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Abstract 

The 2022 World Cup creates great opportunities for the country of Qatar, but also poses significant 

challenges. In this study the main challenge of maintaining thermal comfort conditions within the football 

arenas is presented, with respect to the heat stress index (HSI) and the aero-thermal comfort thresholds 

established for opened stadiums. Potential cooling strategies for delivering tolerant comfort levels are 

introduced, followed by their functional strengths and limitations for the hot-humid climate of Qatar. An 

estimation of the cooling load for semi-outdoor stadiums in Qatar is also presented. The results, produced by 

dynamic thermal modelling, indicated that a load of 115 MW h per game should be at least consumed in order 

to provide both indoor and outdoor thermal comfort conditions. Finally, the use of solar energy technologies 

for the generation of electricity and cooling are evaluated, based on their viability beyond the 2022 World Cup 

event, towards the nation’s targets for sustainability and lasting legacy. 

 

Highlights: 
 
• Provision of aero-thermal comfort conditions within the sport facilities. 

• Higher efficiency of solar sorption systems in hot-humid climates. 

• An estimated cooling load of about 115 MW h per game is required. 

• Balancing techniques to meet carbon neutrality commitment. 

• Forthcoming local and national community benefits. 
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1 Introduction 

Sport is a dynamically growing sector that may successfully contribute to economic development and profile 

enhancement of the corresponding host county, through various channels [1]. Sport mega-event organisations 

may operate for the benefit of international development, strengthening of urban infrastructure construction 

and services, with regard to sustaining prosperity [2]. 

http://www.sciencedirect.com/science/article/pii/S2210670714000857
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Qatar, the FIFA’s World Cup 2022 host city, aims to achieve these targets, as part of the country’s long-term 

aspirations, based on the four Pillars of the Qatar National Vision 2030 [3]. The nation plans the 

implementation of social, economic, human and environmental strategies that will ensure the provision of 

adequate reserves for future generations, via development [3]. The World Cup will be a significant milestone 

on this journey, since it will be the first Middle Eastern country hosting this important sporting event [4]. The 

winning bid, nevertheless, demands from the host county to accelerate the enactment, as well as the 

implementation of its plans, as far as the research and the constructional segment of the event are concerned. 

Awareness of the successful and on time event’s delivery has been expressed, due to the limited existing 

infrastructure and the large conceptual design ideas that have been revealed. Although Qatar has gained 

recognition for its ability to host large scale events, regarding previous events, such as the FIFA U-20 Football 

Cup 1995 [5], XV Asian Games 2006 and AFC Asian Cup 2011, concerns have been raised in the media, 

surrounding the effective implementation of the proposed events, due to its prominent climatic characteristics. 

The Qatar Football Association (QFA) has committed to deliver, within FIFA’s technical requirements, 
conditions that will satisfy both the player and user thermal comfort criteria, by developing cooling 

technologies classified as environmental friendly, thus promoting sustainability [6]. 

The present study focuses on the various challenges that Qatar will confront, particularly related to the 

provision of comfort conditions in hosting areas, using pioneering environmentally friendly cooling 

technologies. The holistic approach of the spatial and temporal characteristics is presented, followed by 

analytical scientifically based interpretations concerning the attainment of aero-thermal comfort with 

technologies that are to be implemented within the context of the requirements that FIFA has set and the 

commitments that Qatar has made. A preliminary assessment of the cooling load requirements during the 

event is also presented, produced by dynamic thermal modelling software. The importance of the results will 

give an overview of the energy load that needs to be either produced from renewable sources or balanced from 

the national electrical grid as Qatar has committed to deliver a carbon neutral World Cup and a legacy based 

on sustainable development principles. 

2 Climate 

Qatar experiences living conditions under a temperature range of 25-46oC during the summer season [7] that 

if combined with a relative humidity of up to 100%, can create a sensation of temperature more than 50oC [8]. 

These temperatures greatly exceed the exposure threshold of National Oceanic and Atmospheric 

Administration’s (NOAA) heat stress index, as depicted in Fig. 1. Temperature values of such intensity are 

extremely dangerous and may cause heat illnesses to people that have prolonged exposure to direct sunlight 

[9]. 
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Fig. 1 Heat index chart [9]. 

In an event with an extended duration, such as the World Cup, visitors will be exposed involuntary to the 

extreme and unprecedented (for some) temperatures [10]. However, if  adequate mitigating measures, 

including shading and rehydration are provided, occupants can show a certain tolerance to the adverse 

environmental conditions prevailing in hot climates [11], [12]. 

The situation is considered to be more complicated when assessing the heat stress risk regarding the football 

players. Experimental studies have shown that the probability of placing player’s integrity into danger is 

extremely high, when exercising in hot climates, because their core temperature may be increased up to 

41.5oC [13]. Under harsh playing conditions, not only their thermoregulatory response is disrupted, but also 

their exercise performance is compromised [10], [14]. 

Heat stress conditions of such extent have been recorded in previous World Cup venues organised in semi-hot 

regions, where midday kick-off times were rearranged, due to possible imminent heat risks [15], [16]. 

Similarly, the combination of heat stress and strain exercise was proven to be a dominating factor in players 

performance disruption during the 2006 World Cup held in Germany, with the temperature attaining just 30 

degrees Celsius [17], [18].  

Vigorous exercise of more than 30 min, to which players will be exposed, is of concern to the QFA, in order 

to devise strategies that will prevent hyperthermia and dehydration; two effects that will be compounded by 

the thermal environment [10], [19]. The commonly suggested measure to prevent the heat-induced effects is 

acclimatization that should include at least 100 min of high interval exercise [19]. World Cup teams are given 

4 weeks prior to the event, in order to be prepared, but even then, they will be disadvantaged compared to the 

already weather-familiarised local teams [10]. As far as the players comfort levels are concerned, there are no 

established and widely approved method that can assess their tolerance, since it is a multidimensional process 

dependant on the personal physical and physiological response rate to the prevailing weather conditions [19]. 

The preservation of visitors’ comfort levels, who will not have enough time to allow for acclimatization, is 

going to be achieved by the integration of environmental friendly cooling technologies in all event-related 

facilities. These include stadiums, training sites and fan zones, which must offer comfortable ambient 

environment for all occupants [6]. However, these purpose built technologies have to be fully developed and 
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consequently, their efficiency to be validated for the areas of interest. Irrespective of the mode of 

implementation, the resulting characteristics of the developed designs and microclimate should adhere to 

specific requirements in order to be approved by the International Federation of Association Football (FIFA). 

3 Technical requirements for stadiums 

The construction promise of delivering 12 football stadiums, three of which will undergo large-scale 

renovations, has set a bottom-up budgeting of USD 3 billion [6]. On the other hand, the revealed futuristic 

stadium designs seem to boost the budget’s bottom line even further [20] that in combination with the 

controversial future social-related incorporation, has led to speculation that the World Cup will be conducted 

within 8 stadiums in total [20], [21]. Nevertheless, the decisive number of the football arenas is independent 

of the predefined conditions within the sport facilities. The stadium configuration is the most critical, since it 

has to combine various independent aspects, in the same design approach, producing a functional result. The 

awareness of FIFA, as an event owner, to maintain a high level profile, is reflected in the technical 

recommendations and requirements within the sport facilities that will ensure the favourable conditions for all 

occupants.  

According to FIFA’s official technical guide [22], the microclimate should be expected to provide the 

optimum comfort levels that, in point of fact, fluctuate depending on occupant’s activity [23], [24]. In other 

words, spectators do not have the same comfort limits compared to the intensively exercised players. For this 

reason, FIFA requires a temperature range of 20-25.5oC in all hospitality areas of the stadium [22]. This 

temperature barrier applies for all the areas within a sport facility, including the interior enclosed spaces, the 

spectator tiers, as well as the playing field. The generic stadium aero-thermal comfort thresholds for spectators 

are based on the revised bioclimatic chart [25] and are illustrated in Fig. 2.  

 

Fig. 2 Comfort zone with flexible outlines [25]. 

The chart is representative of the comfort thresholds set for spectators in open stadia and it incorporates four 

dominant climatic parameters; the air temperature, air speed, humidity and solar radiation (see Ref. [25], [26] 

for further details). When stadium configuration and outdoor environmental conditions do not allow the 

natural air distribution (within the temperature thresholds) to be implemented, moderate microclimate 

conditions should be produced, by passive or active cooling techniques [22]. 
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3.1 Aero-thermal comfort master plans 

The Qatari stadium design showcase discloses oculus roof configurations for the majority of the football 

arenas. Based on experimental wind tunnel tests, such a central opening is preferable in cooler climates, since 

it acts as a protector, attenuating the intense airflow beyond the playing field [27]. However, when combined 

with a peripheral continuous opening between the roof and the upper spectator terrace, leads to increase of 

local ventilation rates for the benefit of users in warm climates [26]. A football arena that takes advantage of 

the aforementioned oculus design features is the Stade de France. Its oculus configuration was assessed under 

summer weather conditions [28] and the resultant thermal regions of both comfort and discomfort are depicted 

in Fig. 3. 

 

 

Fig. 3 Roof configuration of Stade de France (top) [29] and the thermal sensation map of the Stade de 

France (bottom) [28]. 

Despite the natural ventilation and the shading shelter actions that these design configurations may offer [30], 

some areas remain exposed to direct sunlight, due to the pitch’s orientation requirements [22]. 

3.2 Evaporative cooling strategies 

Evaporative cooling techniques could be used in addition to the partial control of the air movement and solar 

radiation by structural configurations, since they are considered to be effective strategies for moderating 
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climatic factors in desert climates [31]. Middle Eastern countries traditionally use passive cooling techniques, 

known as the ‘badgir’ wind tower, to deliver interior cool air, usually by creating an air route over a wetted 

mat or a pool of water [32]. Tangram Gulf Associates, presented a stadium configuration (Fig. 4) based on this 

technique that takes advantage of the Venturi effect to supply tolerant air temperatures under spectators’ tiers 
and to the stadium bowl [33]. However, there is little evidence on whether it is functional and if it can 

successfully deliver thermal comfort within the required thresholds.  

 

Fig. 4 Evaporative cooling technique suggestion for 2022 World Cup stadiums [33]. 

3.2.1 Down-draft evaporative cooling tower 

Down-draft evaporative cooling towers (Fig. 5) are recognised as an economic method, if not the only one, to 

reduce ambient temperatures up to 10oC in semi-outdoor spaces [34]. Their integration in a stadium, 

nevertheless, should be considered at an early design phase, due to their space requirements for installation.  
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Fig. 5 Schematic section of evaporative cooling tower, showing installation in glazed courtyard and 

typical temperature profile during summer daytime operation [32]. 

3.2.2 Evaporative mist-cooling system 

Evaporative cooling misting fans are already considered to be part of QFA’s intervention strategies for 
thermoregulatory stress prevention, in favour of football players [6]. Installation in playing fields and training 

sites is deemed necessary and applicable, since they are direct active cooling technologies that may reduce 

instantly the core temperature, protecting players’ performance and health [10]. Although this cooling strategy 

appears to be temporally and locally functional, its water intensity should not be overlooked [35], especially in 

a country like Qatar where more than 50% of water resources arise from energy-demanding desalination 

processes [36]. 

3.3 Solar cooling strategies 

Solar-powered cooling technologies are the most likely and objectively applicable to be used in Qatari 

stadiums, since they can effectively produce low level air temperatures, in an energy-efficient way [37]. They 

are already developed technologies combining cooling techniques with an alternative power source. Examples 

of solar cooling systems applicable in stadium construction are presented in the following section. 

3.3.1 Photovoltaic solar cooling 

Solar cooling systems use photovoltaic panels to produce electricity, subsequently used to power a 

refrigerated system. Depending on the manufacturing material of the cell, the electricity conversion efficiency 

may vary from 10% to 15% [37]. The main disadvantage is that for every 1oC increase over 25oC, their 

performance is reduced for about 0.25-0.45% [38], due to the magnitude of the emitted heat. Summer 

temperatures in Qatar have an average value of 33.4oC entailing a reduction in performance that cannot be 

overlooked. 
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3.3.2 Solar sorption cooling 

Solar sorption cooling systems are heat-driven closed or opened-loop techniques that take advantage of the 

thermal energy collected from solar thermal panels. Depending on the type of the sorbent, closed sorption 

systems are classified as absorption and adsorption cooling cycles [39]. Two basic phases dominate their 

operation function; the condensation and evaporation of the refrigerant, as depicted in Fig. 6. 

 

 

Fig. 6 Principle of an absorption (top) and adsorption chiller (bottom) [40]. 

The chilled water produced, after the evaporation phase, is used by air-handling units to supply the space with 

air of low temperature. With average thermal efficiencies of 0.7 (for single effect) or up to 1.4 (for double-

effect machines) and 0.6, for absorption and adsorption systems respectively [40], their utilisation is 

recommended for hot and humid climates, as opposed to evaporative cooling systems whose performance may 

be attenuated above wet bulb temperature of 25oC, due to the already moisturised air [41]. 

In the case of open-loop systems, there is not an active feedback load. In other words, the waste heat is 

rejected back to ambient. Their operation is based on air dehumidification using desiccants [42], as illustrated 

in Fig. 7. With an operative performance of 0.6, desiccant systems can successfully deliver cool air, with 

smaller driving temperatures than the closed-loop sorption systems [42]. 
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Fig. 7 Principle of a ventilation desiccant cooling system [42]. 

However, the combination of more than one of the previously mentioned solar sorption cooling technologies 

may contribute to an increase in the system’s overall performance, providing lower air temperature values, in 

favour of energy and cost efficiency [44]. The potential of successfully operating a combined system of 

absorption and desiccant cooling cycle in hot-humid climates has been evaluated for enclosed spaces. With an 

overall coefficient of performance (COP) value equal to 1.55, this system can supply air temperatures of 23oC, 

when the outdoor reaches 42oC [44]. 

While there is adequate knowledge on the operation of these technologies, there is a lack of validation in open 

stadium design configurations in hot-humid climates. The adoption of an energy efficient and operative 

cooling system is of paramount importance, as it will act as a catalyst in environment improvement for the 

arena. 

4 Stadium proposal 

4.1 Description of design and technologies 

Initial efforts at achieving thermal comfort conditions with zero carbon emissions were performed by Arup 

Associates in 2010, involving the design and construction of a small scale stadium of 500 seats (Fig. 8). The 

achievement of delivering a stadium facility with thermal comfort conditions of 23oC, when the outdoor 

temperature had reached 45oC, with zero-carbon emissions in total and entirely exposed to the weather 

conditions (open roof), was unprecedented [45]. 
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Fig. 8 Proposed stadium top view (top) [46] and inside perspective view (bottom) [47]. 

In practice, arrays of solar thermal collectors are used to increase water temperature to 200oC. The heated 

water is stored in a tank, constituting the heat supplier for the cooling cycle that comprises of absorption 

chillers and cooling desiccants (see Ref. [45], [46] for further details). The combination of these two cooling 

systems was not randomly selected, since it has already proven its cost-efficiency and high performance in 

humid and warm climate operations [43]. The cooling load produced is then stored in eutectic tanks and when 

needed is supplied by air handling units into the stadium, developing thermal comfort conditions for users. 

4.2 Aero-themal comfort provision mechanism 

During the cooling process of the stadium, the low temperature air is delivered by localised under-seat air 

systems that circulate the clean cool air within the stadium bowl. The maintenance of the required temperature 

levels is achieved by the optimised material selection and geometric configuration that prevent the external 

hot air to penetrate, or be transferred via convection or conduction, and promote the spontaneous air 

recirculation, respectively. 

The under-seat cooling strategy permits the direct thermal comfort delivery to spectators, improving instantly 

their surrounding environmental conditions. The strategy is also less energy intensive compared to an over-

head cooling system, as it has been proven, by CFD simulations, for a large scale, semi-opened football arena 

in Middle East [12]. 

4.3 Design restrictions 

The 500-seat stadium requires the cooling process to be undertaken 4 days before the starting day of the event 

[46]. The corresponding period of time for a large scale stadium would be significantly prolonged and the 

entire process more energy intensive. However, engineers show little concern over scale discrepancies, since 

the alternative option of using oil instead of water has already been considered, in order to bring the 

temperature in the storage tank to up to 200oC [48]. 

On the other hand, the uncertainty of stadium’s response to windy weather needs to be further evaluated [48]. 

The counteraction of the buoyancy effect, when strong wind patterns prevail, tends to attenuate the cooling 

system performance. Restrictions on the spontaneous airflow are imposed by the creation of a primary vortex, 
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naturally formed in centre of the bowl, in stadium configurations with enclosed perimeter, as has been proved 

by computational fluid dynamic (CFD) simulations (Fig. 9) [49].  

 

 

Fig. 9 Analysis grid of an enclosed stadium (top) and its vertical cross-section of the wind-flow pattern 

(bottom) [49]. 

Finally, a basic precondition for the implementation of such a cooling strategy is the consideration of a 

retractable roof in the stadiums design, in order to create the favourable conditions that during full occupancy 

will satisfy the majority of users. However, this does not conform to the submitted bidding designs that 

unveiled oculus roof configurations. For this reason, despite acknowledging the developed technology, the 

feasibility and effectiveness of the system, remain uncertain. 

5 Estimation of energy consumption for cooling 

5.1 Introduction 

The absence of a real scale stadium in Qatar, integrated with cooling technologies, makes the experimental 

evaluation studies on the cooling load consumption requirements uncertain. However, accurate energy 

performance assessment studies on the early design phase are of major importance when aiming for 

sustainable or zero-carbon building structures [50]. For the purpose of this, building information modelling 

(BIM) coupled with building performance simulation (BPS) tools are commonly used for the prediction of 

buildings’ thermal and energy behaviour under a plethora of user-defined criteria [51], [52]. The current study 

aims to investigate the cooling load requirements for a semi-open stadium configuration in the country of 

Qatar, adopting dynamic thermal simulation techniques, combined with BIM tools of high interoperability for 

the design of the model. The investigation study includes the simulation of physical, structural and operational 

parameters, providing an overview of stadium’s energy performance, hoping to assist the decision-making 

process.  
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5.2 Description of the case study 

5.2.1 Stadium description 

The studied stadium structure was modelled in Autodesk Revit design interface and it represents a simplified 

version of a benchmark arena design that is widely used in literature studies [53], [54], [55], [56]; the 

Amsterdam Stadium, with a seating capacity of 50,000. The stadium’s external dimensions of length x width x 

height are equal to 226 m x 190 m x 72 m respectively (Fig. 10a and b). It consists of two spectator terraces on 

the longitudinal direction of stadium’s perimeter (Fig. 10c) and the oculus roof configuration with an area of 

4400m2 represents the only opening that was created for the current thermal analysis. 

 

Fig. 10 (a) Top view of the stadium bowl, (b) external side view of the stadium and (c) cross-sectional 

view of the stadium. 

5.2.2 Structural elements data 

The stadium model was integrated with structural materials fully representative of real stadium structures. 

More specifically, the stadium façade consists of insulated metal sheets, the roof from translucent 

polycarbonate sheets to allow natural daylight penetration, the spectator terraces are concrete structures 

covered with PVC material to replicate the plastic seat surfaces and the floors are reinforced concrete slabs. A 

detailed description of the thermal materials of the construction elements are given in Table 1. 

Table 1 Thermal properties of the selected structural elements that consweatist the stadium envelop. 

Structural element Exterior walls Spectator tiers Roof Slab 

Structural material 
Insulated metal 

sheets 
Concrete slab + 

plastic seat 
Translucent polycarbonate 

sheets 
Concrete 

slab 

U-value (W/m2 K) 0.55 3.0 2.1 0.88 
Admittance (W/m2 K) 1.0 5.2 2.0 6.0 
Solar absorption (0-1) 0.5 0.77 0.6 0.467 

Transmittance (0-1) 0 0 0.4 0 
Total thickness (mm) 75 100 980 400 
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5.3 Thermal analysis parameterisation 

5.3.1 Import design data 

As mentioned earlier, the Autodesk Revit design software was used for the production of the stadium design. 

There were two main reasons that contributed to the selection of the specific software. Firstly, its fully 

detailed design interface enables the development of realistic models and secondly its high interoperability 

with the Ecotect dynamic thermal software permits the direct recognition of all structural and geometrical 

characteristics composing the thermal zones for the implementation of the analysis (Fig. 11). 

a) b) 

Fig. 11 (a) Stadium model designed in Revit software and (b) imported model to Ecotect software. 

Another import precondition for the implementation of the performance simulation study was the creation of 

thermal zones, where the cooling systems will operate. Five thermal zones were created in total, relying on the 

study of Ocuncu et al. (2010) arguing that cooling mechanisms applied close to the area of interest are more 

effective and energy efficient than supplying with cool air the entire stadium bowl [12]. The zonal 

establishment was initially based on internal and external areas and subsequently on occupied levels. Table 2 

presents the resultant thermal zones along with their volumes and maximum occupancy, followed by their 

illustration in Fig. 12 Cross-sectional view of the created thermal zones.. 

Table 2 Zonal division of the internal and external air conditioned areas of the stadium 
Thermal zone Description Level Volume (m3) Max. occupant number 

1 
Internal 

Facility area Ground 143,032 20,000 
2 Facility area First 57,127 10,000 

3 
External 

Spectators’ tiers Ground 75,031 25,000 
4 Spectators’ tiers First 104,881 25,000 
5 Playing field Ground 21,513 100 
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Fig. 12 Cross-sectional view of the created thermal zones. 

 

5.3.2 Climate data 

The accuracy of the analysis is strongly related to the simulation of the regional climate characteristics, in 

order to obtain representative results of the cooling loads requirements to maintain thermal neutrality. Thus, 

historic weather station data for Qatar, built-in the weather library of Ecotect software, were used. Table 3 

presents an illustrative overview of the annual climatological data, with more detailed weather information on 

the summer months, since it is the common World Cup holding period. 
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Table 3 Annual and monthly climate data for the country of Qatar, given by Ecotect weather library. 
Climate 

characteristics Description 

Annual data 

 

Legend:            

Monthly data June July August 

Max. temperature 
(oC) 

41.8 43.9 41.1 

Min. temperature 
(oC) 

23.5 26.3 26.3 

Relative humidity 
(%) 

38 45 52 

Wind speed (m/s) 
& 

wind direction 

 
 

5.3.3 Thermal zone settings 

The thermal performance assessment of the stadium areas requires the definition of additional characteristics 

for each thermal zone. These will correlate the human factor within the context of stadium’s environment. The 
factors that affect the zonal environment and consequently the thermal comfort are associated with the internal 

gains, the wind sensitivity of the structure itself, the integrated cooling mechanisms and the operational 

schedule. The parameters were set under the following assumptions: (i) the stadium operates during summer 

period, (ii) FIFA’s technical requirements regarding temperature, wind and lighting are fulfilled and (iii) the 

football games are conducted daily, during evening times, between 18:00 and 20:00. Table 4 summarises the 

numerical values assigned to the parameters governing the thermal analysis calculation. 
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Table 4 Zone management settings for the thermal analysis calculation. 

General settings Indoor facility areas Spectator terrace Playing area 

Clothing (clo) 0.40 (Shorts and t-shirts) 
Humidity 60% 
Air speed 0.50 m/s 0.7m/s 0.7m/s 
Lighting level 600 lux [22] Upper/lower=1500/2000 lux [22] 2100 lux [22] 
Air flow rate 12 L/s/p 
Wind sensitivity 0.10 ACH 1.5 ACH 1.5 ACH 

Thermal properties 
Active system 
(95% efficiency) 

Full air conditioning Mixed-mode (natural ventilation + cooling) 

Thermostat range 20.0– 26.0oC [22] 
Hours of operation 10:00-24:00 16:00-22:00 17:00-21:00 

User hourly operational profile 

 

5.4 Results and discussion 

The thermal analysis generated results on the average monthly cooling load requirements per thermal zone. 

The results indicate that during July a cooling load of 3764 MW h or 125 MW h/day should be provided at the 

expense of users’ thermal comfort. This value deviates over 8.4% from the cooling load requirements during 

June (3448 MW h or 115 MW h/day) and 1.0% during August (3726 or 124 MW h/day). Remarkable are also 

the values of the expended load for provision of pleasant ambient temperatures in external occupied areas. The 

cumulative cooling load is 31% more than the one required in indoor spaces. An analytic description of the 

monthly zonal cooling load requirements is presented in Table 5. 

Despite the fact that the outdoor cooling mechanisms were scheduled to operate within a limited margin 

before and after the football game duration, the energy needs are exceptionally high. The direct interaction 

with the external prevailing environmental conditions, especially those related to the solar radiation and the 

ambient temperature are of great importance. This implies the necessity for a consciously selected conceptual 

design that will include an optimum stadium topology, integration with materials of high performance and 

cooling techniques that will be environmental friendly, delivering thermal comfort conditions and also 

compensating the energy intensive event. 
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Table 5. Monthly zonal cooling load results. 
Stadium 

area Thermal zone 
Cooling load (MWh) Graphic illustration 

June July August 

 

Indoor 

Gr. Fl. facility area 801 877 882 

1st Fl. facility area 623 673 676 

Total 1424 1550 1558 

Outdoor 

Playing area 148 158 154 

 

Upper terraces 1154 1261 1232 

Bottom terraces 724 796 782 

Total 2026 2215 2168 

All thermal zones 3448 3764 3726 Average daily cooling load 

 

June 115  In:47; Out:68 (MWh) 
July 125 In:51; Out:74 (MWh) 
August 124 In:51; Out:73 (MWh) 

 

This case study is an initial attempt to estimate the energy cooling loads of a semi-open stadium in Qatar using 

a dynamic thermal simulation technique. However, results for the validation of the analysis are not reported in 

the literature. Therefore, it should be mentioned that future discrepancies between results of similar models 

could be observed due to the partly subjective selection of design and analysis parameters. 

Although there is lack of energy simulation studies, legacy reports from previous World Cups in Germany and 

Cape Town have been published, providing information on stadiums’ energy consumption during the events. 
Climatic and regional differences hamper the comparison. However, it is worth noticing that the previously 

conducted World Cup events were providing comfort conditions only to the enclosed areas of the stadium.  

Table 6 correlates the host countries based on their temperature fluctuations for the month of June and the 

average energy expenditures per match. 

Table 6. Energy consumption comparison per World Cup game for three host countries. 
Host 

country 
Temperature in 
June (oC) [57] 

Average total energy 
consumption per game (MW h) 

Energy for thermal comfort 
provision (MW h) 

Germany 11.7-22.3 170 [58] < 17 (Indoors heating only) 
Cape 
Town 

7.8-18.1 220 [59] 28.6 (Indoors heating and ventilation) 
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5.5 Research limitations 

In study of the thermal performance of the semi-outdoor stadium, even if it is calibrated to the maximum 

possible, there are several limitations and assumptions that should not be overlooked. Uncertainties arising 

from the boundary conditions are considered to be the most usual one, due to difficulties of replicating the 

internal and external conditions occurring in the building structure [60]. Moreover, code limitations associated 

with the methodology used from the software are of great importance and should also be mentioned. 

5.5.1 Internal uncertainties 

Internal uncertainties are related to the thermal behaviour of the building regarding the zonal parameters. 

More specifically, the construction details, the operational schedule of the occupants and most important the 

cooling system function are based on rationally selected profiles that may vary from an actual stadium 

structure and a football event, respectively. Consequently, the internal heat gains, which are entirely 

dependent on these profiles, will deviate from the reality. 

5.5.2 External uncertainties 

External uncertainties rely on the fixed climate data assigned to the studied area. Although the weather 

conditions in Qatar are based on historic weather station data, they do not count climate change or the exact 

prevailing conditions for the current or future years. 

5.5.3 Method uncertainties 

The energy performance study was undertaken by the Ecotect dynamic thermal modelling software that uses 

the CIBSE Admittance Method. More specifically, the cyclic admittance method uses the resultant flux 

transfer values of the mean outdoor temperature over a repeated period of 24 h to determine the swing (mean 

to peak) and calculates the resultant indoor temperature based on the steady state heat balance equation, 

according to which all external and internal parameters are assumed to fluctuate sinusoidal ours (CIBSE, 

2006). The Admittance Method assumes that the solar gain are not conducted out of the thermal zone (Rees, 

Spitler, Davies, & Haves, 2000) and along with the assumption of uniform distribution of the transmitted 

shortwave solar radiation over the room surfaces, the analysis results to overestimation of the convective gains 

and consequently the cooling load requirements (Beattie & Ward, 1999). 

6 Bidding for carbon neutrality 

6.1 FIFA’s green plan 

The green policy that FIFA has adopted, delivering sustainable and zero-carbon World Cup venues, became a 

mandatory section in every host country’s master plan, since 2006 [62]. The first implementation of the 

environmental management, considering the reduction of the ecological footprint during football events, 

carried out in collaboration with the German Local Organising Committee, conducive to the 2006 World Cup 

[63]. The total electricity and heat demand of 12.6 GW h and 1.4 GW h respectively that were consumed 

during the venue, contributed to cumulative emissions of 2,890 tonnes of CO2 equivalents [58]. Their 

compensation was achieved through balancing and offsetting strategies, most important of which were the 
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installation of solar panels on the stadium configuration and the purchase of green electricity from 

hydropower [58]. 

The integration of environmental matters into the management plan was also considered in the 2010 World 

Cup, conducted in Cape Town. The total energy consumption of about 16.7 GWh accounted for the 

production of 16,637 tonnes of CO2 equivalents [59]. The adverse effects on the environment were planned to 

be offset by practices aiming to the prevention of future greenhouse gases emissions including, for example, 

the funding of projects supporting the implementation of renewable-based energy production practices [59]. 

However, none of the previous World Cup events included a master plan for the provision of air-conditioned 

air into the stadium bowl, in order to improve the comfort levels. For this reason, the bid promise brings Qatar 

in an unprecedented, for the current status quo, situation because there have not been recorded technologies of 

known performance and energy consumption requirements preserving this scope. 

6.2 Strategies to meet carbon neutrality 

In line with the ‘Green Qatar 2022’ plan, Qatar has pledged to deliver a carbon neutral World Cup [6]. For the 

implementation of this target, the maintenance of comfort satisfaction within the sport facilities should 

primarily rely on energy efficient strategies that will eliminate the dependence from hydrocarbon resources. 

The construction plan includes the installation of solar collector panels either integrated on stadiums, or 

located within an approximate distance from the football facilities, generating sufficient amounts of 

electricity, to partly supply the energy-demanding event [64]. 

Carbon neutrality is planned to be achieved using balancing strategies, including the production of surplus 

energy during one period of year that will be exported to the national electricity grid, in order to compensate 

the amount of the delivered energy during the event [64]. The theoretical base is clearly explained by Sartori 

et al.[65] and depicted in Fig. 13. The import/export balancing technique improves the efficiency of the 

system [65], due to the absence of high peaks in the electricity grid, since the stadium during the operational 

phase will self-consume the generated electricity power. 

 

Fig. 13 Graph representing the net ZEB balance concept [65]. 



20 

 

In the case of a stadium integrated with air conditioning units, an additional balancing strategy that could be 

adopted during its operation is for waste heat recovery. An effective and energy efficient practice would be to 

make use of the recovered heat on the water distillation process [66]. This strategy would be on one hand 

beneficial for the desalination dependent country of Qatar, and on the other hand a sustainable and economical 

technique for green water production [66]. 

6.3 Weather arising restrictions 

Restrictions on the use of solar photovoltaic panels in terms of energy production values are due to the high 

regional temperatures that reduce the performance of the solar system. For this reason, engineers have 

considered solar thermal panels as an additional way of producing energy from heat [64]. However, both 

renewable energy producing systems need to be assessed and their behaviour to be tested under the harsh 

weather conditions, including not only the temperatures, but also the dust and the dew [48], in order to find 

the optimum technologies that will fulfil the carbon neutrality promise. 

7  Lasting commitment 

The World Cup 2022 is incorporated into a long-term development plan, aiming to the accomplishment of 

Qatar’s National Vision 2030 [6]. Focusing on the Four Pillars of Development, this mega-sport event will 

deliver not only to the next generations, but also to other Middle East countries a valuable heritage.  

7.1 Contribution to local community 

7.1.1 Social development 

The stadium constructions, in association with the surrounding infrastructure, including the transport network 

and the urban renewal, presuppose their beneficial exploitation from the local community beyond the sporting 

venue. The multipurpose designed stadiums will be able to host future sport competitions, apart from football, 

as well as public gathering events [67].  

The close vicinity of the sport facilities and the network connection among them will enable the accessibility 

to the sport arenas [6], encouraging more people to get involved in recreational activities. Furthermore, the 

organisation of public happenings will be facilitated, through the whole year, by the integrated cooling 

technologies that will deliver comfort conditions regardless of temperature variations. 

7.1.2 Environmental and economic development 

The development of cooling-supply technologies, mainly based on passive solar systems, will be a major 

investment for the country, since it is compatible with the long-term plan for sustainability [3]. The 

diversification away from the hydrocarbon sources, on which the Qatari economy and energy supply system 

are relied, will be partly replaced by the installation of solar panels that will import energy to the sport 

facilities when needed, and export the excess amount of energy to the electricity grid. In this way, the 

achievement of their commitment for carbon neutrality will be also implemented, since the generated energy 

will power intensive processes, heretofore dependent on oil and natural gas consumptions. 

Considering that Qatar depends entirely on water desalination processes supporting a capacity of 1.2 Mm3/d, 

at the expense of 101.52 GW h/d [68], solar thermal collectors could beneficially operate in favour of water 
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desalting [68]. Taking advantage from the regional high temperature, their operation could enable the direct 

power supply of both heat and electricity-driven desalination units. Furthermore, the incorporation of solar 

energy on water recovery processes, through desalination, is in line with the nation’s intention of 
decarbonising this energy expensive sector, moving towards a more sustainable and renewable-based system 

and economy [70]. 

7.2 Contribution to broad communities 

The broader contribution of the World Cup 2022 will also support the economic and social development of 

surrounding Middle Eastern countries. The stadium designs, based on recycling and easily to assemble 

structural components, will allow the donation of part of the sport infrastructure to developing communities 

that aim to foster their sporting culture [6]. As part of this sustainable strategy, the country of Qatar will also 

benefit, since their small population is inadequate to support such a vast infrastructure capacity. 

Furthermore, the commitment of developing cooling technologies, able to provide tolerant thermal conditions, 

will encourage their subsequent adoption from other countries, also dominated by harshly hot climates. In 

other words, the embracement of the Qatari environmental practices will accentuate further the global aspect 

of their environmental legacy.  

8 Conclusions 

This paper presented the various challenges that Qatar has to face, while approaching the 2022 World Cup. 

With respect to the requirements that FIFA has established, in order to ensure the provision of aero-thermal 

comfort conditions within the stadiums, both passive and active cooling techniques should be adopted. 

Conducive to preserve both visitors’ and players’ physical integrity, the thermal thresholds of 20.0-25.5oC can 

be delivered either by evaporative or solar sorption cooling systems. Based on the climatic characteristics, the 

use of a combined system consisting of solar sorption techniques is deemed to be more effective for the 

cooling load production, especially when it is driven by solar thermal collectors to generate the required 

amounts of heat. The feasibility of these techniques, however, has not yet been tested on large scale arenas or 

under real weather conditions. 

A dynamic thermal simulation was performed based on a simplified stadium design integrated with HVAC 

components. The results showed that a minimum cooling load of 47 MW h per game should be provided to 

produce an indoor thermal comfort environment, with an additional load of at least 115 MW h per game for 

the comfort neutrality of the semi-outdoor occupied areas.  

The final decisions, though, should rely upon the sustainable concept of carbon neutrality that it is planned to 

be accomplished by balancing techniques and to the future viability of the event, two commitments adhered to 

the Qatari National development Vision for 2030, for the delivery of a World Cup widely remembered and a 

valuable legacy extended beyond Qatar’s boarders. 
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