
This is a repository copy of Nonlinear modal analysis using pattern recognition.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/80985/

Version: Published Version

Proceedings Paper:
Dervilis, N., Wagg, D.J., Green, P.L. et al. (1 more author) (2014) Nonlinear modal analysis
using pattern recognition. In: Proceedings of ISMA2014. ISMA2014, 15-17 Sep 2014, KU 
Leuven. , 3017 - 3027. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Nonlinear modal analysis using pattern recognition

N.Dervilis1, D.J.Wagg1, P.L.Green1, K.Worden1

1Dynamics Research Group, Department of Mechanical Engineering,

University of Sheffield, Mappin Street, Sheffield, S1 3JD, England.

e-mail: n.dervilis@sheffield.ac.uk

Abstract
The main objective of nonlinear modal analysis is to formulate a mathematical model of a nonlinear dynamical

structure based on observations of input/output data from the dynamical system. Most theories regarding

structural modal analysis are centred on the linear modal analysis which has proved to now to be the method of

choice for the analysis of linear dynamic structures. However, for the majority of other structures, where the

effect of nonlinearity becomes significant, then nonlinear modal analysis is a necessity. The objective of the

current paper is to demonstrate a machine learning approach to output-only nonlinear modal decomposition

using kernel independent component analysis and locally linear embedding analysis. The key element is to

demonstrate a pattern recognition approach which exploits the idea of independence of principal components

by learning the nonlinear manifold between the variables.

1 Introduction

The machine learning methods that are introduced in this paper aim to address the problem of validity

that surrounds the modal analysis of nonlinear structures. Modal analysis is an important tool in structural

dynamics as it is used to understand the dynamical characteristics of the structure. Many methods have been

proposed in recent years regarding nonlinear analysis, such as nonlinear normal modes or the method of

normal forms [1, 2, 3, 4, 5, 6, 7, 8, 9].

In this work a different approach is investigated through the usage of unsupervised pattern recognition

techniques such as kernel independent component analysis (KICA) and locally linear embedding manifold

learning (LLE). These methods serve two purposes, a reduction in the dimensionality by mapping the data

from high-dimensional spaces to lower-dimensional spaces and a revealing of the hidden features of the

data by learning the structure of the nonlinear manifold between the variables of interest. Of course this

dimensionality reduction is accompanied by loss of some information; therefore, the goal in dimensionality

reduction should be to preserve as much relevant information as possible.

The goal of these methods is one: to create uncorrelated variables but retaining the maximum possible

variance of the original observations. The effect of structural nonlinearity on linear modal analysis is critical.

Specifically, decoupling of the system into SDOF systems is lost and in turn superposition is lost. It is

of critical importance to mention that these clever and advanced unsupervised algorithms can work with

output-only data and can play a significant role in the model updating of nonlinear systems by giving crucial

insight into the dynamical behaviour of the system.

The layout of the paper is as follows. Section 2 covers the main features of linear modal analysis using linear

decoupling methods such as principal component analysis, while section 3 discusses an alternative approach

of independent component analysis (ICA). Section 4 gives an example of nonlinear modal analysis based

on the unsupervised learning techniques that are mentioned in sections 2 and 3. Section 5 discusses how the
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previous approaches break down for multi-degrees-of-freedom systems with high nonlinearity and a new

approach based on measured data such as locally linear embedding method is needed. The paper finishes with

some overall conclusion and future work.

2 Principal component analysis

Principal Component Analysis takes a multivariate data set and maps it onto a new set of variables called

“principal components”, which are linear combinations of the old variables. The first principal component

will account for the highest amount of the variance in the data set and the second principal component will

account for the second highest variance in the data set independent of the first, and so on. The importance

of the method arises from the fact that, in terms of mean-squared-error of reconstruction, it is the optimal

linear tool for compressing data of high dimension into data of lower dimension. The unknown parameters

of the transformation can be computed directly from the raw data set and, once all parameters are derived,

compression and decompression are small operations based on matrix algebra [10, 11, 12]. One has,

[X] = [K][Y ] (1)

Where [Y ] represents the original input data with size p × n, with p number of variables and n the number of

data sets, [X] is the scores matrix of reduced dimension q × n where q < p contains the tranformed varriables

and [K] is called the loading matrix. The columns of [K] are the eigenvectors corresponding to the largest

eigenvalues of the covariance matrix of [Y ]. The covariance matrix is equal to:

[S] = E
[

(

{Y } − {Ȳ }
) (

{Y } − {Ȳ }
)T

]

(2)

where E is the expectation operator and Ȳ is the mean value.

The original data reconstruction is performed by the inverse of equation (1):

[Ŷ ] = [K]T [X] (3)

The information loss of the mapping procedure is calculated in the reconstruction error matrix:

[E] = [Y ] − [Ŷ ] (4)

For further information on PCA, readers are referred to any text book on multivariate analysis (examples

being references [10, 11]).

3 Kernel independent component analysis

Independent component analysis (ICA) is a tool that recovers a latent random vector {x} = (x1, ..., xm)
from measurements of m unknown linear functions of that vector. The components of {x} are required to be

mutually independent. As a result an observation {y} = (y1, ..., ym) is modelled as [13, 14, 15]:

{y} = [A]{x} (5)

where [A] is an m × m matrix of parameters.

If [W ] = [A]−1 is the parameter matrix inverse then the estimate of [Ŵ ] can be calculated by giving an

estimate of the latent independent components such as:
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{x̂} = [W ]{y} (6)

It can be shown [13, 14, 15] that minimising the mutual information between the components of (6) is

essentially a contrast function minimisation.

Contrast functions are statistical functions that are capable of separating or extracting independent components

from a data mixture [15]. If a contrast function is derived by the F -correlation statistics, it can be defined as

the maximum correlation between the tested random variables f1 and fm [15] and can be written as:

pf = max
f1,fm∈f

corr(f1(x1), fm(xm)) = max
f1,fm∈f

cov(f1(x1), fm(xm))

(varf1(x1))
1

2 (varfm(xm))
1

2

(7)

for each i...m, of estimated source vectors such as {x} = (x1, ..., xm). This contrast function is equal to zero

only if the variables are independent.

Different methods have been introduced in the literature regarding ICA that make use of different nonlinear

contrast functions [13, 14, 15]. The nonlinear ICA method that is used in this study is kernel independent

component analysis (KICA) which makes use of the “kernel trick” which is an algorithm that uses a multiple

nonlinear functions but through an entire function space of a family of candidate nonlinearities. The “kernel

trick” is basically forcing the functions to work in a reproducing kernel Hilbert space.

Given the nature of the current paper a full description of the complicated algorithm is not possible but for

further information on ICA and Kernel ICA, readers are referred to [13, 14, 15].

Briefly the general outline of algorithm is as follows:

If one assumes [y] = ({y1}, ..., {ym}) of data vectors and the parameter matrix [W ] of equation (6), and set

{x} = [W ]{y} then one can derive a set of estimated source vectors such as [x] = ({x1}, ..., {xm}). The m

components of these vectors lead to a set of m centered kernel Gram matrices, [K1], ..., [Km].

Briefly, a Gram matrix can be generally defined as, Kij = K(xi, xj), which is positive semidefinite Kernel

matrix [15]. This kernel [K] matrix is accompanied by a mapping of a function Φ to an F -distribution such

as:

K(x, y) = 〈Φ(x),Φ(y)〉 (8)

This kernel can be then used to compute the inner product in the F -distribution space. This is often called the

kernel trick. These kernel matrices can then be used in order to define a contrast function [15]:

C(W ) = Îpf ([K1], ..., [Km]) (9)

where Îpf is a contrast function given by:

Îpf = −
1

2
log

(

1 − max
f1,fm∈f

corr(f1(x1), fm(xm))

)

(10)

This valid contrast function is derived by F -correlation statistics and is defined as the maximum correlation

between the tested random variables f1 and fm. [15].

It has very useful properties as it is nonnegative and equal to zero only if the variables are independent. The

kernel ICA algorithm involves minimising this function C(W ) with respect to the matrix [W ]. And this

is called the kernelised canonical correlation algorithm (KCCA) [15] (which is mainly used in this study).

Canonical correlation analysis (CCA) is a multivariate method similar in nature to PCA. The main difference
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is that while PCA works with a single random vector and maximises the variance of projections of the

observations, CCA works with a set of m random vectors by maximising the correlation between sets of

projections [15]. One needs to remember that PCA solves an eigenvector problem, CCA solves a generalized

eigenvector problem.

Another contrast function which can be defined is via the kernel generalised variance (KGV) algorithm which

suggests defining a corresponding quantity for kernelized canonical correlation analysis [15]. For further

information readers are referred to [15].

The basic concept that one has to remember is that ICA can remove correlations and higher order dependences

between the variables compared to PCA (which can only go up to second order statistics).

4 An example

The system of interest will be a nonlinear two-DOF lumped parameter system (see Fig.1). Data were simulated

using a fixed-step 4th-order Runge-Kutta algorithm and the excitation was chosen to be a Gaussian white

noise sequence with zero mean and unit variance and the associated displacements were extracted. The model

parameters adopted were: m = 0.1, c1 = 0.005, c2 = 0.01, k1 = 50, k2 = 100, knl = 104. The nonlinearity

that is assumed is cubic. It has to be noted that the damping is proportional, so the underlying linear system

uncouples.

The method that is used in order to calculate the power spectral densities (PSDs) which follow is the Welch

method based on time averaging over short, modified periodograms which could decolour the effect of

different random excitation inputs [16]. The signals are split into sections and the periodograms of each

section are averaged. Through the Welch method these data sections are overlapped and a window, such as

the Hanning window is applied in order to filter each section. The overlapping of the signal sections is usually

either 50% (as in this paper) or 75%.

Fig.2 shows the results of PSDs for the simulated physical variables. Both modes are present in the PSDs

for the transformed coordinates which shows that the system is clearly not uncoupled. For all the graphs the

vertical axe is the PSD of displacement and the frequency is in Hz.

As can be seen in Fig.3, PCA fails in decoupling the nonlinear system (standard linear modal analysis) but

kernel ICA, as seen in Fig.4, is successfully decoupling the nonlinear system into two SDOF systems due to

the removal of the higher order statistical dependence. Standard linear modal analysis is equivalent to PCA in

this case as the mass matrix is diagonal.

Figure 1: Nonlinear two-DOF lumped parameter system.
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Figure 2: PSDs for physical variables.
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Figure 3: PSDs for transformed variables: standard linear modal analysis (PCA).
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Figure 4: PSDs for transformed variables: Kernel ICA.

5 A three-degree-of-freedom system

In order to validate the results further, a more complicated system in terms of degrees of freedom and increased

cubic nonlinearity is discussed (see Fig.5). As can be seen in Figs.6-8, both PCA and kernel ICA lack in

efficiency and performance in decoupling the nonlinear modes of the system. This is the reason that a novel

approach to structural dynamics is introduced next in the form of the local linear embedding method. The

system of interest will be a nonlinear three-DOF lumped parameter system. Data were simulated using

a fixed-step 4th-order Runge-Kutta algorithm and the excitation was chosen to be a Gaussian white noise

sequence with zero mean and unit variance. The model parameters adopted were: m = 0.1, c1 = 0.01,

c2 = 0.02, c3 = 0.03, k1 = 50, k2 = 150, k3 = 300, knl = 105. The nonlinearity that is assumed is cubic.

Figure 5: Nonlinear three-DOF lumped parameter system.

5.1 Nonlinear manifold learning via locally linear embedding

As can be seen in the previous section the combination of stronger nonlinearity with multi-degree of freedom

systems makes the performance of both the PCA and ICA algorithm very weak. Neither of them can decouple

successfully the nonlinear modes. This is the reason that a quick and effective method of nonlinear manifold

learning such as locally linear embedding is introduced in nonlinear modal analysis here [17, 18].
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Figure 6: PSDs for physical variables.
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Figure 7: PSDs for transformed variables: standard linear modal analysis (PCA).
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Figure 8: PSDs for transformed variables: Kernel ICA.

Other very strong methods can be applied in such complex nonlinear manifolds such as nonlinear principal

component analysis via the usage of auto-associative neural networks [11, 19, 20]. The usage of such methods

is SHM can be seen in [21]. For the current study LLE is used as it is a novel introduction into nonlinear

modal analysis and a much simpler tool.

An extensive overview of the algorithm can be found in [17, 18]. Briefly and for the purposes of this paper a

short description is discussed.

The LLE method is based on simple geometric intuition. If the observations consist of N real-valued vectors

{xi} with dimensions D and they are sampled from a smooth underlying nonlinear manifold, then each data

point and its neighbours is expected to lie on or close to a locally formed patch of the manifold. This local

geometries can be characterised by finding linear coefficients that can reconstruct each data point with respect

to each set of neighbours.

If one establishes K nearest neighbours per data point then the reconstruction error is given by the cost

function:

error(W ) =
∑

i

∣

∣

∣

∣

∣

∣

{xi} −
∑

j

[Wij ]{xj}

∣

∣

∣

∣

∣

∣

2

(11)

where [Wij ] is the weight contribution of the jth data point to the ith reconstruction. In order to compute

these weights the cost function has to be minimised under the following constraints. The reconstruction errors

that are subject to the constrained weights should be invariant to rotations and rescaling. In turn, in order that

the LLE algorithm preserve this invariant manifold idea as a final step of the method, each measurement {xi}
should be mapped to lower dimensional vector {Yi} that minimises the cost function:

error(Y ) =
∑

i

∣

∣

∣

∣

∣

∣

{Yi} −
∑

j

[Wij ]{Yj}

∣

∣

∣

∣

∣

∣

2

(12)
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The main difference with the previous cost fuction is that here the weights are fixed but the {Yi} co-ordinates

are optimised.

In Fig.9 the LLE method is shown to the successfully decoupling the modes as it was able to unfold and learn

the underlying nonlinear manifold.
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Figure 9: PSDs for transformed variables: Local linear embedding.

6 Conclusion

The purpose of this paper is to highlight the key utility of some machine learning methods, not only for

dynamic analysis of structure but as well as a method of reduction for nonlinear mechanical systems. The

main benefit of the approach taken here is that complicated algebraic analysis is not necessary. Furthermore,

the physical equations of the system are not needed.

The biggest advantage of these methods is that one can built for several datasets the nonlinear subspace

manifold only once and it then can be used for future testing datasets. As a result, this machine learning

approach is suited to experimental investigation of nonlinear systems using only the measured output responses.

A further work in the form of a journal article is under preparation where other multi-degree of freedom

systems are investigated as well as experimental validation of the methods.

Acknowledgments

The support of the UK Engineering and Physical Sciences Research Council (EPSRC) through grant reference

number EP/J016942/1 and EP/K003836/2 is gratefully acknowledged.

NON-LINEARITIES: IDENTIFICATION AND MODELLING 3025



References

[1] G. Kerschen, J.-c. Golinval, A. F. Vakakis, L. A. Bergman, The method of proper orthogonal decomposi-

tion for dynamical characterization and order reduction of mechanical systems: an overview, Nonlinear

dynamics 41 (1-3) (2005) 147–169.

[2] A. Vakakis, Non-linear normal modes (NNMs) and their applications in vibration theory: an overview,

Mechanical systems and signal processing 11 (1) (1997) 3–22.

[3] K. Worden, G. R. Tomlinson, Nonlinearity in structural dynamics: detection, identification and mod-

elling, CRC Press, 2000.

[4] K. Worden, G. Tomlinson, Nonlinearity in experimental modal analysis, Philosophical Transactions of

the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359 (1778)

(2001) 113–130.

[5] K. Worden, P. Green, A Machine Learning Approach to Nonlinear Modal Analysis, in: Dynamics of

Civil Structures, Volume 4, Springer, 2014, pp. 521–528.

[6] R. M. Rosenberg, The normal modes of nonlinear n-degree-of-freedom systems, Journal of applied

Mechanics 29 (1) (1962) 7–14.

[7] S. W. Shaw, C. Pierre, Normal modes for non-linear vibratory systems, Journal of sound and vibration

164 (1) (1993) 85–124.

[8] S. A. Neild, D. J. Wagg, Applying the method of normal forms to second-order nonlinear vibration

problems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science

467 (2128) (2011) 1141–1163.

[9] F. Poncelet, G. Kerschen, J.-C. Golinval, D. Verhelst, Output-only modal analysis using blind source

separation techniques, Mechanical Systems and Signal Processing 21 (6) (2007) 2335–2358.

[10] C. M. Bishop, et al., Pattern recognition and machine learning, Vol. 4, springer New York, 2006.

[11] C. M. Bishop, et al., Neural networks for pattern recognition, Clarendon press Oxford, 1995.

[12] I. T. Nabney, NETLAB: algorithms for pattern recognition, Springer, 2004.

[13] A. Hyvärinen, E. Oja, A fast fixed-point algorithm for independent component analysis, Neural computa-

tion 9 (7) (1997) 1483–1492.

[14] H. Gävert, J. Hurri, J. Särelä, A. Hyvärinen, The FastICA package for MATLAB, Lab. of Computer and

Information Science, Helsinki University of Technology.

[15] F. R. Bach, M. I. Jordan, Kernel independent component analysis, The Journal of Machine Learning

Research 3 (2003) 1–48.

[16] P. Welch, The use of fast Fourier transform for the estimation of power spectra: a method based on time

averaging over short, modified periodograms, Audio and Electroacoustics, IEEE Transactions on 15 (2)

(1967) 70–73.

[17] L. K. Saul, S. T. Roweis, An introduction to locally linear embedding, unpublished. Available at:

http://www. cs. toronto. edu/˜ roweis/lle/publications. html.

[18] S. T. Roweis, L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science

290 (5500) (2000) 2323–2326.

[19] H. Bourlard, Y. Kamp, Auto-association by multilayer perceptrons and singular value decomposition,

Biological cybernetics 59 (4) (1988) 291–294.

3026 PROCEEDINGS OF ISMA2014 INCLUDING USD2014



[20] M. Scholz, R. Vigário, Nonlinear PCA: a new hierarchical approach, in: Proceedings ESANN, 2002,

pp. 439–444.

[21] N. Dervilis, M. Choi, S. Taylor, R. Barthorpe, G. Park, C. Farrar, K. Worden, On damage diagnosis for a

wind turbine blade using pattern recognition, Journal of Sound and Vibration 333 (6) (2014) 1833–1850.

NON-LINEARITIES: IDENTIFICATION AND MODELLING 3027



3028 PROCEEDINGS OF ISMA2014 INCLUDING USD2014


