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Abstract

In this paper we consider dynamic friction within a bolted structure delib-

erately used to improve damping properties of the structure. The structure

considered for this paper consists of two steel beam-columns bolted together

allowing dynamic friction to occur at the interface. This paper includes an

analysis of the behavior of the structure and the effect of friction on its dy-

namics. It also includes an analysis of the energy dissipation in the structure

by means of friction and the optimization of the bolt tension in order to dis-

sipate the maximum vibration energy by the structure. We define analytical

expressions for the vibration behaviour before and after slip occurs as well as

the point at which it starts. We also define the stress profile across the col-

umn cross-section. An experiment was designed to allow the measurement of

the bolt tension, the slip within the structure and the bending velocity. The

theoretical analysis gave very close agreement with the experimental results.
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1. INTRODUCTION

In this paper we consider the effect of friction on the dynamics of a vi-

brating beam-column. The results presented here are based on the idea of

using bolted friction beam-columns to add damping during large amplitude

motion. The set up consists of two steel beam-columns bolted together al-

lowing dynamic friction to occur at the interface. This type of system has

been shown to dissipate a large amount of vibration energy [1] when the bolt

tensions are adjusted appropriately. The concept is similar to leaf springs

which have been in practice for some considerable time [2]. Potential applica-

tions are structures with very low damping characteristics such as large steel

structures (i.e. steel framed buildings). Consequently these structures are

particularly sensitive to dynamic excitation from wind or seismic loading. In

some cases relatively small loadings can induce considerable lateral vibration

that can result in damage to the structure.

The usual approach to providing more damping in a structure is to add

some form of structural dampers, which can be either passive or semi-active.

For seismic applications a common way to apply more passive damping is

in the form of base-isolation, which is achieved by using rubberised mounts

to isolate the structure from its foundations. Other passive damping designs

include special bracing mechanisms [3, 4] or devices fitted between columns

and beams [5, 6, 7, 8] of the structure. Some of the semi-active damping
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mechanisms based on friction are described in [9, 10, 11, 12]. An extended

overview of a large part of the literature on friction damping systems is

presented in [13, 14].

A similar system has been previously considered by Popp et al [1] where

the optimum normal force required was defined based on the maximum dis-

sipated energy. To work effectively, the bolted friction column must be de-

signed with the appropriate bolt tensions to dissipate significant vibrational

energy when dynamically excited. The friction damping effect only occurs

when static friction at the interface of the beam-column is overcome, and

can therefore be designed to happen only under large amplitude motion. For

example for protecting the structure in extreme circumstances, such as an

earthquake. At all other times the structure operates in its usual low damping

regime. The potential advantages are that this method is simple, relatively

cheap and reduces the need for active dampers or additional cross-bracing.

The theoretical analysis presented in this paper includes two physical

approaches. The first one deals with the structural analysis of the beam-

column. In Sec. 2.5 , we develop expressions for the vibration modes based

on the dynamics of friction at the interface. The second approach ( Sec.

2.3) is based on the optimum energy dissipation by the structure. We derive

analytical expressions for the energy dissipated by friction and its effect on

the vibration magnitude. To validate the analysis, we carry out a set of
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experiments which we describe in section 3. The experimental results show

a good agreement with the analytical predictions.

2. Analytical model

The bolted friction beam-column used in the following analysis involves

two steel beams bolted together as shown in Fig. 1. It is assumed that the

pressure applied by the bolts is approximated by a continuously distributed

load along the beam-column.

2.1. Relative displacement

We consider the case of two steel columns, with rectangular cross-section,

clamped back-to-back. When the clamped columns deflect, slip may occur

along the interface between beam1 and beam2. This is a result of the dif-

ference in the beams radii of curvature due to their thickness as shown in

Fig 2. Fig. 3(a) shows the relative displacement at the tip of the beam. ui

is the displacement of the centreline of beami due to axial loading and w

is the lateral deflection of the whole beam-column. Therefore, the relative

displacement can be expressed as

u = u2 − u1 + w′T, (1)

where w is the beam deflection, T is the distance between the centrelines

of the beams, in the case of identical beams, it is also the thickness of each
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one, and the dash “ ′ ” represents partial differentiation with respect to x.

This value will vary depending on the bolt tension applied as the higher the

tension the less readily slip will occur. In the case of full slip, we assume

compatibility in the beams deflection i.e. the central axes of the two beams

are assumed to be at the same distance in the axial direction as shown in Fig.

3(b). Therefore, the only relative displacement along the column is due to

the bending itself. In the case of full stick, there is no relative displacement

at the interface as shown in Fig. 3(c). In the analysis only the cases of full

stick or full slip will be considered. By differentiating Eq. 1 with respect to

x to obtain the relative displacement distribution along the beam, we obtain

u′ = ǫ2 − ǫ1 + w′′T, (2)

where ǫ is the strain due to the normal force,

ǫi = Pi/EiAi, (3)

Pi is the axial load of beami and Ai is the cross sectional area of beami.

2.2. Friction Model

The friction model assumed here is a Coulomb type model. The friction

force at the interface f(x) over a single period of vibration, is assumed to

be a function of the relative displacement u between the two beams. As

used by [1], the model relating f(x) to u is shown in Fig. 4. The friction
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hysteresis is approximated by a parallelogram with respect to the relative

displacement, this is a reasonable approximation if the column is undergoing

harmonic vibration. In all cases, the friction force is assumed to be linearly

related to the relative displacement, therefore can be expressed as

f(x) = b + ku, (4)

where b and k are constants that take different values depending on each

stage of the hysteresis and u is the relative displacement between the two

beams. In this paper two distinctive cases are considered, the first one is the

case of full slip has b = sign(ẋ)µq(x), where µ is the friction coefficient and

q(x) is the normal load at the interface surfaces. The second case is the full

slip phase.

2.3. Energy Balance Model

The energy considered in this case is the bending energy and the work

done by friction. We assume that the viscous damping is negligible in com-

parison to the friction damping. All the assumptions made before are also

assumed for this analysis.

We assume that the deflection of the beam can be described using the

following equation

w = W
(

1 − cos(
π

2l
x)

)

, (5)
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where W is the time dependent deflection magnitude at the free end of the

of the beam-column.

For our beam-column, the bending stiffness for a single beam is EI.

Therefore the potential energy due to bending for the whole beam-column,

is defined as

Vb = 2

∫ l

0

1

2
EI(w′′)2dx

=
EIπ2

32l
(W 2). (6)

Next, we define the energy dissipated by friction. For any structure,

the work done by friction is defined as the product of the friction force and

the distance traveled. In the case of our beam-column, the friction force is

f(x) and the distance is the relative displacement between the two beams u,

therefore the work done

Uf = −

∫ t2

t1

∫ l

0

µq(x)udxdt, (7)

where µ is the coefficient of friction. Now, we need to determine Uf in terms

of the beam-column vibration using Eq. 1. Under pure bending and the full

slip regime we asume u1 = u2 = 0 (Fig. 3), u can be rewritten in terms of w
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therefore Eq. 7 becomes

Uf = −

∫ t2

t1

∫ l

0

µq(x)Tw′dxdt

=

∫ t2

t1

µq(x)TW (t)dt. (8)

At this stage, we have the energy quantities and we need to apply it to

our beam-column. To analyse the effect of the energy dissipation on the

beam-column vibration, we write the energy expressions at time ti at full

deflection as shown in Fig. 5 where the beam-column has no kinetic energy

and ti+1 = ti + π/wn (after half a period, where again the beam-column has

no Kinetic energy). Then we apply the energy conservation principle which

results in

(
EIπ2

32l
)(W 2

i+1 − W 2

i ) = µq(x)
T

wn

(Wi+1 − Wi), (9)

where Wi is the tip deflection at time ti and Wi+1 at ti+1. If the deflection

Wi is known, equation 9 can be used to predict the deflection Wi+1 at time

ti+1. Therefore Eq. 9 can be used to predict the maximum deflection of the

beam-column in every half period increment.

2.4. Simulation Of The Energy Balance Model

The theoretical model was simulated in a Matlab program . Initially the

envelope of vibration is determined which is based on the dominant damping.

During the cycles where friction damping is predominant, Eq. 9 was modified

to calculate the magnitude of successive half periods as follows:
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Wi+1 =



























32lµT

EIπ2wn

q(x) − Wi, if Wi ≥ 0

− 32lµT

EIπ2wn

q(x) − Wi, if Wi ≤ 0.

(10)

Eq. 10 are used to determine the maximum deflection over every half a

period of time as shown in Fig. 5. During cycles where the beam-column

is in stick phase, the envelope was based on only viscous damping which

was determined experimentally (Fig. 13). To define the transition between

predominant friction damping to viscous damping, we need to know the

conditions that cause the transition from slip to stick. From Eq. 10 we can

see that the friction damping is no longer effective when

|W ∗

i | ≤
8lµT

EIπ2wn

q(x), (11)

2.5. Dynamic Response Model

In this section, we determine the structural properties of the beam-

column. First, we relate the internal forces and reactions within the structure

to its deflection under different friction regimes. The forces acting along the

beam-column are shown in the free body diagram of a differential element in

Fig. 6. The beam-column is assumed to be under a transverse and an axial

loading.

Fig. 6 shows that the forces P and V and moment M acting on the whole

structure can be expressed in terms of internal forces acting on each beam
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separately. The internal moments acting on each beam are still taken about

the neutral axis of the whole structure. The moment acting on the whole

structure on the left hand side can be expressed in terms of the internal forces

and moments as follows

M = M1 + M2 + P (T − h) − P1T, (12)

where T is the distance between the centrelines of the two beams and h is

the distance between the centreline of the top beam and the neutral axis of

the structure (Fig. 6). Note also P = P1 + P2.

The reactions within each beam can be related to its deflection by con-

sidering compatibility, i.e the lateral deflection at any point on the top beam

is equal to the deflection of the lower beam. This can be expressed using

beam theory [15] as follows

d2w

dx2
= w′′ = −

M1

E1I1

= −
M2

E2I2

. (13)

Combining Eq. 12 and 13 results in

w′′ = −
M − P (T − h) + P1T

E1I1 + E2I2

. (14)

In Eq. 14, P1 is unknown and further assumptions are needed to define

it. Differentiating P1 and P2 with respect to x will result in the friction force

at the interface per length, f(x) [1]

P ′

1 = −f(x), (15)
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and

P ′

2 = f(x). (16)

From this point on, the beams are assumed to be identical, i.e. A1 =

A2 = A and I1 = I2 = I.

Differentiating Eq. 14 with respect to x and combining it with Eq. 15

results in

f(x) =
2EA

T
W ′′′ +

1

T
M ′. (17)

It should be noted that P is constant along x. Differentiating Eqs. 2 and

4, and combining them with Eqs. 3, 15 and 16 leads to

f(x)′′ = k
2

EA
f(x) + kTw′′′. (18)

Combining Eqs. 17 and 18 results in

w′′′′ − kαw′′ = kβM − λM ′′, (19)

where for identical beams α = 1

2E
(AT 2+4I

AI
), β = 1

E2IA
and λ = 1

2EI
.

All the equations, derived so far, describe static conditions. To describe

dynamic conditions we relate the moment to the dynamic deflection. Under

free vibration, the moment is related to the transverse displacement as follows

[15]

∂2M

∂x2
= −m

∂2w

∂t2
, (20)

where m is the mass per unit length of the beam.
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2.5.1. The effect of friction on the beam-column dynamics

Defining the constant of friction k is one task that can be done only experi-

mentally therefore it will be assumed to take different values depending on the

friction-displacement relation described in Fig.4. The friction-displacement

parallelogram can be divided into sticking and slipping phases. During the

sticking phase, the two beams act as one. Therefore, we assume that the

change in relative displacement u is negligible regardless of the friction force

magnitude f(x). Consequently k → ∞, and equation 19 can be rewritten in

the following form

w′′ = −
β

α
M. (21)

Differentiating Eq. 21 twice with respect to x and combining it with Eq. 20

results in

∂4w

∂x4
= −

2m

E(4I + T 2A)

∂2w

∂t2
, if f(x) ≥ µq(x) . (22)

Eq. 22 describes the transverse vibration of a single beam with the same

size of our beam-column with no viscous damping. This means that in the

absence of slip at the interface, the beam-column acts as a single beam.

Equation 22 can be solved exactly — see for example [16].

The second phase in the friction-displacement parallelogram is the slip-

ping phase which is only achievable if the static friction between the columns

is overcome, i.e.

f(x) ≥ µq(x), (23)
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where q(x) is the loading applied by the bolts. To operate effectively, the

bolted friction beam-columns must be designed with the appropriate bolt

tensions to dissipate significant vibration energy when dynamically excited.

The tension in the bolts needs to be selected to allow slipping to take place

under external vibration. Therefore, it is required to define the relation

between the beam dynamics and the bolt tension. First, the friction force

f(x) at the interface needs to be expressed in terms of the moment as follows

f(x) =
TA

T 2A + 4I
M ′. (24)

Combining Eq. 23 and 24 results in the optimal load q∗(x) at which the

beam-column transfers from slip to stick

q∗(x) ≤
TA

µ(T 2A + 4I)
M ′. (25)

Once the bolt tension reaches the optimum value the beam-column crosses

from slipping to sticking phase. During the slipping phase the friction force is

assumed to be constant regardless of the magnitude of the relative displace-

ment, therefore k → 0. The differential equation Eq. 19 can be simplified to

the following form

w′′′′ = −λM ′′. (26)

At this stage the neutral axis moves from the single line in Fig. 6 to two

different neutral axes within each beam. We assume that the beams still

have the same vibration mode. Combining eq. 20 and 26 results in
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frac∂4w∂x4 = −
m

2EI

∂2w

∂t2
, if f(x) ≥ µq(x) . (27)

Eq. 27 represents the vibration of a beam with a bending stiffness double

the stiffness of each column and it can be solved exactly see for example [16].

2.6. Simulation Of The Dynamic Response Model

As noted earlier, the model described in Sec. 2.4 provides amplitude

data at a time resolution of half a period. In order to calculate the response

at a higher time resolution a time stepping simulation was developed. The

rest of the modeling in Fig. 5 was based on a time step calculation. Every

step of time ∆t the friction force at the interface is calculated. Then the

stick-slip phase is determined based on equation 1 and the stiffness of the

column is calculated as well as the frequency of vibration as explained in Sec.

2.5. Then, the temporal function of the vibration,, is calculated using the

following Eq.

w = W ∗ (cos(wnt − Φ)), (28)

where W is the maximum deflection in every period of time calculated from

Eq. 10, wn is the natural frequency and Φ is the phase shift calculated based

on the change in stiffness that occurs from one time step to another.

Once the tip of the beam deflection is defined, the relative displacement
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during full slip phase is then calculated based on Eq. 1. During full stick, it

is calculated based on

ui = ui−1, (29)

where ui, ui−1 are the relative displacement at time ti and time ti−1.

The theoretical models in Fig 9 and 10 are calculated using this model.

3. Experimental Results

3.1. Set Up

The experimental set up consists of a single friction column composed of

two beams (Fig. 7) pressed against each other using a set of three bolts. The

properties of each beam are listed in appendix A. We monitored the normal

pressure applied by the bolts using load cells. The beam column pressure

was increased gradually and from 0N to 140N per bolt. Every time the

tension in the bolts was increased, we deflected the column and released it

from the deflected position. The velocity at which the structure vibrates was

measured using a laser vibrometer as shown in Fig. 7. We also installed a

number of strain gauges on the outer surfaces of the beams as shown in Fig.

7 to monitor the stress magnitudes as the beam-column vibrates.

The relative displacement between the two beams was measured using a

linear variable differential transformer (LVDT) that was attached at the top
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of the beam-column as shown in Fig. 7. The top part of the LVDT was fixed

to the outer surface of beam 1 while the bottom part of it was fixed on the

outer surface of beam2, see Fig. 8 The measurements taken from the LVDT

give the total slip from the clamped end up to the point where the LVDT

is installed during the full slip phase. During full stick phase, the LVDT is

supposed to record zero as the lateral planes remain normal to the neutral

axis of the beam.

4. Results and Discussion

4.1. Relative Displacement Results

The relative displacement depends on the friction dynamics in the column

as described in Sec. 2.1. The experimental results show three cases. First,

under low bolt tension, the structure is in full slip condition all the time

(Fig. 9(a)). At this stage, the relative displacement measured by the LVDT

shows a good agreement with the theoretical values calculated from Eq. 1.

Under high bolt tension the column is in stick mode all the time (Fig. 9(c)).

The relative displacement measured by the LVDT at this stage is due to the

slip that takes place between the top bolt and the position of the LVDT. In

between the two extreme cases, the column crosses from stick to slip mode

in every period of vibration. The relative displacement measurements taken

by the LVDT, displayed in Fig. 10, show that for low bending velocity the
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column is in sticking regime and when the velocity reaches the maximum

value the column switches to slipping regime.

The theoretical model is a combination of the slip then stick motion based

on Eq. 24 and when this reaches the requirement in Eq. 23, the column starts

to slip.

The difference between the measurement and theoretical relative displace-

ment in Fig. 10(a) and (b) is due to the fact that during slipping condition,

the column is not really in full slip whereas the theoretical simulations assume

full slip.

4.2. Validation Of The Theoretical model

The mechanical properties of the specimen used in both the experimental

set up and modeling are given in Fig. 7.

Eq. 10 was used in a numerical model repeatedly to determine the en-

velop of vibration as explained in Sec. 2.4. Despite the simplicity of the

model, it is clear that the theoretical predictions agree very well with the

experimental results. For example, we can see in Fig. 11 that the vibra-

tion magnitude and duration is visibly reduced as the load q(x) is increased.

After a number of cycles it seems that the experimental results converge to

zero whereas the theoretical predictions continues to have a small oscillation.

The reason for that is that during the first cycles of vibration, the friction

damping is dominant therefore it shows good agreement with the theoretical
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predictions. However, when a certain magnitude of vibration is reached, slip

(i.e dynamic friction) no longer occurs and the friction damping drops quickly

to near zero. At this stage the beam-column starts acting as a single beam

with predominant viscous damping which is not included in theoretical mod-

eling. where W ∗

i is the critical vibration amplitude at which the slip to stick

transition occurs. It can be seen that increasing the bolt tension q(x) results

automatically in the increase of W ∗

i . As the bolt tension increases, more

relative displacement is required for slip to occur. Hence, slip starts failing

at higher vibration magnitudes, and the column starts behaving as a single

beam with only viscous damping. This can be clearly seen in Fig. 11(b),

where slip fails at higher vibration amplitudes and friction damping becomes

increasingly less effective. Consequently, vibration takes increasingly longer

to converge when bolt tension is increased.

4.3. Frequency analysis

The frequency at which the column vibrates is a proportional to its stiff-

ness. From Eq. 22 and 27, the column stiffness during full stick condition

is double its value during full slip. Therefore, the natural frequency of the

beam-column vibration is expected to double as it operates within the stick-

ing phase. This analysis was confirmed by the frequency analysis run on the

experimental results and shown in Fig. 12(a). Before the full stick status is

reached, the dominant frequency increases gradually as shown in Fig. 12(b).
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Taking the frequency of the whole time response in one does not show how

the frequency changes for a given bolt tension, it merely reveals the domi-

nant frequency (Fig. 12). Inspection of results from column vibrating within

stick-slip condition shows that over a single cycle of vibration, the frequency

starts closer to the full slip case, i.e. low frequency. As the maximum deflec-

tion per cycle decreases the column goes into the full stick regime therefore

the frequency increases (Fig. 14(b)).

4.4. Damping properties

The presence of dynamic friction at the interface has clearly improved the

damping in the structure. Friction damping is typically characterized by a

linear decay envelope of the vibration until a threshold for sticking is achieved

and dynamic friction fails [17]. However in order to compare with viscous

damping, we approximate the decay by an exponential decay curve over

the first three periods of vibration as shown in Fig. 13(a). The equivalent

damping ratio as the bolt tension is increased is displayed in Fig. 13(b).

The equivalent overall damping displayed in Fig. 13(b), shows a significant

improvement of the damping properties in the beam-column when the bolt

tension is properly adjusted. in fact, the equivalent damping ratio around the

optimum bolt tension is approximately ten times higher than the inherent

damping of the beam-column.
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5. Conclusions

This paper includes an analysis of the friction damping present in a col-

umn composed of two beams bolted together. The analysis and the experi-

mental results confirmed that dynamic friction can be used to improve the

damping properties of the beam-column considerably. A full analysis was

provided explaining the effect of friction on the dynamics of the beam col-

umn and how that changes as the tension in the bolts is varied. Under low

bolt tension, the column has the properties of a single beam with normal

exponential decay whilst for high bolt tension, the column has the properties

of a beam twice as thick as a single beam. This was confirmed by the changes

in natural frequency of the beam-column under both conditions. During the

cycles where dynamic friction is present and bolt tension is appropriately ad-

justed, friction damping can be as much as ten times higher than the inherent

viscous damping.
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Figure 1: Bolted friction beam-column, with two beams and three bolts.

Figure 2: The total relative displacement between the two beams at the free end of the

column.
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Figure 3: The total relative displacement between the two beams at the free end of the

column, (a) The general case, the beam under axial loading and bending, (b) under pure

bending and full slip, (c) under pure bending and full stick.
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Figure 4: The assumed friction model, −−− sticking phase, — slipping phase.
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Figure 5: The model simulation, • defined using the energy balance model, — calculated

using dynamic response model.
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Figure 6: The forces acting withing the beam-column
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Figure 7: The experimental set up, column dimensions: 0.3m×0.0125m×0.0005m, Young’s

modulus : E = 167GPa, Density: ρ = 6970kg/m3 and coefficient of friction: µ = 0.3.
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Figure 8: The LVDT used in the experiments.
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Figure 9: The total relative displacement between the two beam-columns at the free end

of the column versus the tip deflection, (a) average bolt tension 0 N, (b) average bolt

tension 23 N, (c) average bolt tension 36N, (d) average bolt tension 112N.

−−− theoretical value based on the theoretical tip deflection, ——– the relative displace-

ment measurement from the LVDT .
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Figure 10: The total relative displacement between the two beam-columns at the free end

of the column versus tip velocity, (a) Average bolt tension 0 N, (b) average bolt tension

23 N, (c) average bolt tension 36N, (d) average bolt tension 112N.

− − − theoretical value based on the the theoretical tip deflection, ——– the relative

measurement as measured by the LVDT.
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Figure 11: The dynamics of the beam-column as the tension in the bolts is increased, (a)

average bolt tension= 0 N, (b) average bolt tension= 17.3 N (c) average bolt tension =

33.1 N(d) Average bolt tension = 46 N (e) average bolt tension = 112N

−−− theoretical values , ——– the relative displacement measurement from the LVDT.
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Figure 12: The vibration frequency of the beam-column under different bolt tensions, (a)

shows the natural frequency for: −−− bolt tension 0N, − ·− ·− bolt tension 33.1 N, —–

bolt tension 112N. (b) the dominant frequency as bolt tension is varied.
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Figure 13: The effect of bolt tension on the damping ratio and vibration frequency, (a) the

signal envelope, —×— bolt tension= 0N ,— ζ = 0.0128, −−×−− bolt tension= 112N ,

−−− ζ = 0.0349, · ·×·· bolt tension= 17.3N , · · · ζ = 0.0917, −·×·− bolt tension= 33.1N ,

- ·− ζ = 0.2216. (b) damping ratio vs bolt tension, — equivalent damping ratio over the

whole vibration time, ···· equivalent damping ratio over the first three periods of vibration.
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Figure 14: The frequency and damping changes over time under an average bolt tension

of 33.1 N (a) vibration amplitude over time (b) frequency change over time, (c) damping

ratio over time.
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