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Abstract

We report on the existence of a bound state in the continuum (BIC) of
quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanos-
tructures embedded in the shallower InGaAs quantum well. BIC appears
as an excited confined dot state and energetically above the bottom of a
well subband continuum. We prove that high height-to-diameter QR aspect
ratio and the presence of a quantum well are indispensable conditions for
accomodating the BIC. QRs are unique semiconductor nanostructures, ex-
hibiting this mathematical curiosity predicted 83 years ago by Wigner and
von Neumann.
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1. Introduction

Semiconductor quantum dots exhibit full 3D confinement for carriers,
giving a few bound integrable states with a discrete spectrum below the
barrier, and free non-integrable states with continuum spectrum above the
barrier. Quantum dots are often reffered to as ”artificial atoms” due to
their discrete part of spectrum and descrete optical resonances arising from
transitions between bound orbital states. Both atoms and quantum dots
can be ionized, when electrons gain sufficient energy to escape the binding
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potential, and subsequently occupy free states - in vacuum in the case of
atoms or bulk in the case of quantum dots.

However, boundness and discretness of an orbital state in quantum dots
do not come necessarily together. We show in this paper that novel semicon-
ductor nanostructures, so called quantum rods, exhibit bound excited state
with an energy embedded in the continuum of other free electronic states,
above the ionization threshold. This is a so called bound state in continuum
(BIC). There are various types of BIC reported since the fundation of quan-
tum mechanics, but none of them were reported for atomic or condensed
matter systems. In what follows, we state only a few. The first predic-
tion originates back to 1929 when von Neumann and Wigner showed such
a possibility by mathematical construction of a bounded potential accom-
modating a BIC [1]. This issue was revitalized by Stillinger and Herick [2]
pointing out, 46 years later, that a BIC could occur in some specific molec-
ular systems. The first artificial semiconductor nanostructure accomodating
the bound state above ionization threshold, was reported in Ref. [3]. This
bound state was argued to be a consequence of Bragg reflection due to the
superlattice. Even though above the barrier, this state wasn’t surrounded by
a continuum of states and it was strictly speaking a quasibound state with
free motion in the lateral direction. Some theoretical proposals and proofs
for the BIC existence were reported for more complex quantum mechanical
systems. For example, coupled system of electrons and nuclei in molecules [4]
was considered. BIC, as an quantum mechanical interference effect can occur
in various abstract models. Some examples of theoretical abstract systems
that support BIC were reported in Refs. [5, 6, 7, 8, 9, 10]. Experimentally,
only photonic crystal systems with the BIC were reported [11, 12]. A the-
oretical design of one-dimensional photonic heterostrucure, supporting the
BIC was provided in Ref. [13].

In what follows, we briefly describe the geometrical and compositional
properties of quantum rods, and based on that we provide proof for BIC
existence. The type of BIC which occurs in quantum rods is somewhat
different from the majority of BICs reported in the literature. The most
similar system supporting the BIC was reported by Robnik et al [14], and
one could say that the BIC reported here represents the 3D generalization of
the 2D potential theoretically constructed in [14]. The rest of the article is
dedicated to the discussion of possible interesting features arising from BIC
existence, together with available experimental data and concluding remarks.



2. Quantum Rods

Quantum rods are elongated InGaAs quantum dots embedded in a In-
GaAs quantum well sendwiched by two GaAs bulk regions. Details of the
QR fabrication can be found in Refs. [15, 16, 17]. A simplified model for
geometric and compositional properties of these nanostructures is presented
in Fig. 1. This structure consists of GaAs/InGaAs quantum well of width
h over the region between —h/2 and h/2. The quantum dot is positioned
within the quantum well so that the bulk region is above and below the dot
in the z-direction and the quantum well is surrounding the rod in the radial
direction. The entire structure is optically active giving the combined fea-
tures of dot, well and the bulk as it is obvious from PL measurements [16, 18].
The heght of the rod and the width of the surrounding well are the same.
This simplified model assumes that entire strucure is cylindrically symmet-
ric, even though such strict symmetry hasn’t been reported. However, the
general conclusions that follow do not depend on the exact shape of the rod
basis. Therefore, we choose the circular shape of the basis in order to sim-
plify theoretical consideration. The quantum rod has higher In content then
the surrounding quantum well which makes the dot energetically deeper than
the surrounding well.

GaAs BULK |©

h/2
In,Ga-xAs
QUANTUM

WELL ) P
~J

~hiz In,Ga-,As

GaAs BULK QUANTUM
DOT

Figure 1: Simplified geometric model of a quantum rod. Cylindrical symmetry is assumed,
so the entire structure can be depicted within the z — p plane. Indium content of the dot
region is larger than in the well region, i.e. z < y.

3. Bound State in the Continuum

One can naively expect that the quantum rod would accomodate bound
states only below the quantum well barrier in the radial direction. However,



due to bulk confinement in the z-direction, bound states could also appear
with energies above the well barrier where also well continuum states are
present giving the BIC. Such a situation resembles the one from Ref. [3]
where a bound state occurs above the barrier of a superlattice, but it isn’t
surrounded by continuum states because the state itself is an impurity state
in the supperlatice, spaced from the continuum superlattice bands. Also,
such a BIC is strictly speaking a quasibound state. We prove that in the
case of a quantum rod, such state above the barrier is indeed surrounded by
the continuum and is indeed bound for a wide range of parameter space.

Existence of the BIC in quantum rods is purely due to the interplay of
the combined well and dot confinement. In order to prove this statement,
consider the idealized quantum rod structure presented in Fig. 1. The quan-
tum rod is considered isolated from the other quantum rods. We assume
cylindrical symmetry of the entire structure, and the value of the embedding
bulk barrier is set to infinity. The assumption of infinitely high bulk walls
does not affect the general conclusion since the same conclusion follows from
the full 8-band k - p model where the values for all barriers in the structure
were taken with precise offsets and included strain effects. Now it becomes
clear that this simplifed model of realistic quantum rods presents the 3D gen-
eralization of the 2D potential constructed by Robnik et al. [14] in order to
obtain the BIC, with the quantum well as escaping channel. However, it was
pointed out in the same reference that existance of BIC in such potential is
sensitive to perturbation, especcially the one which might break the parallel
geometrical shape of escaping channel. That shouldn’t be a problem in this
case, since the existance of quality quantum well seems very eminent, and
the walls of quantum well escaping channel can be considered parallel to the
infinity.

In this simple model we solve one spinless electron single-band envelope
function equation in polar coordinates:

h2 ]- z J— r
(?Vme (r)v + E.(p) + E* (z)) U (r)=EY(r) (1)

where

. (p) = 0 for p < pg
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Values of the effective mass m, (r) are my and m,, in the dot and the well
respectively. In the bulk, where the value of the potential is set to infinity,
the value of the effective mass is unnecessary. The potential offset between
dot and the well region is U,. Parameters p, and h are the radius and the
height of the QR. Due to infinite bulk barrier and cylindrical symmetry,
one can separate the variables of the wavefunction ¥ (r) = ® (¢) Z (2) R (p).
Furthermore, the solutions for ® (¢) and Z(z) are ®;(¢p) = \/%e’w and
Zn(2) = \/%sin ("—h7r (z + %)) where we introduce good quantum numbers [
and n, integer and positive integers respectively. The remaining Schrodinger-
like equation in the radial direction reads:
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We provide the full solution to the Eq. (2) in the Appendix A. In order
to maintain the simplicity, we will demonstrate the existence of the BIC by
considering only the case with [ =0 and n =1, 2.

The effective potential for the last eigenproblem in Eq. 2 is the expression
given in brackets. The effective potential for n = 1 is Ug (p) = E. (p) +
AU (p), where AU (p) = h*7?/2m, (p) h* and for n = 2itis Ueg (p) = E. (p)+
4AU (p). The effective potential for [ = 0 and n = 1,2 is given on Fig. 2.
Note that the effective mass depends only on the radial coordinate since the
value of the effective mass in bulk is irrelevant due to infinite potential.

For n = 1 continuum states or quasi-bound well states occur for £ > U, +
h*n? /2my,h?. For n = 2 bound states might occur for E < U, + h?27% /m,h?,
whereas continuum states occur for £ > Uy, + 2h*7? /m,,h*. Therefore, the
excited bound state for n = 2 in the well quasi-band continuum for n = 1
(above the ionization threshold) might occur at an energy between U, +
*r?/2myh? < E < Uy + 2h*7%/m,h?. Note that the first bound states
for [ = 0, n = 1,2 are so called s-like and p-like states as often refered to
in literature. We give the numerical example of this p-like BIC in the next
section.




4. Numerical Results

In our previous work [19] we have calculated detailed electronic structure
of the realistic quantum rods grown in [16] by using the 8-band k - p method
with strain effects included. In this paper we will use one-band model derived
in previous chapter in order to demonstrate the existence of BIC and 8-band
results will be used as a supporting reference.

For the fabricated rods reported in Ref. [16], the In content in the dot
and the well is typically 0.45 and 0.16, respectively, and their radius was
estimated to be around 5 nm. For such a structure we have extracted the
value of dot-well band offset U, =120 meV, using the full 8 band k - p model
with strain effects included [19]. The height of the rods from Ref. [16] is in
the range 10-40 nm.

In the following, all energies are referenced to the bottom of the con-
duction band of the rod material. For the typical rod height of 10 nm, the
continuum for n = 1 starts at 182 meV, and the p-like bound state for n = 2
is below the n = 2 continuum, starting at 356 meV. The splitting between
s-like ground state and p-like first excited state (which is the BIC) is 200
meV. For the same rod, but with 15 nm height, we find 2 additional bound
states, for [ =0 and n =3 and 4, which are also embedded in the continuum.
There are no descrete states solutions for [ > 0. By increasing the rod height
we generally get more bound states in the continuum, since new bound states
with higher values of n appear. However, the energy of all bound states gets
lower with increasing the quantum rod height [19], and consequently bound
states with the lowest n might sink under the n = 1 continuum, ceasing to be
BIC. Also, by increasing the rod radius, additional states may appear with
higher value of quantum number [. These states may also become BIC.

Energy diagram of a 10 nm tall rod calculated by 8-band model is pre-
sented in Ref. [19]. Energy diagram clearly show the existence of the BIC.
The higher the rod, the higher is the excited dot state embedded in contin-
uum. For the 10 nm tall rod, the splitting between ground state and the
bound state in the coninuum is 150 meV. Higher value of s-p splitting is due
to infinite potential barrier in growth direction which was realistically taken
to be finite in 8-band model. In this work we used one-band model with infi-
nite barriers as a default model in order to get insight in physics arguments
of the BIC existence.

Therefore, we proved the existence of the bound state in continuum as a
sole consequence of combined well-dot confinement, and for a wide range of
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Figure 2: Illustration of the energy span where a BIC can occur. The effective potential
Ues for the remaining one-dimensional radial eigenproblem is given for [ = 0 and n = 1, 2.
For n = 1 continuum states or quasi-bound well states occur for £ > U, + AU. For
n = 2 bound states might occur for F < U, + 4AU, whereas continuum states occur for
E > Up+4AU. Therefore the excited bound state in the well quasi-band continuum might
occur for energies in the range Uy, + h%7?/2m,h? < E < Uy, + 20272 /my, h2.

5. Discussion

The above consideration shows that BIC occurs for higher values of the
quantum number n, i.e. BIC has at least one node in the growth direction.
The quantum rod must be sufficiently tall in order to support at least two
bound states (s-like and p-like) localised in the dot due to the growth confine-
ment, i.e. with quantum number n > 0. With increasing quantum number
n, the effective potential Uy (p) = E. (p) + AU (p) might become a barrier
instead of a well, since my < m,,. Therefore, the upper bound on a value of

Up _mwmg
A2 my—myg

n for which BIC exists is imposed n < % where m,, and my are

effective masses of the well and the dot respectively. We also conclude that
confinement in the growth direction has to be stronger than the confinement
in the radial direction caused by the shallower well. At the same time, well
subbands may have energies lower than the bulk barrier, opening the possi-
bility that their energy equals the energy of the excited bound state of the
dot.

In similar nanostructures, quantum dots in a quantum well (DWELL),
this effect does not exist. Conventional quantum dots have very low height



to diameter aspect ratio and an excited bound state is guided by the radial
confinement, i.e. the excited bound states have nodes in the radial direction
and there is no bound state with nodes in the growth direction. Therefore,
energy of such an excited state cannot be higher than the well barrier in the
radial direction. One thus concludes that quantum rods are unique semicon-
ductor nanostrucures with 3D bound state in continuum as a consequence
of their distinct features: high value of height-to-diameter aspect ratio and
existence of the shallower surrounding well.

We have previously shown in Ref. [19] that only the growth-polarized light
can excite an electron from the ground dot state in the conduction band to
the first excited dot state which can be set to be BIC for particular heights
of the rod. This is so called s-p-like optical transition. Such a transtion is
expected to be a single broadened line. We argue that homogenous broaden-
ing is expected to be high due to effective interference of the continuum with
the bound state via phonons. We also argue that assymetrical lineshape of
such optical resonance should be expected, also a consequence of interference
of the continuum and p-like bound state along the resonant s-p transition.
However, we do not expect that assymetrical lineshape is observable due to
high broadening and other resonances.

Intraband resonances of quantum rods were investigated in Ref. [17],
where the rods were charged with several electrons, enough to completely
fill the 3D confined states below the well barrier. Authors then used growth-
polarized radiation to excite electrons, and they recognized a clear difference
between well and dot resonances. The leading rod resonance comes from tran-
sition from excited and fully charged rod states to unocupied states higher
in the conduction band. However, authors in Ref. [17] argued that electron-
electron interaction in fully charged rods shifts the bound electronic states to
higher energies. Detailed theoretical examination of that situation is required
due to electron-electron interaction which is responsible for perforation of the
2-D electron gas, i.e. continuum. Nevertheless, the short lifetime of the BIC
via fast scattering into the well subband was indicated in Ref.[17]. It is in-
tutively clear that such fast scattering occurs due to the availability of the
continuum of free states around the energy of the BIC.

Altogether, one can conclude that carriers from the bound quantum rod
state can be efficently scattered into the continuum of the well by strong
optical resonance due to ground state-BIC transition and coupling between
the BIC and surrounding continuum. The similar effect, where strong optical
resonance can trigger ionization from bound-like state to continuum state



where carriers can freely move was explained in Ref. [20] for the case of
1-D supercrystal formed of the vertically stacked self-assembled quantum
dots. Specifically, first supercrystal miniband occurs in the barrier gap and
second one in the conduction band. Optical transitions between these two
minibands are strong since those minibands were formed of s-like and p-like
states respectively. Therefore, this structure, if constructed as solar cell,
exhibits increased efficiency due to strong transitions between first miniband
burried in the barrier gap and second miniband burried within the conduction
band continuum. In addition, strong optical transitions between below-the-
barrier and above-the-barrier bound states were observed experimentally in
Ref. [3] in a Bragg-confined quantum well structure.

These exotic optical properties of the BIC could allow experimental ob-
servation of the BIC and associated effects. The simplest version of such an
experiment is based on doped structures with up to one electron per rod. In
such a case, intraband optical transitions at low temperatures are limited to
the transitions from the ground state. One could measure the absorption of
far-infrared light in such doped quantum rods at low temperatures for two
linearly polarized directions of incident light. We have also shown in Ref. [19]
that radially polarized light can excite the electron from the same ground dot
state to the first well subband. This transition is not expected to be a single
broadened line due to the continuum of the well subband, but resonances
are expected to start at an energy corresponding to the bottom of the first
subband of the well. If these resonances for the radially polarized radiation
were at lower energy than the first resonance for the growth-polarized radia-
tion, this would present a clear evidence that the excited bound state has a
higher energy than the minimum of the well subband, proving the existence
of BIC.

Finally, we will briefly discuss a possible application of this effect. If
an electron, excited into the BIC, efficiently scatters into the well subband,
as indicated in Ref.[17], then a radially directed electric field can be used
for efficient transport of carriers in the lateral direction. Strong optical reso-
nance for the growth-polarized radiation is due to bound-to-bound transition
and efficient transport can occur via radially free state channels around the
excited bound state. On the other hand, for radially polarized incident radia-
tion, carriers are excited directly into the well subband [19], from which they
can be easily extracted by a lateral electric field. Therefore, strong resonance
and efficient transport can be obtained for either polarization of the incident
light, paving the way for polarization-independent terahertz detector. Such



a detector is shematically depicted in Fig. 3. Contacts are positioned so to
provide a lateral electric field. Upon absorption of the incident radiation
the electron concentration in the well increases and leads to a photocurrent.
Howevere, strong reverse process was indicated in Ref. [21] that carriers in
the conduction band of the well and bulk also efficiently scatter into the rod
which can degradate the effect of detection. Therefore, this proposition for
the efficient photodetector utilizing bound-to-BIC transition still needs to be
carefully examined.

CONTACTS —___

IO E

Figure 3: Ilustration of the polarization-independent terahertz photo-detector. In this
geometry, the electric field due to the bias on contacts is in the lateral direction.

6. Conclusion

In summary, we proved that quantum rods can accomodate the excited
normalizable state, energetically embedded in the continuum of the subband
of the quantum well embedding it, where the electrons can be ionized into.
We proved that existence of such states is entirely due to the interplay of
two different types of confinement, namely the dot 3D confinement and the
well confinement in the growth direction. We indicated that QRs are unique
structures with this exotic mathematical property. As recently realised struc-
tures, quantum rods have not been extensively studied experimentally, and
we expect that interesting dynamical features due to the combined properties
of bound and free states could arise.

7. Acknowledgments

NP acknowledges the support in part by the University of Leeds Fully
Funded International Research Scholarships program and in part by the Min-
istry of Education and Science, Republic of Serbia, Scholarship program for

10



students studying at the world’s leading universities. VM acknowledges the
support by Ministry of Education and Science, Republic of Serbia (Project
[1145010). Authors acknowledge support of NATO Science for Peace and Se-
curity project EAP.SFPP 984068 and European Cooperation in Science and
Technology (COST) Actions BM1205 and MP1204.

8. Appendix A: Full Solution to the Model

In this appendix we provide the full solution to the radial equation (2).
It can be rewritten as

! (f’pgp) " pd]j;;ﬂ) " ((kg/w)QpZ ~ )R (p) =0 3)

p

where the radial wavenumber depends on quantum number n only and is

defined as ) -
" M/ nem
(kd/w>2 = hg/ E— Ec,d/w -

(4)

Subscripts d and w refer to the dot and well domain, respectively. All ma-
terial parameters are constant within each of these regions. For a fixed n,

the wavenumber squared for the dot region (k7)? is positive in the range of
52 2.2
Tmgh?

de/w h?

energies £ > However, the wavenumber squared for the well region

(k")? is negative in energy interval E < Uy + Zir?j;i
Therefore, the solution for an energy in the interval Bl o B o< U, +
9 9 o 2mdh
27:“,22 reads
CiJi (kgp)  for p < po
Ry (p) = . ()
Co K (ky,p)  for p > po

where we used the standard Bessel function notation and introduced (s / )P =
— (k! / ,)? which is positive real number for the considered energy interval.
The Bessel function of the second kind Y; and modified Bessel function of
the first kind I; are absent from the solution due to their divergent behaviour
in corresponding domains. Boundary conditions at p = py are the continuity
of radial wavefunction and continuity of its derivative divided by effective
mass, and lead to homogeneous system of linear equations in C; and C,
which has a solution if

n

m—le (pokq) — (K (poky,)) = ;ddKl (Pokig) d

a a (J1 (poky)) (6)
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By solving this transcedent equation one obtains the descrete energy spec-
trum for fixed n and [ and those solutions are numbered with index j The
Eq. (6) has to be solved in the energy range 3 hQ" ’T <E<U+3 h2 —z, but
further narrowing of this range exists for [ 7& O Taking into account the
condition that energies of descrete levels have to be above the minima of

effective potential one can show that narrowed energy range for solving the
2.2 2 2

Eq. (6)is%("h§r + )<E<Ub‘|‘2m e

Each descrete energy defines the radial wavenumbers k I and k" / 4 Which

do not depend explicitly on { (only implicitly, via the solutlons for descrete
spectrum). The corresponding radial wavefunctions are

CiJi (k' p) for p < po

oo ki) 1o
where the (] is determined by normalization.

For the remaining range of energies, i.e. £ > U, + 5 the spectrum is
continual and for each energy the corresponding radlal Wavefunctlon is

Byi; (p) = (7)

hn7r

C1Ji (kgp) for p < po

8
Cody (kyyp) + C3Y (kyyp)  for p > po ®)

By using the same boundary and normalization condition one can obtain
the constants C;, Cy and C3. There are infinitely many continuum states
for any energy counted by quantum number [, in contrast to descrete part
of the spectrum where boundary conditions do not allow solutions to exist
for values of quantum number [ higher than some critical value. Such upper
bound to the quantum number [ depends also on quantum number n. For
increasing value of n, the upper bound of [ decreases and eventually there
will be no descrete states for some crutical value of quantum number n.

Consider now the general case of descrete states with quantum numbers

. 2 2.2 2
n = q, and [ = ¢;. Such states can occur in the energy range 2%1 (q’;; + Z—é) <
0

E<U,+ Zj:izz (It is implicitly assumed that ¢, and ¢, are small enough

2
SO h—2 (q’j;f + Z—é) < U+ Z:Z’%Zi .) We want to find the conditions for which
0 w

the continuum with quantum number n = p can embed the given bound
state. The continuum with quantum number n = p exists for energies £ >

. Therefore, if Uy + 3 hg < 2 <q%”2 + Zl ) then a bound state
0

2md h2
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with quantum numbers n = ¢, and [ = ¢; can occur in the continuum of quan-
. . 2,2 2 2 2 2
tum number p in the range of energies - (q"w + Z—é) <E<U,+ Lo
0

2md h2 2maw h2 "

2
On the Other hand, 1f Ub + 52p27r2 > h_Q <q%7r2 + Z_Z2> then bound state in
0

2m h? 2mg h2
h2q2m?

2mawh?”

: . . . 2,22
the continuum occurs for energies satisfying U, + gnf—;;g <E<U,+
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