Lyapunov spectrum
is shown in Table (6). It can be noticed that the spurious Lyapunov exponent (third column)

is roughly twice the true one (second column) in all models. This is a symptom of dimension
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Figure 6: (a) first return map of equation (26}. and (b) bifurcation diagram of equation (26) with

minus the coefficient of the term z(k — 1)? taken as the bifurcation parameter.

overparametrization. The spurious fixed point can easily be detected by its values when the number
of terms varies. Table (7) shows this variation. The conclusion is therefore that £ = 2 is the correct
degree of nonlinearity. Finally Table (8) shows the behaviour of the poles of the linear part. Clearly
after 8 terms the poles are placed at a completely different location which might explain why the
bifurcation diagram of Figure (6-b) is so contrasting.

O

4 A glance:&t overparametrization of MIMO nonlinear systems

The objective of this section is to show briefly that overparametrization as defined in previous
sections also occurs in MIMO discrete nonlinear models.
Instead of formally introducing the cluster ideas for multivariable systems. the following simple

model is provided in order to illustrate how to define the clusters for such systems.

(k) = —0.37862x10% y (k= 1)+ 0.40749x 10" ya(k — 1) + 0.4786 % 10* yy (k - 2)
—0.27366% 1073 yy (k — D)y (k = 1)ya(k — 1) + 0.19833 xlO*“yn(A— )
+0.10322x 1073 1 (k = 2) w1 ( A—Bg (k= 2)+0.20222x10™% ya Dyalk = 1ya(k = 2)
+0.53665x 1072 yy (k — 1)ya(k = 2)ya(k = 2) — 0.40865 % 10~ *UI(A_M,IA_l)gq(A_ )
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[ ny | Lyapunov Exponents

10 | 0.3525 | -0.8868 | -1.618
9 | 0.3647 | -0.5777 | -1.495
8 | 0.3866 | -0.8512 | -1.583
7 |0.3404 | -1.606 | -2.63
6 3561 | -1.884 | -3.207
5 |0.3276 | -1.854 | -3.161
4] 0314 | 183 [-3354

Table 6: Lvapunov Exponents calculated by iterating models estimated from noise contaminated

data of the Hénon map (equation (20)). All models have n, = 3. { = 3.

ng { Fixed Points

10 [ 0.6262 [ -1.166 | 1.22
9 | 0.6301 | -1.182 | 0.895
(8 | 06354 -1.309 | 3.789
7 06332 -1.23 | -76.37
6 | 0.6293 | -1.191 | -20.09
5 | 0.6301 | -1.185 | -20.79
| 4 | 06271 -1.166 | -57.96 |

Table 7: Fixed Points for models estimated from noise contaminated data of the Hénon map
(equation (20)). All models haven, =3. (=3

+0.17269 %1073 gy (k — Ljya (k= Dya(k — 2) (27)

p(k) = +0. :b366x10“yw
—0. 14696><10f un

(k= 1)+ 0.4639x 10+ yo (k — 2)

(k= 1)yi(k=1)ya(k = 1) = 0.60014x 1072 y; (k = 2)y; (k = 2)y2(k — 2)
—0.11867% 10" 2 g (k — 1)ya(k — 1)ya(k — 1) + 0.68294x 107 % yy (k — 1)us (k — 2)ya(k — 1)
—0.1081x 103 gy (k — 1) + 0.1081x 1073y, (k — 2)

40.14137x 10"y (k = Dys (b — 1) ya(k = 2)

—0.9748 x 1072 g3 (k — 2)ya(k — 2)ya(k - 2) (28)

where y; and y, are the outputs of the system. The cluster terms for model {27). which generates

the output y;. are defined as follows:

1
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Poles j

10 | -0.8377 | 0.2453-0.1922i | 0.2453+0.1922; |
9 | -0.7351 | 0.3676-0.2903i | 0.3676+0.2903i |
8 | -0.7001 | "0.35-0.1416i | 0.354+0.1416i

7 0 0.5715 -0.5715

6 0 | 0.5704 -0.5704

5 0 | 03679 -0.5679

4 0 | 03432 | -0.5432

Table 8: Poles of the linear transfer function of models estimated from noise contaminated data of

the Hénon map (equation (20)). All models have n, =3, { =3

9, = mk—l).ylik—‘z‘;\).
Qy, = (ylk- l);@)g{k—?)).
Quay, = yl(k"1)91“‘—1)’;«'2(”\‘—1)-y:(k—?)y1(k~2)yg(k—2)y;{k—l)yl(k—l}yz(k—?})
Qp = y;:(k—l)y:{k—l)yg(k—Q)).
Dz = yl(;*'—l)yc(}\—g)yi(k—ﬂ).yﬂkI)yg(k—l)yg(k_l)) !
- \

(29)

The cluster coeflicients can be obtained by summing the coefficients of terms within the cluster

defined in equation (29). The cluster terms and cluster coefficients for model (28) are defined

_likewise. It is interesting to note that if the maximum lag of both model (27) and model (28) were
Ny = ny, = ny, = 1, each term would represent a cluster.

Although the qiuster ideas can easily be extended to multivariable systems, there is a lack of
simple methods which relate cluster and fixed point. For this reason no attempt will be made to
discuss how the cluster affects the presence of spurious fixed points.

Calculating the fixed points for SISO models has been shown to be a relatively easy task.
Unfortunately MIMO models do not present such nice properties. In this particular case, a set of
nonlinear equations must be solved to obtain the fixed points. Although numerical methods can
be used the convergence depends upon how good the initial guess is. Furthermore, finding all fixed
points may be troublesome. Grébner basis (Cox et al, 1992) however constitute an alternative
without the setback of numerical methods. Brieflv, Grébner basis transform the initial set of
nonlinear equations into a new set where tyvpically one of the nonlinear equations is a function
of a single variable and can therefore easily be solved using the same approach applied for SISO

models. This explanation is rather simplistic. but nevertheless it is enough to understand the
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results presented in this section. For a thorough explanation of Grobner basis refer to the excellent
book by Cox et al. (1992). Although Grébner basis can provide an analvtical solution in many

cases, the requirement of computer memory can be very demanding even for simple models.

Ezample 4.1

Consider the set of equations governing the dynamics of Lorenz’s equations (Lorenz. 1963):

F o= ="y — 1)
Y pr—y—zs (30)
3 = ry — 3z

where 7. p and .J are constants. Setting I. y and z equal zero, the fixed points can be calculated
bv solving a system of nonlinear equations. Fortunately this system can easily be solved by just

computing the Grobner basis which are:

(31)

o O o o
=g
ty
t
=
\
=]
Ny

Note that tlie last equation is a function of just one variable, i. e., f(z). The fixed points are

then:

th)

0 0 0
= - 7= = I= R 32
{pwl {iv3(p—1) {;vi(p—l) 132)

Setting 7 = 10,p = 28 and 3 = 8/3. the fixed points become:

[0 0 0
= —_r - = &= 33
{ 27 Y { +61/2 { 612 (33)

Equation (30) is now used to generate data for the identification. From the resultant data

sampled at T, = 0.01. 6001 points were used to identify the model




z(k) = +0.91802 x 10+0:(L—-1) 0.95132 x 10~'y(k — 1)

—0.46439 x 10=3z(k — 1)=(k — 1)

—0.26686 x 4y(k— 1)z(k —1)
y(k) = +0.10041 x 10*1y(k —1) — 0.82126 x 10~3y(k — 1)z(k — 1) (34)

—0.93900 x 10~2z(k — 1)z(k — 1) +02683¢ x 100z (k — 1) '
(k) = +0.97605 x 10*0:{L~1) 0.84948 x 10~ 2z(k — 1)y(k — 1)

+0.10934 x 0 y(kml)y(kwl]

—0.89652 x 10~%z(k —1)3(k— 1)

-

Figure 7: The Lorenz attractor (a) original. equation 30). (b) reconstructed from the model identi-
fied from the noise-free data. equation (34), (¢) reconstructed from the model identified

from the noisy data. equation (33).
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The model obtained can be iterated to obtain time series for the three components z, y and =.
Figure (7) shows the comparison between the original attractor and the reconstructed one. Clearly
the identified model reproduces the chaotic behaviour very well.

From equation (34) and by using the Grobner basis all the fixed points of the discrete model were
found. Table (9) shows that the fixed points are in good agreement with the system fixed points,
but the model has four spurious fixed points which indicates fized-point overparametrization. For
MIMO models such overparametrization cannot be avoided so easily as for SISO models.

‘Considering a more realistic case. white noise was added to the data. The resultant data had a

signal noise ratio of &~ 37 dB and were used to identify the model

z(k) = +0.90934 x 10M%2(k - 1) +0.10310 x 10%°y(k - 1)
—0.19078 x 1072z (k- 1)z(k = 1) = 0.31794 x 107%y(k — 1)z(k — 1)
+ 00 e (k= 1)O¢e,e. + (k)

y(k) = 40.10121 x 107 y(k - 1) — 0.99824 x 107%y(k — 1)2(k - 1)
—0.89927 % 107 2z(k — 1)=(k — 1) + 0.25357 % 10Mx(k - 1)
40T e (k=10 + & (K)

z(k) = -+0.97139 x 10%%(k - 1) +0.11904 x 107 z(k - D)y(k - 1)
+0.18035 x 107%z(k — 1)z(k— 1) — 0.30014 x 1072z (k- 1)z(k—1)
+ 07 e (k= 1)Og e, +E: (k) (35)

Lorenz equations (30) Model (34) 1
(0,0.0) (0,0.0)

| (8.4853,8.4833,27) (8.5647.8.5601.26.6802)

1 (—8.4853,—8.4853,27) (-8.5647,-8.5601,26.6802)
* (-319.7713,3667.7845,-7411.0984)
* (319.7713,-3667.7845,-7411.0984)
¥ (0.1263,0.0132,-267.1929)
¥ (-0.1263.-0.0132.-267.1929)

Table 9: Comparison between the original fixed points and the fixed points of model (34). Noise-

free data of Lorenz equations (30) were used for the identification.

The model of equation (33) also exhibits dvnamical invariants close to the original (See Figure
(7) for the attractor and Table (10) for the comparison between the original fixed points and the

fixed points of model (35). The spurious values were not calculated since they are similar to the
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noise-free case. However it is worth stressing that the models identified from noisy data tend to
have the spurious fixed points closer to the real ones which agrees with the examples shown for

monovariable systems.

1 Lorenz equations (30) Model (33) I

|
1
(0.0.0) | (0,0.0)
|
|

(8.4853,8.4853.27) (8.3679.8.4638.26.5759)
(—5.4853,-R.4853.2T) | (8.3679.-8.4638.26.5759)

Table 10: Comparison between the original fixed points and the fixed points of model (35). Noise

contaminated data of Lorenz equations (30) were used for the identification.

Finally. even though the relation between clusters and fixed points has not been established
for MIMO models. the significance of the specific cluster Q,. that is, the constant term, can be
determined directly from the data. The procedure of Glover and Mees described in section (2.3.1)
can be used for this purpose. For the Lorenz data the results showed that a constant term (cluster
Q,) is not necessary and can be eliminated from the model. The same conclusion can be drawn by

noticing the symmetry inherent in the fixed points. An introduction of the cluster Q, would break

this symmetry. o

5 Conclusions

This paper has introduced two new types of overparametrization of nonlinear discrete systems.

Fixed point and dimension overparametrization were defined according to the spurious dyvnamics

_introduced into the model. It has been shown how overparametrization of nonlinear models affects

the number and logation of the respective fixed points and how it affects the number of Lyapunov
exponents. Furthermore whenever there are spurious term clusters in the model, the fixed points
of the model will probably be misplaced. Similar results have also been observed when only terms
from correct clusters are included in the model but the number of terms is excessive especially
when the model is dimension overparametrized.

A new procedure referred to as the fixed-point approach for improving structure detection has
been introduced to detect and avoid overparametrization. The fixed-point approach uses all the
information from cluster cancellation and location of the fixed points. The approach often indicates
the degree of nonlinearity £ if the location and values of the fixed points can be extracted from the
data. Although the fixed-point approach is based upon the cluster ideas it has been shown that
this approach can be used in the structure selection of discrete nonlinear svstems identified from
both sampled continuous systems and from a “pure” discrete svstems. Numerous examples were

given to illustrate the various types of overparametrization and the new procedures.
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Finally the concept of fixed-point overparametrization has been extended to multivariable sys-
tems. Although no clear connection between the cluster ideas and fixed points has been established

for these models it has been demonstrated that it is still possible to detect some spurious clusters.
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