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Abstract This paper considers the dynamic response of coupled, forced and
lightly damped nonlinear oscillators with two degree-of-freedom. For these sys-
tems, backbone curves define the resonant peaks in the frequency–displacement
plane and give valuable information on the prediction of the frequency response
of the system.

Previously, it has been shown that bifurcations can occur in the backbone
curves. In this paper we present an analytical method enabling the identifica-
tion of the conditions under which such bifurcations occur. The method, based
on second order nonlinear normal forms, is also able to provide information
on the nature of the bifurcations and how they affect the characteristics of the
response.

This approach is applied to a two-degree-of-freedom mass, spring, damper
system with cubic hardening springs. We use the second-order normal form
method to transform the system coordinates and identify which parameter val-
ues will lead to resonant interactions and bifurcations of the backbone curves.
Furthermore, the relationship between the backbone curves and the complex
dynamics of the forced system is shown.
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1 Introduction

Many vibration problems in engineering concern forced, lightly damped and
weakly nonlinear multi-degree-of-freedom (MDOF) systems. In these systems,
resonant peaks are typically observed in the frequency response. This pa-
per considers the response of such systems, and how they can be described
in terms of interactions between the resonances. Many authors have consid-
ered problems of this type, although the majority have considered the case
of single-degree-of-freedom nonlinear oscillators. Background material on cou-
pled, forced oscillators can be found in [1–6].

Backbone curves describe the behaviour of the underlying Hamiltonian sys-
tems (i.e. when the systems are unforced and undamped), and relate directly
to the behaviour of the forced systems. As a result the backbone curves can be
used to extract information about the shape and location of the peaks in the
frequency response. Here the second-order normal form technique proposed by
[7] for MDOF systems is used to identify resonant interactions and develop
analytical expressions for the backbone curves. Particular attention is paid to
the bifurcation of the backbone curves and their significance.

Lewandowski [8] first pointed out that bifurcations can occur in the back-
bone curves of a two-mode model applied to the free vibration of an un-
damped, unforced beam with axial loading. The same author analysed beams,
membranes and plate structures using the same two-mode model approach,
derived using a Galerkin decomposition [9].

Lewandowski defined primary (or first non-trivial) bifurcation points as
those at which the trivial solutions lose stability. Trivial solutions are those
where displacement amplitudes equal zero, therefore they are also known as
zero solutions. In the plane of forcing frequency vs. displacement amplitude,
these points occur at the linearised natural frequencies and form the first points
on what Lewandowski called the fundamental backbone curve. Secondary bi-
furcation points are those which exist on the fundamental backbone curve
where displacement amplitudes are non-zero.

The second-order normal forms reduces the dynamics of a system to a set
of time-independent algebraic equations. This provides analytical expressions
for the backbone curves which can be used to define the conditions for which
the bifurcations occur, giving valuable insight into the relationship between
the physical characteristics of a system and its response.

The use of the normal form analysis offers several advantages over the
approach taken by Lewandowski. Most notably it (i) allows phase dependence
between the two backbone curve solutions to be quantified, (ii) identifies all
the potential internal resonances for the system being considered, and finally
(iii) relates the backbone curves to the forced, damped response.

After a general description of the method, the normal form approach is
demonstrated using a two-degree-of-freedom mass, spring, damper system,
with the masses coupled by a cubic spring. This system has been studied
in the context of bifurcating nonlinear normal modes [10] and localisation [11–
13], in which the example discussed has a special symmetry achieved when
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the coupling spring has no linear stiffness. This means that the primary and
secondary bifurcation points, as defined by Lewandowski, are coincident. The
special symmetry in [11,12] is essential in order to derive simple analytical
expressions. The more general case, where the coupling is via a spring with
both linear and cubic stiffness, was considered by [6]. It is this generalised
case that we consider here. In addition we are predominantly interested in the
secondary bifurcations and the subsequent dynamical behaviour.

After a brief description of the method in Section 2, the analysis of the
two-mass system with nonlinear stiffness is presented in Section 3. Finally,
after discussion of how the backbone curves describe the underlying dynamics
of the forced response in Section 4, conclusions are drawn in Section 5.

2 Analytical methods

In this section a brief description of the second-order normal form technique [7]
(a variation of the more common first-order normal form [14,15] ), used for the
derivation of the backbone curves, is provided. Here the method is presented
in its most general formulation; however detailed discussions are given in [16,
17]. This approach can give valuable insight into the physics of the observed
behaviour, as will be seen in Section 3.

While it is possible to conduct the analysis shown here using other approx-
imate analytical methods, we select the second-order normal form technique
due to its matrix formulation which allows more convenient straightforward
computation. In addition, the homological equation which arises in the method
can be used to easily identify resonant interactions between the backbone
curves. The method consists of three transforms:

– A linear modal transform – the system is projected onto the linear modes
(i.e. the modes of the underlying linear system). Note that throughout this
paper, the term mode refers to the projection onto the linear modes.

– A forcing transform – this removes, from each modal equation of motion,
any forcing terms that are not close to the natural frequency.

– A nonlinear near-identity transform – this removes any non-resonant terms
from each equation of motion.

Once these transforms are applied, each mode is described by an equation of
motion consisting only of the terms resonating at one frequency — the response
frequency (ωri for the ith mode). This allows the harmonic components to be
balanced, removing any time-dependence and enabling a solution to be found
relatively easily. For the sake of clarity we point out that the frequency at
which the ith mode responds is named here as ωri, whereas the ith underlying
linear natural frequency is denoted ωni.

The first two transforms are not presented as the linear modal transform
is straightforward and the forcing transform is unity, as the backbone curves
describe the unforced system. Broadly adopting the notation used by [17], we
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write the resulting unforced modal dynamics as

v̈ +Λv +Nv(v, v̇) = 0, (1)

where v is a vector of modal displacements, Λ is a diagonal matrix where the
ith diagonal term is ω2

ni and Nv contains the nonlinear coupling terms, which
are assumed to be small. The final step in the technique is the near-identity
nonlinear transform v → u

v = u+H(u, u̇)

v̈ +Λv +Nv(v, v̇) = 0 −→ ü+Λu+Nu(u, u̇) = 0,
(2)

where H is used to store terms that do not contribute to the fundamental
response. Meanwhile, all nonlinear terms resonating at ωri, for the ith mode,
are captured in Nu. This is distinct from the harmonic balance technique, as
the non-resonant terms are not discarded and may later be combined with the
fundamental response.

This then allows the equation of motion in ui, where ui is the ith element
in u, to be solved using the solution ui = Ui cos(ωrit − φi), where Ui is the
amplitude and φi is the phase of the fundamental response of the ith mode.
This is more conveniently expressed as

ui = uip + uim =
Ui

2
e+j(ωrit−φi) +

Ui

2
e−j(ωrit−φi). (3)

To calculate H and Nu, we write Nv in the form

Nv(u, u̇) = nvu
∗(up,um), (4)

where u∗ is a column vector containing all the combinations of variables in
terms that appear in Nv after the substitution ui = uip +uim has been made.
In general, for a system with I modes, the ℓth element is given by

u∗
ℓ =

I
∏

i=1

{

u
sℓip
ip usℓim

im

}

, (5)

which may be used to define sℓip and sℓim – the exponents of uip and uim

respectively. Following the form of Eq. (4), we define

Nu(u, u̇) = nuu
∗(up,um), (6)

H(u, u̇) = hu∗(up,um). (7)

It is common to define a book-keeping parameter ε which is associated with
small terms, such as the nonlinear ones, to allow us to track the order of
“smallness” of the subsequent terms, see for example [18]. Here we simply
neglect terms that are generated from the product of small terms, as these are
of order ε2 and above.
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Fig. 1: A schematic diagram of a two-mass oscillator with a symmetric struc-
ture.

By substituting the transform equation, v = u + H, into the dynamic
equation for v, Eq. (2), and comparing to that for u, to order ε1 we find the
relationship

nv,iℓ = nu,iℓ + βiℓhiℓ, (8)

where nv,iℓ is element {i, ℓ} of nv etc, corresponding to the ith mode and ℓth

element in u∗, and βiℓ (element {i, ℓ} of a matrix βββ) is given by

βiℓ =

[

I
∑

k=1

(sℓkp − sℓkm)ωrk

]2

− ω2
ri, (9)

where we have used the general representation for the ℓth term in u∗, see
Eq. (5).

Equation (8) represents a choice, as there is just one equation to find
the two unknowns nu,iℓ and hiℓ. To keep the equation of motion simple it is
desirable to set nu,iℓ = 0, such that hiℓ = nv,iℓ/βiℓ, where possible. However
the technique relies on the transform v = u + H being near-identity (such
that H is order ε1). For the case where βiℓ is small, or zero, this cannot be
achieved while setting hiℓ = nv,iℓ/βiℓ. Hence, when βiℓ is zero (or small) we
set nu,iℓ = nv,iℓ and hiℓ = 0, and these terms are referred to as the resonant
(or near-resonant) terms respectively.

Having identified the resonant terms, the transformed equation for the dy-
namics in terms of u (see Eq. (2)) can be found. The solution to this may be
found by substituting for ui using Eq. (3) allowing time-independent expres-
sions in terms of modal amplitude and phase to be obtained. These expressions
can then be used to identify the backbone curves. We will demonstrate this in
the next section with the aid of an example.

3 A two-degree-of-freedom system

We now consider a two-mass oscillator with a symmetric structure, as shown
in Figure 1. Identical springs, with force-deflection relationships F = k(∆x)+
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κ(∆x)3, connect the two masses to ground and another spring, with a force-
deflection relationship F2 = k2(∆x) + κ2(∆x)3, connects the two masses. We
assume that the springs are stiffening, such that κ and κ2 are positive. Lin-
ear viscous dampers also connect the masses to ground (damping c) and to
each other (damping c2). The first and second masses (both of mass m) are
subjected to the sinusoidal forcing P1 cos(Ωt) and P2 cos(Ωt) respectively.

3.1 Backbone curves

The equation of motion of this system, expressed in linear modal coordinates
(see Eq. (1)) using modeshapes {x1, x2}

T = {1, 1}T and {x1, x2}
T =

{1, −1}T for the first and second mode respectively, is

v̈ +Λv +Nv = Pv where: (10)

Nv =
κ

m

(

v31 + 3v1v
2
2

3v21v2 + γv32

)

+

[

2ζ1ωn1 0

0 2ζ2ωn2

]

v̇,

Pv =
1

2m

(

P1 + P2

P1 − P2

)

cos(Ωt).

In this equation we have also included modal damping and external forcing
terms, which we later use when simulating the full system. In addition, here
γ = 1 + (8κ2/κ), 2ζ1ωn1 = c/m, 2ζ2ωn2 = (c + 2c2)/m and Λ is a diagonal
matrix of the squares of the linear natural frequencies ω2

n1 = k/m and ω2
n2 =

(k+2k2)/m. For convenience, we define modal forcing amplitudes in terms of
the equivalent linear system Pm1 and Pm2 such that

Pv =

(

Pm1

Pm2

)

cos(Ωt), (11)

i.e. Pm1 = P1 + P2 and Pm2 = P1 − P2.

The backbone curves give the underlying structure of the amplitude of
displacement response at ωri by considering the unforced, undamped system,
which for this example is

v̈ +Λv +
κ

m

(

v31 + 3v1v
2
2

3v21v2 + γv32

)

= 0. (12)

For convenience we now define r as the ratio between the response frequen-
cies, such that ωr2 = rωr1. Using this, the nonlinear terms can be rewritten in
the form of Eq. (4) and the corresponding βββ matrix can be calculated using
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where, in βββ, a dash has been used where the corresponding value in nv is zero
and hence the value in βββ is of no importance. The resonant terms in nv are
identified as those corresponding to terms in βββ with a value of zero. These fall
into two categories: those which are zero regardless of the value of r, which we
call the unconditionally-resonant terms; and those which are zero for a specific
value of r, which we call the conditionally-resonant terms.

For all resonant terms we set the corresponding terms in nu as equal to
those in nv. The resulting dynamic equations are

ü1 + ω2
n1u1 +

3κ

m
[u1pu1mu1 + 2u2pu2mu1 (13a)

+δ(r − 1)(u1pu
2
2m + u1mu2

2p)
]

= 0,

ü2 + ω2
n2u2 +

3κ

m
[γu2pu2mu2 + 2u1pu1mu2 (13b)

+δ(r − 1)(u2
1pu2m + u2

1mu2p)
]

= 0,

where ui = uip+uim, Eq. (3), has been used and δ is the Dirac-delta function.
Making the substitutions uip = (Ui/2)e

+j(ωrit−φi) and uim = (Ui/2)e
−j(ωrit−φi),

we can write Eqs. (13) in the form

χie
+jωrit + χ̃ie

−jωrit = 0, (14)

where χi and χ̃i are complex conjugates. Inspecting the components of Eqs. (13)
corresponding to χi, and noting that ωr2 = rωr1, leads to the time-independent
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equations

[

−ω2
r1 + ω2

n1 +
3κ

4m

{

U2
1 + U2

2

(

2 + δ(r − 1)e+j2(φ1−φ2)
)}

]

U1 = 0, (15a)

[

−r2ω2
r1 + ω2

n2 +
3κ

4m

{

γU2
2 + U2

1

(

2 + δ(r − 1)e−j2(φ1−φ2)
)}

]

U2 = 0. (15b)

There are two straightforward solutions to Eqs. (15) which can be found by
setting U1 and then U2 to zero. These single-mode responses describe the
backbone curves S1 and S2 as

S1 : U2 = 0, ω2
r1 = ω2

n1 +
3κ

4m
U2
1 , (16)

S2 : U1 = 0, ω2
r2 = ω2

n2 +
3κγ

4m
U2
2 . (17)

Solutions in which both modes are present are also possible if both expres-
sions in the square brackets in Eqs. (15) are zero. Considering this, if r 6= 1 only
unconditionally-resonant terms are present in the expressions. These terms do
result in coupling between the modes however this coupling is only by am-
plitude and not by phase. Phase-independence between modes indicates their
interaction is non-resonant.

For the special case where r = 1, conditionally-resonant terms (the terms
multiplied by δ(r − 1)) are also present. These terms do result in phase-
dependence, leading to a resonant response with modal cross-coupling. It is
the r = 1 case that we now consider, which is achieved by setting k2 ≪ k such
that ωn1 and ωn2 are close.

The imaginary parts of Eqs. (15) lead to sin (2|φ1 − φ2|) = 0. Hence
ej2|φ1−φ2| = cos (2|φ1 − φ2|) = ±1, and we may write

p = ej2|φ1−φ2| = ±1, (18)

where p = +1 relates to |φ1 − φ2|= 0, π, 2π, ... i.e. the two modes are in-phase
or anti-phase. The case p = −1 does not correspond to any physical solution
of this system and therefore is not considered.

Following these considerations, Eqs. (15) can be arranged as

[

−ω2
r1 + ω2

n1 +
3κ

4m

{

U2
1 + 3U2

2

}

]

U1 = 0, (19a)

[

−ω2
r1 + ω2

n2 +
3κ

4m

{

γU2
2 + 3U2

1 )
}

]

U2 = 0. (19b)

In addition to the solution given in Eqs. (16) and (17), further solutions are
possible by setting both expressions in the squared brackets to zero. This gives

ω2
r1 = ω2

n1 +
3κ

4m

{

U2
1 + 3U2

2

}

= ω2
n2 +

3κ

4m

{

γU2
2 + 3U2

1 )
}

, (20)
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or, when rearranged

3κ

4m

{(

2−
8κ2

κ

)

U2
2 − 2U2

1

}

= ω2
n2 − ω2

n1, (21)

where it has been recalled that γ = 1 + (8κ2/κ).
From Eq. (21) the following expression for U2

1 can be found

U2
1 = (1− 4

κ2

κ
)U2

2 −
2m

3κ
(ω2

n2 − ω2
n1). (22)

From inspection it can be seen that, as U1 must be real, two conditions exist

κ ≥ 4κ2 and U2
2 ≥

2m

3(κ− 4κ2)
(ω2

n2 − ω2
n1), (23)

which must both be satisfied. Manipulation of Eq. (20), using Eq. (22) to
eliminate U2

1 , leads to the amplitude-frequency relation

ω2
r1 = ω2

r2 =
3ω2

n1 − ω2
n2

2
+

3(κ− κ2)

m
U2
2 . (24)

This solution to Eqs. (19) results in two additional backbone curves, S3+ and
S3−, both having the same amplitude-frequency relationship

S3±: U1 =

√

(1− 4
κ2

κ
)U2

2 −
2m

3κ
(ω2

n2 − ω2
n1), (25a)

ω2
r1 =

3ω2
n1 − ω2

n2

2
+

3(κ− κ2)

m
U2
2 , (25b)

but characterised by the phase differences

S3+: |φ1 − φ2|= 0, (26a)

S3−: |φ1 − φ2|= π, (26b)

i.e. S3+ is an in-phase solution and S3− is an anti-phase solution.
It is worth noting that when U1 = 0, Eq. (25b) leads to U2

2 = 2m(ω2
n2 −

ω2
n1)/3(κ− 4κ2), and the response frequency equation simplifies to

ω2
r2 = ω2

n2 +
3κγ

4m
U2
2 , (27)

which is the same expression found for S2, see Eq. (17). This implies that the
S3+ and S3− meet S2 when U1 → 0. This defines a bifurcation point in the
backbone curve S2.

From this we can see that (i) as κ → 4κ2 from above, the magnitude
of U2 at which the bifurcation occurs tends to ∞ and (ii) as k2 → 0, then
ωn2 → ωn1 and the magnitude of U2 at which the bifurcation occurs tends
to 0. This second limit corresponds to the system studied in [19], where the
system behavior is presented in terms of the ratio of displacement amplitude
rather than in the frequency domain.
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Fig. 2: Backbone curves for ωn1 = 1, ωn2 = 1.005, κ = 0.4. The panels
in the left and the right column show the cases κ2 = 0.2 (κ < 4κ2) and
κ2 = 0.05 (κ > 4κ2) respectively. In the left and right row, the projection
of amplitude of the fundamental response in terms of u1 and u2 is shown.
In the third row, the backbone curves are represented in the projection of
amplitude of displacement of the first mass. Stable solutions are shown with
solid black lines, whereas unstable solutions are represented by dashed red
lines. Bifurcation points are indicated with red bullets labelled BP. (Strictly
these are the secondary bifurcations points as defined by Lewandowski [8,9]).
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Figure 2 shows the backbone curves for the cases where ωn1 = 1, ωn2 =
1.005, κ = 0.4. The panels in the left and right columns show the backbone
curves for values κ2 = 0.2 and κ2 = 0.05 respectively. The left column shows
the two distinct backbone curves corresponding to solutions S1 and S2, see
Eqs. (16) and (17). For this case κ < 4κ2 and so no further real solutions exist.
As κ > 4κ2 in the right column, the additional solutions S3+ and S3− (see
Eqs. (25) and (26)) appear alongside the modified S1 and S2 solutions.

All panels show the backbone curves in the projection of response fre-
quency (generalised as Ω = ωr1 = ωr2) against a displacement. The first and
second rows show the amplitude of displacement of the fundamental response
of u1 and u2 (i.e. U1 and U2 respectively). In the third row, the amplitude
of displacement of the first mass is shown. This can be found by consider-
ing the contributions of u1 and u2 to x1. Note that in this row, the panel
on the left would show identical results, if instead, the displacement ampli-
tude of the second mass was considered. On the other hand, in panel on the
right, the branches S1 and S2 would be identical but S3+ and S3− would be
swapped. This is due to the bifurcation in S2 breaking the symmetry between
the displacement of the two masses which, for a given frequency, have different
displacements amplitudes on S3±.

In both cases, the approximate algebraic solutions calculated using the
second-order normal form technique agree almost exactly with the backbone
curves computed using the continuation software AUTO-07p [23]. Here, the
numerical solutions are not shown as the error in the frequency range consid-
ered is less than 0.1% making the two solutions indistinguishable.

3.2 Stability of the backbone curves

The stability of the backbone curves can be analyzed using the solution pro-
vided by Eqs. (13). In this work only the stability of S2 is derived, although
the study may be extended to the other branches.

On the branch S2, as shown in top-right panel in Figure 2, u1 is equal
to zero and the solution is comprised only of u2. As is done when deriving
Arnold tongues, see for example [1], we can determine the stability of S2 by
considering the dynamics of u1 about its zero-solution. On the S2 branch,
when the zero-solution of u1 is unstable, the S2 solution is also unstable.

Using Eq. (13a), for the case where r = 1, we have

ü1 + ω2
n1u1 +

3κ

m

[

2u2pu2mu1 + u1pu
2
2m + u1mu2

2p

]

= 0. (28)

Since we are considering u1 in the proximity of its zero-solution, the u1pu1mu1

term is very small and so has been neglected. The stability is found by allowing
the amplitude and phase of u1 to be a slowly varying function of time using
the parameter ε to denote “smallness”. Using this we may write u1 as

u1 = u1p + u1m =
U1p(εt)

2
ejωr1t +

U1m(εt)

2
e−jωr1t. (29)
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Following the approach of [20], but using a complex exponential rather than
trigonometric representation, we then write

ü1 = −ω2
r1u1 + jωr1ε

(

U̇1p(εt)

2
ejωr1t −

U̇1m(εt)

2
e−jωr1t

)

+O{ε2}, (30)

where terms of order ε2 are neglected. Substituting this expression into Eq. (28)
and then balancing the ejωt and e−jωt terms gives

U̇1p = −j

(

ω2
r1 − ω2

n1

ωr1

)

U1p + j
3κ

4mωr1

(

2U2mU2pU1p + U2
2pU1m

)

, (31a)

U̇1m = j

(

ω2
r1 − ω2

n1

ωr1

)

U1m − j
3κ

4mωr1

(

2U2pU2mU1m + U2
2mU1p

)

. (31b)

These equations can be rearranged into the form U̇1 = f(U1p, U1m, U2p, U2m),
whereU1 = [U1p U1m]T . The stability of the zero-solution can then be assessed
by considering the eigenvalues of the matrix of derivatives of f , fU1

, about the
equilibrium solution U1 = 0, see [20], calculated from

fU1
=

j

ωr1





3κ
4m U2pU2m −

ω2

r1−ω2

n1

2
3κ
8mU2

2p

− 3κ
8mU2

2m − 3κ
4m U2mU2p +

ω2

r1−ω2

n1

2



 , (32)

The eigenvalues of fU1
, λ, are given by

ω2
r1λ

2 +

(

3κ

4m
U2
2 −

ω2
r1 − ω2

n1

2

)2

−

(

3κ

8m
U2
2

)2

= 0, (33)

where U2
2 = U2pU2m has been used.

Two possible conditions can be determined from the roots of this equation:
when the roots are both purely imaginary the system is marginally stable,
when the roots are real the system is unstable. This implies that the bifurcation
point occurs when the roots are both zero, i.e. when

∣

∣

∣

∣

3κ

4m
U2
2 −

ω2
r1 − ω2

n1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

3κ

8m
U2
2

∣

∣

∣

∣

. (34)

By substitution of the expression for S2 (given by Eq. (17)) predicts a bifur-
cation at

ω2
r2 =

3ω2
n2 − γω2

n1

3− γ
U2
2 =

(

2m

3

)

ω2
n2 − ω2

n1

κ− 4κ2
(35)

This is same point which is obtained by intersecting Eqs. (25) with Eq. (17)
(see Eq. (27)). It is also found that below this bifurcation S2 is stable, and
above it is unstable.

To further verify this result, the stability of the solution has been eval-
uated numerically using the numerical continuation software AUTO-07p, as
discussed in [21]. The software determines the stability of the branches of the
backbone curves using Floquet theory, see for example [22]. The condition for
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the stability of a periodic orbit is that all Floquet multipliers have a modu-
lus no greater than one. The stability of the other branches have also been
determined.

Figure 3(a) shows the S2 backbone curve along with the S3+ and S3−

branches that bifurcate from it. S1 has been omitted as a trivial case here, as
it is stable throughout. The stable section of the S2 branch is denoted by S2 s,
and the unstable section by S2u. Of the four Floquet multipliers associated
with the undamped system, two are always unity. The paths of the other two,
non-unity, multipliers are tracked as amplitude X1 increases and the locus of
the solutions are shown in Figure 3(b). At X1 = 0, the two non-unity Floquet
multipliers are indicated by markers × and sit on the unit circle (indicated
by grey dotted curve). As X1 increases, the solution follows the S2 s backbone
curve which also sits on the unit circle, and hence is neutrally stable. As we
reach the bifurcation point, the Floquet multipliers both become unity. From
here there are two possibilities: (i) staying on S2, the multipliers follow the real
axis with one having modulus greater than one, hence stability is lost (labeled
S2u); (ii) from the bifurcation point, following the S3+ or S3− branches, the
Floquet multipliers stay on the unit circle as shown by the grey lines and
therefore remain neutrally stable.

From this, and using bifurcation theory for Hamiltonian systems, in the
displacement amplitude projection this is a pitchfork bifurcation [3,5].
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Fig. 3: The stability of the S2, S3+ and S3− backbone curves for the system
where κ2 = 0.05: (a) the backbone curves; (b) the paths of the two non-unity
Floquet multipliers as the amplitude of response increases from zero (marked
as ×). Note the other two Floquet multipliers are equal to 1 throughout, and
so do not affect the stability.

4 Discussion

The backbone curves play an important role in determining the response of
the system to an external forcing. Here, a brief example of the relationship
between the forced response and the backbone curves is provided. The system
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is forced in the second mode, such that [Pm1, Pm2] = [0, 6] × 10−3, and a
damping ratio of ζ = 0.004 is considered.

The forced response has been computed from an initial steady state solu-
tion, found with numerical integration in MATLAB. This was then continued
in forcing frequency using the software AUTO-07p [23].
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Fig. 4: Displacement amplitude of the first mass when the system is forced in
only the second mode (i.e. [Pm1, Pm2] = [0, 6]×10−3) with damping ζ = 0.004
for both modes. Other system parameters: ωn1 = 1, ωn2 = 1.005, κ = 0.4 and
κ2 = 0.05. The black dots mark the bifurcation of the second-mode-only forced
response curve and the red asterisks indicate fold points. The thick grey and
red lines represent the stable and unstable backbone curves respectively. Note
that as forcing is in the second mode here, S1 (containing mode 1 only) is not
followed, and hence has not been plotted.

Figure 4 shows the displacement of the first mass, X1, for the system
whose backbone curves are presented in the right column of Figure 2. The
familiar shape of the response of a Duffing oscillator can be seen following
the S2 backbone where the response is also confined to just the second mode.
On this curve there are two bifurcation points, indicated with black dots.
The additional curves leading off these points are responses composed of both
the first and second resonant responses. It can be seen that their underlying
dynamics are captured by the S3+ and S3− backbone curves. As with the
branch attracted to S2, these responses cross the S3 branch in the immediate
vicinity of a fold point. Details of the relationship between backbone curves
and forced responses are beyond the scope of this work. Nevertheless, the
method and findings presented in this work are able to offer a new perspective
with which to further the understanding of this process.
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5 Conclusions

This work has demonstrated the use of the second-order normal form method
for the computation of backbone curves. We have shown that the applica-
tion of the method to the unforced, undamped equivalent of a system pro-
vides time-independent, analytical expressions describing the backbone curves.
These expressions can be used to relate the physical properties of the system
to characteristics of its behaviour. The backbone curves also provide a simple,
graphical representation of the resonant behaviour of the system. Further-
more it has been shown that internal resonances of the system can be related
to bifurcations of the backbone curves. We have also demonstrated how these
results may be used to determine the stability of the backbone curves and
predict the existence and location of bifurcations.

In comparison to previous work, this presents a more general formulation
with an approach that may be extended to a variety of models with a higher
number of degrees-of-freedom. This method also allows us to quantify phase
dependence between the backbone curve solutions and to highlight the exis-
tence of internal resonances in the response. The expressions obtained in the
application to a 2DOF system agree with the results found by Lewandowski.
Furthermore this approach has been validated by a comparison with the so-
lutions obtained via numerical continuation: the maximum deviation between
the two predictions is less than 0.1% – as a result of the assumptions made in
the formulation of the method.

A forced response for this system was also computed and superimposed
with the relevant backbone curves. Due to the correlation between the back-
bone curves and the forced response, a simplified, analytical interpretation of
the complex behaviours of the system is provided. This particular aspect will
be the subject of further investigation in future work.
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