
This is a repository copy of Nonlinear dynamic response and modeling of a bi-stable 
composite plate for applications to adaptive structures.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/81017/

Version: Submitted Version

Article:

Arrieta, A.F., Neild, S.A. and Wagg, D.J. (Submitted: 2009) Nonlinear dynamic response 
and modeling of a bi-stable composite plate for applications to adaptive structures. 
Nonlinear Dynamics, 58 (1-2). 259 - 272. ISSN 0924-090X 

https://doi.org/10.1007/s11071-009-9476-1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Noname manuscript No.

(will be inserted by the editor)

Nonlinear dynamic response and modelling of a bi-stable

composite plate for applications to adaptive structures

A. F. Arrieta · S. A. Neild · D. J. Wagg

Received: date / Accepted: date

Abstract This paper discusses the formulation and validation of a low order model to

capture the dynamics of a bi-stable composite plate, focusing on the dynamics around

its stable states. More specifically, the model aims to capture the complex nonlinear

subharmonic behaviour observed in the dynamic response of the plate. A system iden-

tification approach is used to derive simplified equations of motion for the system.

Experimental frequency response diagrams are obtained to characterize the observed

dynamics in the identification process. Simulations using the identified model are pre-

sented showing excellent agreement with the experimentally observed behaviour. A

theoretical validation of the model is carried out studying the stability of the modes

where subharmonic response was observed. Stability boundaries were computed using

averaging techniques showing good agreement with experimental results.

Keywords Bi-stable composites · Nonlinear vibration · Subharmonic resonance ·

Experimental identification

1 Introduction

The ever growing need for better performing systems has resulted in the integration

of various disciplines such as dynamics, control and material science to accomplish

superior solutions for engineering problems. This integrated design philosophy has re-

sulted in the research field of adaptive structures [4]. Composite materials have played

an important roll in the progress of adaptive structure technologies. In aerospace en-

gineering, structures made from composite laminates are increasingly important in a

wide variety of applications, including morphing adaptive structures.

One promising advance is the development of curved composite laminate plates

which have multiple stable shapes resulting from asymmetric residual thermal stresses

A. F. Arrieta
Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, U.K.
BS8 1TR
Tel.: +44(0)1173317601
E-mail: andres.arrietadiaz@bristol.ac.uk



2

induced during the curing process [5]. The property of multi-stability has led to these

materials being considered for use in a range of adaptive structures, particularly for

morphing aerospace structures [24]. Recent research suggests that by designing the

induced thermal stresses the production of a wide range of desired stable shapes is be-

coming feasible [23] and aerospace applications using this design morphing capabilities

have been introduced [16]. The change between stable states for the bi-stable plate

is achieved by a snap-through mechanism which is strongly nonlinear in nature [26].

Most of the studies of bi-stable composite laminates for morphing applications have

focused on modelling the shape after the manufacturing process and their static char-

acteristics [6,12]. More specifically, these studies have focused on the identification of

the stiffness characteristics [10,17] and snap-through loading [7,22]. However, the op-

erating conditions for aerospace morphing applications will inevitably lead the plate

structures to be exposed to high levels of dynamic excitation in an aeroelastic envi-

ronment. In particular, undesired vibration could induce early failure of the structures

generating the need for vibration suppression mechanisms, for example the control

system presented in [21].

The successful implementation of such control strategies relies on accurate mod-

els describing the dynamics of the structures. However, vibration suppression control

has not been attempted on multi-stable composite laminates to the knowledge of the

authors. Furthermore, very little (if any) work has been carried out to examine the dy-

namics of bi-stable composite plates and no dynamic models have been presented. The

object of this paper is to derive a simple low order model to capture the key dynamic

features of a of bi-stable composite laminate plate. In particular, we focus on the study

of the dynamic properties around the stable-states of a square bi-stable carbon-fiber

epoxy [04

O − 904

O ]T plate. In the future, this model will be used along with adaptive

control strategies to implement composite laminate based morphing applications. This

study complements the paper on snap-through dynamics presented by [1].

A novel system identification approach based on experimental frequency response

diagrams is employed to capture the main dynamic characteristics of the bi-stable

plate, such as primary resonance and damping coefficients. Based on previous studies

on shallow shells [20] the identification process was extended to include secondary

subharmonic resonance observed in nonlinear vibration of flexible flat composite plates

and curved beams [8]. Moreover, large responses due to subharmonic vibrations can

lead to catastrophic failure of aerospace structures even if the excitation is away from

the natural frequencies of the system as reported in [14,29], and therefore must be

included in a complete dynamic model.

The result of the experimental identification process is a set of nonlinear coupled

second-order differential-equations capable of describing the main dynamic features for

the bi-stable composite plate. Simulations based on the identified set of equations along

with a study of the subharmonic resonance are presented to validate the model.

In Section 2 the experimentally measured frequency response diagrams are pre-

sented and the system identification process used to obtain the equations of motion

for the bi-stable plate is described. Section 3 presents simulated frequency response

diagrams and compares them to the experimental results. In Section 4 a subharmonic

resonance stability boundary analysis for the identified model is conducted and com-

pared to the measured values. Finally, in section 5 conclusion are drawn and future

work discussed.
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2 Low Order Modeling: a system identification approach

A low order model which captures the key dynamic behaviour of a bi-stable composite

plate is determined based on an experimental system identification approach for low

order systems [13,15]. The two stable states of the bi-stable plate are shown in figure

1. This identification process consisted in obtaining experimental frequency response

diagrams for the dynamic response to sinusoidal excitations in order to characterize

the behaviour a number of points in the plate. This process was performed for both

stable states, which exhibited almost symmetrical response characteristics. Therefore,

the whole process will be developed using the set of experiments obtained for one of the

stable states. The main aim of the model is to capture the out of plane displacement

for the low frequency response of the plate.

(a) Stable state 1 (b) Stable state 2

Fig. 1 Stable states of the Bi-stable plate.

2.1 Experimental Assembly and Measurement Procedure

Assembly A carbon-fibre epoxy [04−904]T 300x300 [mm] square bi-stable laminate was

used as the experimental specimen. The laminate tested was attached to a Ling shaker

in order to induce vibration to the system. A differential laser vibrometer measured

the relative displacement between the centre and a given point on the laminate. The

experimental arrangement was mounted on a steel table of large mass in order to ensure

no interaction between the plate and its surroundings as seen in figure 2.

Measurement Procedure The plate was characterized by measuring experimental fre-

quency response for 2 points on the coordinate directions of a local frame as shown

schematically in figure 3. Point Px characterizes the response of the curved direction,

which coincides with x coordinate in the chosen reference frame. The point Py captures

the response of the flat direction of the plate, coinciding with the y coordinate in the

reference frame. Measurements are made relative to the origin, point o, in the plate.
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Fig. 2 Experimental Assembly. Ling shaker V405, vibrometer OFV-552

Fig. 3 Measured points in the laminate. Point Px describes the out-of-plane vibration in
curved direction , coinciding with the x-coordinate. Point Py describes the out-of-plane vibra-
tion in the flat direction, coinciding with the y-coordinate.

The frequency response diagrams for the system were carried out using a stroboscopic

sampling of the time series for the measured displacement data. By exciting the system

with a sinusoidal signal to induce vibration, peak-to-peak displacement measurements

were sampled from the time responses for several forcing periods, as shown in figure

4(a). The stroboscopic sampling frequencies during the experiment were set to the

forcing frequency. For every sampling frequency the stroboscopic sampling process

was repeated over ten consecutive steady-state forcing periods. A single point in a

frequency response diagram represents the sampled amplitude value over one forcing

period. For a linear system the sampled amplitude for a given forcing frequency over

consecutive forcing periods remains the same. In contrast, a nonlinear system can

have a response with multiple measured amplitudes for a given forcing frequency over

consecutive forcing periods as seen in figure 4(b).
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Fig. 4 Stroboscopic sampling procedure to obtain peak-to-peak values for a given forcing
period. For a) a linear response and b) a nonlinear response.

2.2 System Identification

The system identification process focused on identifying the dominant modes of the

plate, their damping coefficients and the existence of important nonlinear oscillations

in the response. Initially, we obtained a low amplitude experimental frequency response

function (FRF) for the frequency range of interest to identify the relevant modes for

both direction of the plate assuming a linear behaviour following standard modal test-

ing procedures [9]. The FRF obtained for the curved direction is presented in figure

5. Two dominant modes of vibration can be seen, mode X1 at 17.6 Hz and mode X2

at 45.4 Hz. Damping coefficients ζx1
and ζx2

, are chosen based on the peaks for the

response for each mode.

In order to identify nonlinear oscillations in the parameter range of study exper-

imental frequency response diagrams were obtained for a range of forcing amplitudes

and frequencies of [0.5,5] N and [13,43] Hz respectively. A linear feedback proportional

controller was implemented to ensure the desired forcing amplitude over the required

range of frequencies. This eliminates any dynamic coupling effects which could be in-

troduced by the Ling Shaker.

The frequency response diagram for point Px describing the response of the curved

(x) direction of the plate for an input force amplitude of 5 N is shown in figure 6.

The response resembles the results obtained for the linear FRF except for the region

around 35 Hz. This range coincides with twice the natural frequency for mode X1. In

more detail the nonlinear displacement response for point Px at 34.2 Hz shown in figure

7(a). A non sinusoidal response to the harmonic excitation of the plate is observed. The

measured power spectrum of the response, presented in figure 7(b), shows that most

of the energy transmitted by the external forcing at 34.2 Hz is transferred to a lower

frequency at around 17.6 Hz. This coincides with the measured frequency of mode

X1. The features observed during the identification process suggest that the nonlinear

behaviour is due to a 1/2 subharmonic response of mode X1 [18].

The frequency response diagram for point Py describing the flat (y) direction of the

plate can be seen in figure 8. In this case the dynamics are dominated by a single mode,

mode Y1 at 19.6 Hz. As with mode X1, ζy1
is chosen based on the peak for the response

of mode Y1. As for the curved direction of the plate, a nonlinear response is found
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Fig. 5 Experimental receptance (Displacement/Force) FRF for the curved (x) direction, point
Px. Forcing amplitude Fo = 1.0 N , frequency range Ω=[13, 49]
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Fig. 6 Experimental frequency response for the curved (x) direction, point Px. Fo=5.0 N ,
frequency range Ω=[13, 43]

around the range of twice the frequency of mode Y1. An example displacement time

series, figure 9(a), displays a harmonic response, however the power spectrum graph

(figure 9(b)) shows, once again, that most of the energy from the forcing is transferred

from the higher forcing frequency (at 39.2 in this case) to the lower frequency at
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Fig. 7 Experimentally recorded dynamic response for the curved (x) direction, point Px.
Forcing amplitude Fo=5 N , forcing frequency Ω=34.2 Hz. (a) displacement time response.
(b) displacement power spectrum.

around 19 Hz, coinciding with the frequency of mode Y1. Once more, the experimentally

observed characteristics agree with that of a 1/2 subharmonic behaviour of mode Y1.
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Fig. 8 Experimental frequency response diagram for the flat (y) direction, point Py. Measured
using stroboscopic sampling for a forcing amplitude of Fo = 5.0 N , frequency range Ω=[13, 43]

For both the flat and curved direction a 1/2 subharmonic resonance can be ob-

served. This suggests that the nonlinearity generating the subharmonic behaviour is

of the same kind in both cases. It is well documented in theory that quadratic type

nonlinearities generate 1/2 subharmonic behaviours [2,3,19]. Therefore, for our equa-

tions of motion we choose this type of nonlinearity. Although other sub- and super-
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Fig. 9 Experimentally recorded dynamic response for the flat (y) direction, point Py of the
plate. Force amplitude Fo=5 N , forcing frequency Ω=39.2 Hz. (a) displacement time response.
(b) displacement power spectrum.

harmonics were searched for both at lower and higher frequencies, no others could be

found for the chosen levels of forcing and the current plate configuration. The equations

of motion for each coordinate direction of the plate are discussed next.

2.3 Equations of Motion

For the curved direction of the plate two modes of vibration were observed in the

frequency range of interest. Each mode was modelled with an ordinary differential

equation. A quadratic nonlinearity for the restoring force and coupling between the

modes was included to capture the observed subharmonic behaviour. The following is

the system of equations of motion adopted

ẍ1 + 2ζx1
ωx1

ẋ1 + ω
2

x1
x1 + α1x

2

1 + α2x1x2 =
fx1

m
Fo sin Ωt, (1)

ẍ2 + 2ζx2
ωx2

ẋ2 + ω
2

x2
x2 =

fx2

m
Fo sin Ωt, (2)

where x1 is the out-of-plane displacement for mode X1 with natural frequency ωx1
=

17.6 Hz, x2 is the out-of-plane displacement mode X2 with natural frequency ωx2
=

45.4 Hz, Fo is the driving force amplitude, Ω is the forcing frequency, fx1
and fx2

are

the modal participation factor for modes X1 and X2 respectively, m is the mass of

the plate, α1 is the nonlinear quadratic restoring force coefficient, α2 is the coupling

coefficient between modes X1 and X2. The total out-of-plane displacement of point Px

is given by

x = φx1
(x, y)Px

x1 + φx2
(x, y)Px

x2 + φy1
(x, y)Px

y1, (3)

where φx1
(x, y)Px

, φx2
(x, y)Px

and φy1
(x, y)Px

are the mode shapes associated with

modes X1, X2 and Y1 evaluated at point Px.

Note that a single mode is sufficient to capture the dynamic behaviour of the flat

direction. However, the subharmonic response is produced due to the coupling between
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mode Y1 and mode X2, this nonlinear effect is included in our model as a quadratic

coupling term. The modal equation identified for the flat direction (y) is

ÿ1 + 2ζy1
ωy1

ẏ1 + ω
2

y1
y1 + β1y1

2 + β2y1x2 =
fy1

m
Fo sin Ωt, (4)

where y1 is the out-of-plane displacement mode Y1 with natural frequency ωy1
= 19.6

Hz, Fo is the driving force amplitude, Ω is the forcing frequency, fy1
is modal partici-

pation factor for mode Y1, β1 is the nonlinear quadratic restoring force coefficient, β2

is the coupling coefficient between modes Y1 and X2. The total response in the flat

direction is given by

y = φy1
(x, y)Py

y1 + φx1
(x, y)Py

x1 + φx2
(x, y)Py

x2, (5)

where φx1
(x, y)Py

, φx2
(x, y)Py

and φy1
(x, y)Py

are the mode shapes associated with

modes X1, X2 and Y1 evaluated at point Py.

The coefficients proposed for the identified equations of motion were fitted using the

frequency response diagrams obtained experimentally. First, the natural frequencies

for each mode were chosen to coincide with the experimental data. Then, damping

coefficients for each mode were calculated assuming a linear behaviour around the

peak response for each of the identified modes. The nonlinear coefficients, αi and

βi, were chosen to match the observed characteristics of the subharmonic resonance,

such as triggering force amplitude and frequency width of the subharmonic resonance.

The mode shape values, φij
(x, y)Pn

, were identified by inspecting the contribution to

the total response of the plate by each mode in the frequency response diagrams at

the measured points Px and Py. Finally, the coefficients fij
were fitted to have the

closest displacement amplitude agreement with respect to the experimental responses

measured. The identified coefficients are validated by obtaining simulation results for

the dynamic response of the plate presented in the following section.

3 Simulation Results

The identified set of ordinary coupled nonlinear differential equations, equations (1),

(2) and (4), were solved simultaneously using a Runge-Kutta type solver. Simulated

frequency response diagrams are obtained using the stroboscopic sampling procedure

applied to the displacement time series obtained from the numerical integration of the

system equations. The simulated frequency response diagram obtained for point Px for

a forcing amplitude of 5 N is shown in figure 10. It shows the two modes of vibration

at the measured frequencies, X1 at 17.6 Hz and X2 at 45.4 Hz. More importantly, the

simulated results show the important subharmonic resonance. A very good agreement

between the frequency range of the subharmonic response appearance is also achieved.

In addition, the amplitude of the subharmonic oscillation coincides with the experi-

mental results shown in section 2.2. The width of the peak of response obtained from

the simulated frequency response diagrams for modes X1 and X2 show good agreement

with the experimental results, validating the identified damping coefficients.

Figure 11 shows the simulated time series and power spectrum graphs calculated

for point Px. A non-harmonic response is observed that is very similar to the exper-

imentally obtained one previously shown in figure 7. The power spectrum shows a

response at the forcing frequency and at half the forcing frequency, which matches the

experimental results for mode X1.
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Fig. 10 Numerically simulated frequency response diagram for the curved (x) direction,
equations (1) and (2). Simulation parameters: ωx1

=17.45 Hz, ωx2
=45.4 Hz, Fo=5.0 N,

α1=320000, α2=640000, ζx1
=0.011, ζx2

=0.045, ζy1
=0.01, fx1

=0.022, fx2
=1.6, fy1

=0.014,
φx1

(x, y)
Px

=0.4, φx2
(x, y)

Px
=0.6, φy1

(x, y)
Py

=0.4, m=0.135 kg, Ω=[13,43]
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Fig. 11 Numerically simulated dynamic response for the curved (x) direction, equations 1
and 2. Forcing frequency Ω = 34.2 Hz. Simulation parameters: ωx1

=17.45 Hz, ωx2
=45.4 Hz,

Fo=5.0 N, α1= 300000, α2=640000, ζx1
=0.011, ζx2

=0.045, ζy1
=0.01, fx1

=0.022, fx2
=1.6,

fy1
=0.014, φx1

(x, y)
Px

=0.4, φx2
(x, y)

Px
=0.6, φy1

(x, y)
Py

=0.4, m=0.135 kg. Sinusoidal wave

response. a) displacement time response. b) displacement power spectrum.

The frequency response diagram for point Py is shown in figure 12. As before, the sim-

ulation captures the observed key dynamic features of the experimental response, such

as the natural frequencies and subharmonic response. The displacement time series

and power spectrum graphs for the simulated subharmonic response range of mode Y1,

as shown in figure 13, are in very good agreement with those obtained experimentally.
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Again a harmonic displacement time series is shown at half the forcing frequency as

can be deduced by inspecting the power spectrum of the displacement, figure 13(b).

The values of the modes shapes φx1
(x, y)Py

and φx2
(x, y)Py

are set to zero as there is

no response from these modes present in the experimental frequency response diagram

for the flat direction, see figure 8.
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Fig. 12 Numerically simulated frequency response diagram for flat (y) direction, equation
(4). Simulation parameters: ωy1

=19.6 Hz, ωx2
=45.4 Hz, Fo=5.0 N, β1=650000, β2=600000,

ζx2
=0.045, ζy1

=0.01, fx2
=1.6, fy1

=0.014, φy1
(x, y)

Py
=0.4, m = 0.135 kg, Ω=[11, 45].

4 Subharmonic Resonance Analysis

A theoretical study of the subharmonic resonance was conducted in order to further

validate the form of the nonlinearities included in the proposed equations of motion pre-

sented in section 2.3. In addition this study allows for fine-tuning of the nonlinear and

damping parameters, which are relatively difficult to fit accurately from experimental

frequency response diagrams. The study consists of a comparison between the theo-

retically calculated and experimental boundary marking the onset of a subharmonic

component within the response behaviour over the range of forcing amplitudes. We

refer to this boundary as the instability boundary of the semi-trivial solution, where a

semi-trivial solution contains a response at just the forcing frequency. Firstly equations

of motion (1),(2) and (4) are scaled and detuning is introduced such that the response

in the region around twice the natural frequencies of modes X1 and Y1 can be studied.

A first order averaging process is performed to derive first-order differential-equations

for the response. These equations are then analysed to study the local stability of

the selected modes in the presence of external harmonic excitation [11]. The resulting
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Fig. 13 Numerically simulated dynamic response for flat (y) direction. Forcing frequency Ω

= 39.2 Hz. Simulation parameters: ωy1
=19.6, ωx2

=45.4, Fo=5.0 N, β1=650000, β2=600000,
ζx2

=0.045, ζy1
=0.01, fx2

=1.6, fy1
=0.014, φy1

(x, y)
Py

=0.4, m=0.135 kg. a) displacement time

response. b) displacement power spectrum.

stability boundaries obtained are plotted in parameter space to show the regions of

stability and instability for each of the modes under consideration.

4.1 Scaling and Averaging

The equations of motion of the system are scaled so that the dynamics are dominated

by the undamped linear response. This is achieved by introducing the small parameter

ǫ and arranging the equations to take the following standard Lagrange form

z̈(t) + ω
2
z(t) = ǫF (z(t), ż(t), t). (6)

To study the subharmonic response for mode X1 the forcing frequency must be close

to twice the natural frequency, ωx1
. This requires the forcing frequency to be Ω =

2ωx1
(1 + ǫµ), where µ is the frequency detuning and ǫ is a small parameter.

Finally, we introduce the time transform

τ = (1 + ǫµ)t (7)

to equation (1) to obtain the scaled and th transformed equations of motion

x
′′

1 +ω
2

x1
x1 + ǫ[2ζx1

ωx1
x
′

1 +2µω
2

x1
x1 +α1x

2

1 +α2x1x2 −
fx1

m
Fo sin 2ωτ ] = O(ǫ2), (8)

where {}′ represents the derivative with respect to scaled time τ .

Using the transformation [28]

x(t) = xa cos(ωt) + xb sin(ωt), (9)

ẋ(t) = xaω sin(ωt) + xbω cos(ωt), (10)
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and the Lagrange standard form, equation (6), gives

ẋa = −
ǫ

ω
F (ẋ(t), x(t), t) sin(ωt),

ẋb =
ǫ

ω
F (ẋ(t), x(t), t) cos(ωt). (11)

We can obtain approximate solutions for equation (8) by a standard averaging

procudure [27]. As mode X1 is lightly damped its response away from its natural

frequency is very close to zero. Therefore, zero response is assumed for the approximate

solutions in the studied range for the forcing frequency, that is for Ω ≈ 2ωx1
. Using the

standard form (11) for the scaled equation (8) and applying averaging over the scaled

time period 2π
ωx1

in τ (which corresponds to a time period of two cycles of frequency

Ω in real-time t) we find the of averaged equations for mode X1

x1
′

aavg
= −

ǫ

ωx1

[ζx1
ω

2

x1
x1aavg

−
α2

4
x1aavg

x2bavg
+

α2

4
x1bavg

x2aavg
− µω

2

x1
x1bavg

],

x1
′

bavg
=

ǫ

ωx1

[−ζx1
ω

2

x1
x1bavg

−
α2

4
x1bavg

x2bavg
−

α2

4
x1aavg

x2aavg
− µω

2

x1
x1aavg

],

(12)

where the subscript a and b refer to cosine and sine component of the Lagrange form

(11) respectively and again {}′ represents the derivative with respect to scaled time τ .

The subscript avg indicates that the terms have been averaged over a cycle of ωx1
in

the scaled τ for mode X1.

Similar averaged equations can be obtained for the Y1 mode, where the frequency

detuning Ω = 2wy1
(1 + ǫν) is applied, with the corresponding time transform

T = (1 + ǫν)t, (13)

giving

y1
∗

aavg
= −

ǫ

ωy1

[ζy1
ω

2

y1
y1aavg

−
β2

4
y1aavg

y2bavg
+

β2

4
y1bavg

y2aavg
− νω

2

y1
y1bavg

],

y1
∗

bavg
=

ǫ

ωy1

[−ζy1
ω

2

y1
y1bavg

−
β2

4
y1bavg

y2bavg
−

β2

4
y1aavg

y2aavg
− νω

2

y1
y1aavg

],

(14)

where {}∗ represents the derivative with respect to scaled time T . Note that the aver-

aging is now applied over the scaled time period 2π
ωy1

in T , equivalent to two cycles of

Ω in real-time t.

4.2 Stability analysis

The boundary of the semi-trivial solution, this is x1avg=0 and y1avg=0 where there

is no subharmonic response, in parameter space is obtained by studying the localized

stability of each of the modes. For mode X1 we can write the averaged system (12) in

matrix form as

(

x1
′

aavg

x1
′

bavg

)

= ǫ

[

α2

4ωx1

x2bavg
− ζx1

ωx1
µωx1

− α2

4ωx1

x2aavg

−µωx1
− α2

4ωx1

x2aavg
− α2

4ωx1

x2bavg
− ζx1

ωx1

]

(

x1aavg

x1bavg

)

. (15)
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From system (15) the localized stability about x1avg=0 can be found by studying the

matrix eigenvalues, which are given by

λ
2 + 2ζx1

ωx1
λ + (ζx1

ωx1
)2 + (µωx1

)2 −
(α2x2avg

)2

(4ωx1
)2

= 0, (16)

where x2

2avg
= x2

2
aavg

+x2
2

bavg
. Given that ζx1

ω2
x1

> 0, the boundary of local instability

of the zero amplitude response occurs when λ = 0. This corresponds to the region in

which a non-zero response at frequency ωx1
, the subharmonic frequency, will occur.

For λ = 0 the characteristic equation (16) simplifies to

x2avg
≥

4ω2
x1

α2

√

ζ2
x1

+ µ2. (17)

By solving the linear mode X2 , equation (2), at the forcing frequency Ω = 2ωx1
(1+ǫµ)

we find the force that triggers the appearance of the subharmonic response for mode

X1

Fo ≥
4ω2

x1

α2

fx2

m

√

ζ2
x1

+ µ2

√

(ω2
x2

− Ω2)2 + (2ζx2
ωx2

Ω)2. (18)

Applying the same stability analysis approach to mode Y1 averaged equations (14),

we find a subharmonic to be present for

x2avg
≥

4ω2
y1

β2

√

ζ2
y1

+ ν2. (19)

Also as with mode X1, the linear X2 modal response at which a subharmonic of mode

Y1 appears can be related to the forcing as

Fo ≥
4ω2

y1

β2

fx2

m

√

ζ2
y1

+ ν2

√

(ω2
x2

− Ω2)2 + (2ζx2
ωx2

Ω)2. (20)

4.3 Subharmonic Stability Boundaries

Equations 18 and 20 give the theoretical force amplitude required to trigger subhar-

monic oscillations of the X1 and Y1 modes respectively. The experimental subharmonic

response range for a given forcing amplitude can be directly measured from experi-

mental frequency response diagrams for various levels of forcing. The lower and higher

frequency limits for the subharmonic response are obtained and plotted for each ex-

perimental forcing amplitude for both modes X1 and Y1. These results are plotted as

crosses and circles for modes X1 and Y1 respectively in figure 14. For the case of the

theoretical boundaries, after minor fine-tuning of the damping and nonlinear param-

eters identified using the frequency response plots, there is good agreement with the

experimental results. These theoretical boundaries are shown in figure 14 as solid and

dashed lines for modes X1 and Y1 respectively. In the case of the higher frequency

limits of the boundaries it can be seen that at higher forcing amplitudes there is a

deterioration in the agreement between the theoretical and experimental behaviour.

One possible explanation for this is that the system exhibits hysteretic behaviour, as

has been observed in other experimental studies of nonlinear systems such as that re-

ported in [11]. To investigate this the experiments were repeated, however this time for
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Fig. 14 Stability Boundaries: comparison between the theoretical prediction and the experi-
mentally measured range for the subharmonic resonance of modes X1 and Y1. Parameters used
to solve equations (18) and (20): ωx1

=17.45, ωx2
= 45, ωy1

=19.6, α2=680000, β2=680000,
ζx1

=0.011, ζx2
=0.047, ζy1

=0.008, fx2
=1.7, m=0.135 kg

each level of forcing the frequency was stepped down incrementally from a frequency

higher than the stability boundary (rather than stepped up from a frequency below

the boundary). In addition tests were performed in which the frequency was kept con-

stant and the forcing was stepped up incrementally. The experimental results showed

that the boundary of instability was the same regardless of the direction in which it

was approached in the amplitude-frequency space This result indicates that the system

does not exhibit hysteresis around these boundaries.

Figures 15(a) and 15(b) show the simulated frequency response diagrams obtained

using the fine-tuned parameters used for the theoretical boundaries, which still show

good agreement with the experimental results, shown in figures 6 and 8. This indicates

that the slight parameter changes used to obtain the fine-tuned fit in figure 14 are

consistent with the original experimental data, proving the robustness of the identified

model.

5 Conclusions

A simple low order model to capture the key dynamic features for a bi-stable com-

posite plate was successfully identified based on a system identification approach. The

plate response was captured using a modal approach which rendered simple nonlinear

differential equations for each of the identified modes. An excellent qualitative match

between the experimental and the simulated frequency response diagrams was obtained.

The very important subharmonic behaviour was captured with the nonlinearities in-

cluded in the presented model as well as the natural frequencies for the modes on the

studied range of frequency. Moreover, a good quantitative match for the amplitude of
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Fig. 15 a) Numerically simulated frequency response diagram for the curved (x) di-
rection, equations (1) and (2). Simulation parameters: ωx1

=17.45 Hz, ωx2
=45 Hz,

Fo=5.0 N, α1=300000, α2=680000, ζx1
=0.011, ζx2

=0.047, ζy1
=0.008, fx1

=0.022, fx2
=1.7,

fy1
=0.014,φx1

(x, y)
Px

=0.4, φx2
(x, y)

Px
=0.6, φy1

(x, y)
Py

=0.4, m=0.135 kg, Ω=[13, 43]. b)

Numerically simulated frequency response diagram for flat (y) direction, equation (4).
Simulation parameters: ωy1

=19.6, ωx2
=45, Fo=5.0 N, β1=680000, β2=680000, ζx2

=0.047,
ζy1

=0.008, fx1
=0.022, fx2

=1.7, fy1
=0.014, φy1

(x, y)
Py

=0.4, m=0.135 kg, Ω=[13, 43].

the response of both the linear and nonlinear response was achieve by including one

mode to describe the flat (y) direction dynamics, and two for the curved (x) direction of

the plate. Time series and power spectrum graphs for the experimental and simulated

results confirm the close match achieved seen in the frequency response diagrams.

Using the derived equations and applying averaging techniques the stability of

the subharmonic resonance for modes X1 and Y1 was studied obtaining very good

agreement. For both modes the force required to trigger the subharmonic oscillation as

well as the lower frequency boundaries were closely matched. The theoretical results for

the higher frequency boundary of the instability differ slightly from the experimental

data as the forcing amplitude increases, however this frequency mismatch is regarded as

small when compared to the capability of the model to capture the complex dynamics

of the bi-stable plate for a much larger range of frequencies and forcing amplitudes.

The identification method used to derive the equations of motion can be extended

to similar systems where the response can be measured and the nonlinear behaviour

compared to the established theory. The ability to capture complex dynamic behaviour

exhibited by bi-stable composites with simple mathematical models will enable us

to enhance their applicability in the design of morphing structures. In addition, low

order control strategies for vibration suppression and actuation can be more easily

implemented due to the simplicity of the dynamic models to be developed for such

structures. New developments will seek to couple the snap-through and the stable-

state dynamics studied in this paper to formulate a complete model for the global

response of the bi-stable plate.
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