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Abstract

This paper examines generalised forms of semi-active switching control

in comparison to the sky-hook semi-active controller. A switching time con-

troller is proposed and analysed, in order to determine the optimal perfor-

mance, with regard to displacement transmissibility, of semi-active switching

control. In addition, the model is also used to assess the optimality of the

sky-hook switching conditions. An analytical solution is then derived for the

optimal switching times. A generalised form of linear switching surface con-

troller is then presented. It is demonstrated that this controller can produce

near optimal performance.
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1. Introduction

Semi-active dampers are a class of energy dissipating device for which

the damping may be controlled in real-time. This is achieved by either al-

tering the properties of the damping fluid, as is the case for electro and

magneto-rheological dampers [1], or by actuating mechanical components of

the damper, an example of which is a variable orifice damper. Semi-active

damping, as a method of vibration isolation, has been applied to many me-

chanical and civil engineering systems, see for example [2, 3, 4, 5, 6, 7] and ref-

erences therein. It has been demonstrated to provide considerably improved

performance compared to vibration isolation through passive damping alone.

Approaches to the design of semi-active damping controllers can broadly

be grouped into two forms. The first class applies to systems which may be

accurately described using low order models, such as automotive suspension

systems, for which simple pragmatic control approaches, based on reasoned

physical argument, are often employed, for example [4, 8, 9, 10, 5, 11].

As the complexity of a system increases it becomes difficult to gener-

ate semi-active control policies based on intuitive logic. Consequently for

this second class of system, examples of which include cables, buildings and

bridges, it is common for modified forms of active control design to be applied.

A common example of this class of semi-active control is termed clipped-

optimal control [12, 9]. This employs conventional linear-quadratic regulator

or linear-quadratic gaussian optimal control design based on linear system

models, with the addition of saturation limits due to the physical constraints

on the force that may be generated by the semi-active damper. This semi-

active design approach has been applied to a number of civil engineering
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structures, for example see [13, 14, 15, 16, 17, 18].

This paper is concerned with the first class of semi-active controller de-

sign. The most common form of control in this class is called sky-hook

control, which is a control policy that can be applied when a semi-active

damper is connected directly to a mass that is to be isolated. The sky-

hook controller acts to increase damping when the damping force is acting

to dissipate energy from the mass. This paper seeks, through analysis of the

sky-hook controller, to generalise this class of semi-active control in order to

improve performance and better understand the mechanics that determine

the optimality of the control design.

Firstly a review of a sky-hook control law and its behaviour when applied

to a single degree of freedom, base excited suspension system is presented. A

generalised form of switching control based on predetermined switching times

is then proposed. Through simulation of this controller, the optimal perfor-

mance, with regard to minimising displacement transmissibility, of this class

of semi-active control is determined. The sky-hook controller is compared to

these results in order to assess the optimality of the sky-hook switching con-

ditions. An analytical solution for the optimal switching times, based on a

harmonic balance of switching controlled system, is then presented. It is then

shown how the sky-hook controller may be considered to be a specific case

of a generalised form of state-dependent, linear switching surface controller.

Through simulation, optimal switching surfaces are plotted and compared to

the sky-hook surfaces. It is demonstrated numerically that, over a range of

frequencies, the optimal switching surfaces may be approximated using the

linear switching surface controller.

3



2. Sky-Hook control

This paper will consider the semi-active isolation of a single degree-of-

freedom base excited system such as that shown in Fig. 1(a), where m is the

mass to be isolated, k is the suspension stiffness, c is a semi-active damper,

x is the mass displacement and r is the base displacement. The system

is harmonically excited at frequency, Ω, and displacement amplitude, ∆,

such that r = ∆ sin Ωt. Using the standard normalised parameters; natural

frequency, ωn =
√

k/m, and damping ratio, ζ = c/(2
√

km), the equation of

motion of the system may be written as follows

ẍ + 2ζωn(ẋ − ṙ) + ω2

n(x − r) = 0. (1)

A common strategy for semi-active isolation of a such a system, proposed

by Karnopp et al [8] is to control the damper so that it emulates the behaviour

of an idealised sky-hook system. Such a system, as shown in Figure 1b,

features an inertially grounded passive damper, csky, connected to the mass

to be isolated, providing a damping force that is always resistant to the

mass’s velocity. A commonly used semi-active approximation of the sky-hook

system, often referred to as on-off sky-hook control, is to set the damping to

a high level when the damping force is dissipative with regard to the kinetic

energy of the mass and to set the damping to a low level otherwise. For the

system shown in Fig. 1(a), this corresponds to increased damping when the

damper velocity and absolute mass velocity are of the same sign. An on-off

skyhook control law for this system may be expressed as follows, where ζh

and ζl denote high and low damping ratios respectively
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ζ =







ζh, ẋ(ẋ − ṙ) > 0

ζl, else.
(2)

The sky-hook form of control law can be susceptible to chatter [4]. This

occurs when, upon switching from high to low damping at ẋ = 0, the spring

force is of opposite sign and of greater magnitude than the low damping force.

Under this condition, the net force on the mass will change direction upon

switching to the low damping state, pushing the velocity back toward zero

and consequently the low to high switching. This results in rapid switching

between the high and low damping levels until the system states are such that

the low damping force is of greater magnitude than the spring force. This

phenomenon is typically associated with large differences between the high

and low damping values. This study will be limited to values of damping for

which chattering does not occur.

A typical plot of displacement transmissibility is shown in Fig. 2, from

which it can be seen that the sky-hook controller performs better than pas-

sive damping at lower frequency but at higher frequency produces higher

transmissibility than the low level passive damping. From this it can be

inferred that the sky-hook controller must be a sub-optimal form of on-off

semi-active control as it fails locate the lower amplitude solution provided by

the always off state.

As is clear from Eq. (2), the sky-hook controller switches damping levels

at the zero crossings of the mass and damper velocities. These switching

conditions can be considered as two switching surfaces of ẋ = 0 and ẋ− ṙ = 0

and can be illustrated in a plane of system velocities as shown in Fig. 3. The

shaded region of this figure corresponds to that in which the damping force
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is dissipative with regard to the kinetic energy of the mass and is the region

within which the sky-hook control law increases damping.

The function of these switching surfaces can be seen by plotting the

steady-state system velocities within this plane, an example of which is shown

in Fig. 4, in which the high to low switching states are denoted by circles

and the low to high switching states denoted by crosses. At each frequency

the velocity trajectory forms a closed orbit, these orbits move outwards from

the centre with increasing frequency. It can be seen that in the steady-state,

the velocity trajectory crosses each of the switching surfaces once every half

period of excitation. Consequently, at a given frequency, the damping level

is switched from high to low and back at fixed times every half period.

By generalising the controller switching conditions, in terms of switching

times and switching surfaces, this study seeks to identify an optimal form of

semi-active switching controller and understand the mechanics which cause

the optimal solution to differ from the sky-hook control scheme.

3. Switching time control

In this section we will examine the response of a generalised form of

semi-active switching control, with arbitrarily defined switching times. The

controller we propose is illustrated in Fig. 5, where the high to low switching

time is denoted by t1 and the low to high switching time by t2. Analysis of

this generalised controller form, for all permissible switching times, will allow

the optimal response of this class of switching controller to be determined.

This may then be compared with the response of the sky-hook controller, in

which t1 and t2 are governed by the conditions given in Eq. (2), in order to
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assess the optimality of the sky-hook switching conditions.

3.1. Numerical analysis

Parameters are introduced for frequency normalised width, t̄, and centre

of the damping peak, t0. These are illustrated in Fig. 5 and relate to the

switching times as follows

t1 =







(t0 − t̄/2 + π) /Ω, t0 − t̄/2 < 0

(t0 − t̄/2) /Ω, else
(3)

and

t2 =







(t0 + t̄/2 − π) /Ω, t0 + t̄/2 > π

(t0 + t̄/2) /Ω, else.
(4)

The parameters, t0 and t̄, can have values between the limits of zero and

π, and together can describe the system for all permissible switching times.

The motivation for introducing these parameters is to aid subsequent analysis

and allow results to be presented in a clearer form.

Simulations are computed for a range of t0 and t̄ values between the

minimum and maximum values. Typical results are shown in Fig. 6. The

upper edge, t̄ = π, corresponds to the passive high damping response and

the lower edge, t̄ = 0, corresponds to the passive low damping response.

The minimum steady-state displacement response is denoted by a diamond

and the sky-hook steady-state response is denoted by a circle. Note that

presenting these contour plots for t̄ and t0 produces a continuous surface.

If the results where presented in terms of t1 and t2, the surface would be
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discontinuous along t1 = t2, corresponding to the switch from high to low

passive damping either side of the line.

These results show a single, clear minima, revealing the existence of dis-

tinct, optimal switching times at each frequency. A general trend, present

regardless of damping values, is the movement of the minima from high to

low t̄ values with increasing frequency. This shows that to minimise trans-

missibility, the high damping level should be applied for smaller proportions

of the excitation period as frequency increases. An analogy may be drawn

between this result and optimisation of an equivalent passively damped sys-

tem, which requires lower levels of damping with increasing frequency to

minimise transmissibility.

Below, and close to, the undamped natural frequency, the sky-hook switch-

ing conditions produce switching times very close to optimal. However as

frequency increases, the sky-hook switching times can be seen to diverge

from the optimal. Most notably, the sky-hook controller results in larger t̄

values than are optimal. This shows that essentially the sky-hook switching

conditions apply more damping than is necessary, to the detriment of control

performance.

As the numerical results reveal the sky-hook controller to be sub-optimal,

we now seek an analytical solution for the optimal switching times.

3.2. Analytical optimisation

Frequency analysis of the system at optimal switching times, an example

of which is shown in Fig. 7, reveals that the response is dominated by the

excitation frequency. This suggests that a harmonic balance (for example

see [19]) at the excitation frequency is a suitable method for the analytical
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solution of the switching time controlled system. This technique is now

applied to the system.

Defining, z = x − r, Eq. (1) may be rewritten as

z̈ + 2ζ(t)ωnż + ω2

nz = −r̈. (5)

Considering the displacement response only at the excitation frequency, z

may be expressed as follows

z ≈ a1 cos Ωt + b1 sin Ωt. (6)

By substituting Eq. (6) into Eq. (5), multiplying by sin Ωt and integrat-

ing across an excitation period, the following expression is obtained, noting

the orthogonality condition that when integrated the sin Ωt cos Ωt terms are

eliminated

π (ω2

n − Ω2) b1 + 2ωnΩ2b1

∫ 2π

Ω

0

ζ(t) cos Ωt sin Ωt dt

−2ωnΩ2a1

∫ 2π

Ω

0

ζ(t) sin2 Ωt dt = ∆πΩ2.

(7)

For t2 > t1, the damping applied by the switching time controller may be

expressed as follows, where τ is the modulo of time, t, and a half excitation

period, π/Ω

ζ =







ζh, t1 < τ < t2

ζl, else.
(8)

By substituting the switching controller from Eq. (8) into Eq. (7) and

evaluating the integrals we obtain
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2ωn

(

Ω
ζh − ζl

π
(t2 − t1) + ζl +

ζh − ζl

2π
(sin 2Ωt1 − sin 2Ωt2)

)

a1

+

(

− (ω2

n − Ω2) /Ω − 2ωn

(

ζh − ζl

π

(

sin2 Ωt2 − sin2 Ωt1
)

))

b1 = −∆Ω.

(9)

Similarly, substituting Eqs. (6) and (8) into Eq. (5), multiplying by cos Ωt

and integrating across an excitation period, produces the following

(

(ω2

n − Ω2) /Ω − 2ωn

ζh − ζl

π

(

sin2 Ωt2 − sin2 Ωt1
)

)

a1

+2ωn

(

Ω
ζh − ζl

π
(t2 − t1) + ζl +

ζh − ζl

2π
(sin 2Ωt2 − sin 2Ωt1)

)

b1 = 0.

(10)

Using Eqs. (3) and (4), Eqs. (9) and (10) may be rewritten as functions of

t̄ and t0, giving

2ωn

(

ζl +
ζh − ζl

π
(t̄ − sin t̄ cos 2t0)

)

a1

−

(

(ω2

n − Ω2) /Ω + 2ωn

ζh − ζl

π
sin t̄ sin 2t0

)

b1 = −∆Ω,
(11)

and

(

(ω2

n − Ω2) /Ω − 2ωn

ζh − ζl

π
sin t̄ sin 2t0

)

a1

+2ωn

(

ζl +
ζh − ζl

π
(t̄ + sin t̄ cos 2t0)

)

b1 = 0.
(12)

By solving Eqs. (11) and (12), the following expressions for a1 and b1 are

obtained

10



a1 =

−2∆ωnΩ3

(

ζl +
ζh − ζl

π
(t̄ + sin t̄ cos 2t0)

)

4ω2
nΩ2

(

(

ζh − ζl

π
t̄ + ζl

)2

−

(

ζh − ζl

π

)2

sin2 t̄

)

+ (ω2
n − Ω2)2

, (13)

and

b1 =

∆Ω2

(

ω2

n − Ω2 − 2ωnΩ
ζh − ζl

π
sin t̄ sin 2t0

)

4ω2
nΩ2

(

(

ζh − ζl

π
t̄ + ζl

)2

−

(

ζh − ζl

π

)2

sin2 t̄

)

+ (ω2
n − Ω2)2

. (14)

The steady state displacement amplitude of x, x̄, may be written as follows

x̄ = (a2

1
+ (b1 + ∆)2)

1

2 . (15)

Substituting Eqs. (13) and (14) into Eq. (15) produces the following approx-

imate solution for the steady-state displacement response of the switching

time controlled system

x̄2 =













−2∆ωnΩ3

(

ζl +
ζh − ζl

π
(t̄ + sin t̄ cos 2t0)

)

4ω2
nΩ2

(

(

ζh − ζl

π
t̄ + ζl

)2

−

(

ζh − ζl

π

)2

sin2 t̄

)

+ (ω2
n − Ω2)2













2

+













∆Ω2

(

ω2

n − Ω2 − 2ωnΩ
ζh − ζl

π
sin t̄ sin 2t0

)

4ω2
nΩ2

(

(

ζh − ζl

π
t̄ + ζl

)2

−

(

ζh − ζl

π

)2

sin2 t̄

)

+ (ω2
n − Ω2)2

+ ∆













2

.

(16)
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A similar derivation may be performed for t1 > t2, however due to the defi-

nitions of the switching times in Eqs. (3) and (4), the solution reached is the

same as that found for the t2 > t1 case.

When compared to the numerical solution of the switching controlled sys-

tem, this analytical approximation is seen to be accurate at higher frequency,

but is less accurate close to and below the undamped natural frequency of

the system. Typical results are shown in Figs. 8 and 9, in which the numeri-

cal minima is denoted by a diamond, the analytically approximated minima

denoted by a cross and the sky-hook solution by a circle. At low frequency

the analytical minima is further from the actual minima than the sky-hook

solution. At higher frequencies, where the sky-hook controller has been seen

to perform poorly, the analytical minima is closer to the actual minima than

the skyhook solution.

By differentiating Eq. (16) with respect to t0 and equating the zero,

the following expression for the optimal centre of damping peak, t0opt, as a

function of damping width, t̄, is obtained

t0opt = −
1

2
tan−1











ω2

n − Ω2

4Ω2
+

(

ζh − ζl

π

)2
(

t̄2 − sin2 t̄
)

+ ζl

(

2
ζh − ζl

π
t̄ + ζl

)

Ω

2ωn

(

ζh − ζl

π
t̄ + ζl

)











.

(17)

By substituting Eq. (17) in Eq. (16), an algebraic function for x̄ is

obtained which is a function of a single control design parameter, t̄. It is

not possible to obtain an explicit analytical solution for the t̄ value that

minimising this function, however an optimal t̄ value can be obtained by
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numerically minimising the function with regard to t̄ between the lower and

upper bounds of 0 and π respectively.

Plots comparing the transmissibilty produced by the optimal and sky-

hook switching times over a range of frequencies and damping values are

shown in Fig. 10. These transmissibilty plots show the performance of the

sky-hook controller to be very close to that of the optimal controller below

the undamped natural frequency. As frequency increases, the performance

of the sky-hook diverges from the optimal.

In addition the analytical optimal solution based on Eq. (16) is shown

(dashed line). It can be seen that this agrees excellently with the numerical

optimal solution at frequencies above the natural frequency with a slight di-

vergence at frequencies below the natural frequency. Note that the numerical

optimal solution is plotted over a smaller frequency range in order for the

analytical optimal solution to be more clearly visible.

4. Switching surface control

The selection of parameters for the switching time controller discussed

in the previous section requires knowledge of the frequency and phase of

excitation. The appeal of the sky-hook form of control law is its simple form,

use of readily measurable states and no requirement for explicit knowledge

of the excitation. We seek to obtain a semi-active switching controller that

is closer to optimal than sky-hook yet retains the practical characteristics of

the sky-hook control form.

As discussed in Section 2 and illustrated in Fig. (3), the sky-hook control

law may be thought of as a pair of switching surfaces. Considering the sky-
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hook controller in this manner naturally presents the question as to whether

better isolation can be achieved by altering these switching surfaces.

For a switching surface to provide the same transmissibility for a given

frequency regardless of amplitude it must be linear. A generalised form of

semi-active switching surface control is expressed in Eq. (18), where α and β

are the gradients of the linear surfaces. This controller is illustrated with-in

the velocity plane in Fig. 11. The sky-hook controller is a specific case of

this generalised form where β = 1 and α = 0.

ζ =







ζh, (ẋ + αṙ)(ẋ − βṙ) > 0

ζl, else
(18)

For β = 1, the switching surface controller described by Eq. (18) is

equivalent to that proposed by Verros Et al. [20], in which the gradient of

the second switching surface is designed to emulate the behaviour of specific

sky-hook damping coefficients.

The numerical optimisation analysis in Section 3 may be extended to

examine the nature of optimal switching surfaces. The steady-state velocities

of the optimal switching time controlled system are shown in Fig. 12 for

a number excitation frequencies. The trajectories move outward from the

centre with increasing frequency. The states at the high to low switching

times are denoted by circles and the states at the low to high switching times

are denoted by crosses. By plotting at multiple frequencies, these optimal

switching states form optimal switching surfaces within the velocity plane.

These plots reveal that the optimal high to low switching surface is insen-

sitive to damping values and is very close to the sky-hook switching surface of

ẋ− ṙ = 0, corresponding to a β value of 1. The optimal low to high switching
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surface however differs significantly from the sky-hook surface. The optimal

surface is non-linear and appears strongly dependant on the damping values.

Below the natural frequency, the optimal switching surface is close to the

sky-hook surface of ẋ = 0, as is consistent with results from the switching

times analysis. As frequency increases, the gradient of the surface diverges

from that of the sky-hook surface.

As this optimal switching surface is non-linear, it is not possible to define a

low to high switching control surface that is optimal regardless of amplitude.

However, as is illustrated in Fig. 13, over limited ranges of frequencies, the

optimal surface may be approximated as linear.

Fig. 14 shows transmissiblity plots of the switching surface controller

expressed in Eq. (18), for β = 1 and varying values of α. These plots show

that is is possible to achieve isolation very close to optimal using a linear

switching surface controller. From the low transmissibility obtained using a

range of α values, it appears that amplitude trajectory is quite insensitive to

switching state close to the optimal surfaces. This aids the process of control

parameter selection by providing relatively large tolerances. Over the range

of damping values examined, an α value of 1 consistently produced isolation

close to optimal, representing an improvement over the sky-hook controller

(in which α = 0) especially at frequencies above the natural frequency. It

is therefore suggested that this value is an appropriate starting point for

parameter selection.
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5. Conclusions

This paper has examined the form and behaviour of a sky-hook, semi-

active control law when applied to a single degree of freedom, base isolating

suspension system.

When the system is harmonically excited, in the steady-state, the sky-

hook controller switches damping levels at two distinct times every half pe-

riod of excitation.

By proposing and analysing a generalised switching controller with ar-

bitrarily defined switching times, the optimality of the sky-hook switching

conditions, with regard to minimising displacement transmissibility, is as-

sessed. It is found that below the undamped natural frequency of the sys-

tem, the sky-hook controller is close to optimal but diverges from the optimal

switching times with increasing frequency.

An analytical solution is presented for the optimal switching times, based

on a harmonic balance of the switching controller. For higher frequencies,

where sky-hook control has been shown to be sub-optimal, the analytically

approximated switching times are very close to optimal.

The sky-hook controller is then considered as consisting of two switching

surfaces. Plotting the system states at the optimal switching times for multi-

ple frequencies produces optimal switching surfaces. This reveals one of the

sky-hook surfaces to be very close to optimal. The other optimal switching

surface is shown to be non-linear and dependent on damping values. A gener-

alised form of linear switching surface control is presented. It is shown that,

through appropriate parameter selection (a recommended guideline being

α = 1), this controller form, which retains the desirable practical attributes
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of sky-hook control, can achieve performance very close to optimal.
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Figure 1: Mechanical models of (a) semi-active base excited suspension system (b) idealised

sky-hook system.
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Figure 2: Transmissiblity of passively damped and sky-hook systems for ζh = 2 and

ζl = 0.3. ——– Passive damping ζ = ζl, −−− Passive damping ζ = ζh, − · − · − On-Off

Sky-Hook control.
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Figure 3: Illustration semi-active switching surfaces of sky-hook controller.
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frequency range Ω/ωn = 1− 4 for ζh = 2, ζl = 1. ◦ High to low switching, × Low to high
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Figure 5: Illustration of switching times over an excitation period.
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(a) Analytical approximation using Eq. (16) (b) Numerical solution.
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Figure 9: Transmissibility contour plots for Ω/ωn = 1, ζh = 2 and ζl = 0.3

(a) Analytical approximation using Eq. (16) (b) Numerical solution.
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Figure 10: Transmissibility plots comparing sky-hook, optimal and analytical switching

times for (a) ζh = 1.5 and ζl = 0.5 (b) ζh = 2 and ζl = 1 (c) ζh = 2 and ζl = 0.3.

− · − · − Sky-Hook, −−− Analytical switching times, ——– Optimal switching times.
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Figure 11: Illustration semi-active switching surfaces for generalised switching surface

controller
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Figure 12: Steady state velocities and switching states of optimal switching time controller

over the frequency range Ω/ωn = 0.1 − 4 for (a) ζh = 1.5, ζl = 0.5 (b) ζh = 2, ζl = 1.

◦ High to low switching, × Low to high switching.
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Figure 13: Steady state switching states of optimal switching time controller and linear

switching surface approximations over the frequency range Ω/ωn = 0.1−4 for (a) ζh = 1.5,

ζl = 0.5, α = 1, β = 1 (b) ζh = 2, ζl = 1, α = 2, β = 1.

◦ High to low switching, × Low to high switching.
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Figure 14: Transmissibility plots of generalised switching surface controller and optimal

solution for (a) ζh = 1.5 and ζl = 0.5 (b) ζh = 2 and ζl = 1 (c) ζh = 2 and ζl = 0.3.

- - - - α = 0 (sky-hook), − · − · − α = 0.5, −−− α = 1, · · · · · α = 10, ——– Optimal
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