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Abstract
We have investigated experimentally the scaling behaviour of quantum Hall transitions in
GaAs/AlGaAs heterostructures of a range of mobility, carrier concentration, and spacer layer
width. All three critical scaling exponents γ, κ and p were determined independently for each
sample. We measure the localization length exponent to be γ ≈ 2.3, in good agreement with
expected predictions from scaling theory, but κ and p are found to possess non-universal
values. Results obtained for κ range from κ = 0.16 ± 0.02 to κ = 0.67 ± 0.02, and are found
to be Landau level (LL) dependent, whereasp is found to decrease with increasing sample
mobility. Our results demonstrate the existence of two transport regimes in the LL
conductivity peak; universality is found within the quantum coherent transport regime present
in the tails of the conductivity peak, but is absent within the classical transport regime found
close to the critical point at the centre of the conductivity peak. We explain these results using
a percolation model and show that the critical scaling exponent depends on certain important
length scales that correspond to the microscopic description of electron transport in the bulk of
a two-dimensional electron system.
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1. Introduction

The behaviour of the electron wave functions at the centre
of Landau levels (LLs) in the integer quantum Hall effect
(IQHE) regime is understood to be a result of continuous
quantum phase transitions between localized and delocalized
(extended) energy states in two-dimensional electron systems
(2DESs) [1]. The IQHE, which occurs in 2DESs in a strong
perpendicular magnetic field [2], is characterized by plateaux
in the Hall conductivity σxy (precisely quantized in integer
multiples of e2/h) with a simultaneous vanishingly small
diagonal conductivity σxx . LLs occur when a perpendicular
magnetic field is applied to a 2DES, which breaks the
continuous 2D density of states into discreet energy levels.

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

Impurity scattering and crystal inhomogeneities produce
disorder potentials that broaden the LLs into energy bands, in
which the states at the centres of the LLs are extended and all
other states are localized. Plateaux in σxy occur when the Fermi
energy lies in the regions of localized states, while plateau-to-
plateau transitions (PPTs) occur when the Fermi energy moves
through the delocalized states.

A critical behaviour of the electron wave functions is
observed at these transitions between quantized Hall plateaux.
This critical behaviour in 2DESs is governed by a diverging
localization length

ξ ∝ |E − Ec|−γ . (1)

ξ scales as the critical energy Ec as the LL centre is approached,
where γ is the critical localization length exponent. Since
the LL energy can be controlled by changing the magnetic
field, equation (1) can also be expressed as ξ ∝ |B − Bc|−γ ,
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where Bc is a critical magnetic field. As with all continuous
phase transitions, the value of the critical exponent is expected
to be a universal constant [3]. The localization length
exponent is predicted to be approximately γ ≈ 2.35 [3–5],
independent of LL index and the correlation length of the
disorder potentials. According to finite size scaling theory
[3, 4, 6], a temperature dependence of the slope of the plateau
transition, or equivalently of the width of the σxx peak, can be
observed.

At low and finite temperatures the effective system size L

is given by the quantum phase coherence length [4, 7]

L ∝ T −p/2. (2)

As the temperature approaches zero the effective length can
be expressed as L1/γ ∝ T −κ where κ = p/2γ . κ and p, like
γ , are expected to posses universal values of κ = 0.42 and
p = 2 according to the scaling theory of the IQHE [4–6]. The
conductivity tensor reflects a single-scaling parameter scaling
for both σxy and σxx [6] that depends on T and B. The
conductivity components can be shown [4, 6] to be

σµν(T B) = Sµν[L1/γ |B − Bc|]. (3)

The derivative of (3) at the critical field Bc provides direct
experimental access to the critical exponents,

dσµν(Bc)

dB
∝ L1/γ ∝ T −κ , (4)

which can be expressed as (dσxy/dB)max ∝ T −κ using the
maximum slope of the Hall conductivity transition, or �Bσxx

∝
T κ using the width of the diagonal conductivity peak.

The nature of QHE transitions has for some time been of
interest to both experimentalists and theorists. Though the
physics of the QHE has been studied extensively over the
years, the nature of PPT still remains unclear. In particular,
the question of the universality of the divergent ξ has been
disputed by several experimental results and has created some
disagreement both in the experimental and in the theoretical
literature [4, 8–23]. The first experimental measurements of
the critical exponent κ were performed on electrons confined
in InGaAs/InP heterostructures using equation (4) above,
where it was found that κ = 0.42 [11], independent of
sample properties or LL index, and in remarkable agreement
with the theoretically expected universal value. This result
has been supported by subsequent InGaAs/InP measurements
where it was confirmed that κ = 0.42 [24], further
strengthening the argument for universality in InGaAs/InP
heterostructures. Similar measurements on GaAs/AlGaAs
heterostructures using the same analysis did not, however,
yield universal values [9, 14, 21], with some results suggesting
a dependence of κ on the impurity scattering strength [9].
Other measurements on GaAs/AlGaAs heterostructures failed
even to support the power law form described above, but rather
suggested a linear dependence of the scaling of PPTs [17, 20].

Experimental measurements of γ have also been analysed
by using a size-dependent scaling analysis [8], and
variable-range hopping theory [14, 25] on 2DESs formed in
GaAs/AlGaAs heterostructures. Both analyses found γ to be

universal. All work performed on InGaAs/InP based samples
has inferred values of γ from measurements of κ , assisted by
the assumption that p= 2, but no work has attempted a direct
evaluation of γ .

Measurements of p at PPTs of InGaAs/InP heterostruc-
tures using a current scaling technique through electron heat-
ing [26] also found universal values. Though size-dependent
measurements have been used to extract p in GaAs/AlGaAs
heterostructures, there still remains a lack of a direct measure-
ment of p at the PPT in GaAs/AlGaAs heterostructures. The
size-dependent scaling method, however, did not produce uni-
versal values [8]. In experiments where p is not measured,
it is generally assumed that p = 2 but this assumption is dis-
puted by some authors [18], where it is argued that there is
no justification for using the clean limit result of p = 2 rather
than the disordered result of p = 1.

In summary, measurements of κ and p in InGaAs/InP
heterostructures have shown universal values, while those of
GaAs/AlGaAs heterostructures have not, whereas measure-
ments of γ have shown universal values in GaAs/AlGaAs
heterostructures, but have not been made in InGaAs/InP het-
erostructures.

It has long been argued [4], and indeed recently observed
[27, 28], that the presence or absence of universality in a

particular heterostructure is affected by the correlation length
of disorder (the range of the disorder potentials) in the
sample. Electrons confined in InGaAs/InP heterostructures
predominantly experience alloy-disorder scattering within the
vicinity of the 2DES, making the correlation length of the
disorder potential relatively short-ranged. For 2DESs formed
in GaAs/AlGaAs heterostructures, scattering processes are
usually dominated by ionized impurities in the donor layer,
which are separated from the 2DES by a spacer layer which
makes the correlation length of the disorder potential relatively
long-ranged. Though the results from these disorder-based
experiments have shed new light on the universality problem,
questions still remain about the conditions required for the
observation of universal quantum criticality. We will show
below that the range of the disorder potential is not itself
sufficient to explain all the discrepancies observed in critical
scaling exponents of PPTs.

It is not obvious that a complete and robust picture of the
quantum criticality of PPT can be found by combining direct
and indirect evaluations of critical exponents obtained from
different samples in different materials systems. There is a
need for a converging experiment where all three exponents
are measured in the same system; this would allow direct
comparisons between scaling exponents to be made with
confidence, this is the central aim of the current work. In this
paper we evaluate all three scaling exponents (κ , p and γ ) in the
same samples through direct and independent measurements
across a range of four GaAs/AlGaAs heterostructures. This
materials system was chosen as it is in this system where
the greatest degree of disagreement in scaling exponents has
been found previously. We show experimentally that the
universality of scaling exponents depends intrinsically on key
length scales that determine the regime of 2DES transport.
Based on our results, we provide a broader definition of
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Table 1. Wafer layer and electrical characteristics measured at
100 mK without illumination.

AlGaAs spacer ne µe

Sample (nm) (×1011 cm2) (×105 cm2 V−1 s−1)

L1 20 2.99 3.8
L2 40 1.55 1.09
L3 20 2.45 0.51
L4 40 1.92 8.68

quantum critically in PPTs through a percolation model that is
consistent both with our experimental results and with those
from other groups. The model also accounts for the generally
accepted correlation length of disorder argument which is used
to explain the discrepancy in universality between short-range
and long-range disordered systems [4]. In particular, we are
able to answer the question of whether both critical exponents
γ and p are non-universal if κ is determined to be non-universal
in a system, noting that κ is a composite exponent, κ = p/2γ ,
which depends on two independent exponents.

The paper is structured as follows. Experimental
techniques and details of the samples used are given in
section 2. The analysis and results for the three exponents
are presented in section 3. Section 4 discusses the percolation
model, which is used to explain our results. Section 5
comprises a discussion of the results and the implications
for the universality of scaling in the QHE. Conclusions are
summarized in section 6.

2. Sample properties and experimental technique

All samples were fabricated from GaAs/AlGaAs wafers grown
by molecular beam epitaxy. Four different heterostructures
were grown, as summarized in table 1, to provide a
range of mobilities, carrier concentrations, and spacer layer
thicknesses. The growth sequence of the wafers (from
substrate to surface) was: an undoped 1-µm-thick GaAs layer;
an undoped Al0.33Ga0.67As spacer (either 20 or 40 nm thick);
a 40 nm Si-doped (2 × 1018 cm−3) Al0.33Ga0.67As layer; and
a 10 nm GaAs cap layer. The samples were patterned using
optical lithography to form Hall bars with a channel width of
100 µm and length of 300 µm between the voltage probe arms.

Low resistance ohmic contacts were prepared by
evaporating 170 nm of Au/Ge/Ni eutectic onto the surface
of the Hall bar, which was then annealed at 430 ◦C for 80 s
under a nitrogen atmosphere. The samples were attached to
the mixing chamber plate of a 3He/4He dilution refrigerator,
and simultaneous measurements of the diagonal (ρxx) and
Hall (ρxy) resistivities were taken between 0.1 and 1 K using
standard low-frequency (7 Hz) lock-in techniques.

It was determined that the samples were not heated by
excitation currents below 50 nA, and so a fixed 10 nA input
current was used for all temperature scaling measurements
involving κ and γ . The excitation current was varied for
measurements of p, however, with current heating purposely
used (see section 3). Figure 1 shows a plot of ρxx and ρxy as
a function of magnetic field at different temperatures for one
sample. The temperature dependence of the QHE can clearly
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Figure 1. (a) ρxx measured at different temperatures for sample L1
with an excitation current of 10 nA. (b) The corresponding Hall
resistivity ρxy and filling factor, ν. Inset: ν = 3–2 PPT.

be seen in figure 1; the peaks in the longitudinal resistivity
broaden with increasing temperature, while the slope of
the PPTs in the Hall resistivity decreases with increasing
temperature.

3. Experimental results

3.1. The localization length exponent, γ

If the energy separation between disorder broadened LLs is
much greater than their linewidth, then the states in the LL tails
are considered to be localized [29]. The localization length
ξ is expected to diverge as the Fermi energy approaches the
centre of the LL (equation (1)), and this divergence yields the
scaling exponent γ . Numerical and analytical studies have
predicted a universal value of γ ≈ 2.35 [4, 5, 12, 30–32],
which has been experimentally validated [8, 14, 25, 33]. The
first experimental measurement of γ was based on a size-
dependent scaling theory [8]. This theory assumes that ξ(EF)

is limited by the physical dimensions of the sample, which
creates a low temperature saturation limit beyond which ξ is
pinned at the sample size W . By measuring the σxx peak width
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within the saturated region for samples of different sizes, γ can
be determined through W∝ξ sat ∝ �B−γ . We use a different
and more direct approach to determine γ , however, which
relies on a direct evaluation of ξ and its energy dependence
through variable-range hopping theory [34].

At sufficiently low temperatures, the dominant transport
mechanism in the localized region of an energy band is
variable-range hopping (VRH) [29], where the temperature
dependence of σxx can be described by

σxx(T ) ∝ e−(T0/T )α , (5)

where T0 is the characteristic hopping temperature. Equa-
tion (5) was initially conceived to describe Mott hopping with
α = 1

1+d
, where d refers to the dimensionality of the system

[29, 35]. Upon further investigation of hopping conductivity
in disordered systems, it was found that the Coulomb interac-
tion between localized electrons creates a Coulomb gap in the
density of states near the Fermi level [36].

At low temperatures, the influence of the Coulomb gap
modifies the exponent of the hopping conductivity to α = 1/2
in two dimensions [36],

σxx(T ) = σ0e−(T0/T )1/2

, (6)

where

kBT0 = C
e2

4πεrε0ξ
, (7)

and σ0 is a prefactor that is inversely proportional to
temperature ([23, 37–39]. The dimensionless constant C is
thought to be of the order of unity and is believed to be C ≈ 6
[25] in two dimensions. Ono [40] independently derived
the temperature-dependent σxx relationship in equation (5)
in the tail states of a LL and also found α = 1/2 (from
equation (5)) in two-dimensions and a prefactor similarly
inversely proportional to temperature. Our data, as shown in
figure 2(b), was tested within the localized region with different
values of α, and the best fit was found to be α = 1/2.

From equations (1), (6) and (7) a direct relationship can
be found between ξ and VRH that allows γ to be measured.
ξ , which is inversely proportional to T0, can be experimentally
measured by determining T0 from a double log plot of T σxx

versus 1/T 1/2 according to equation (6). Figure 2(b) shows
T0 determined at different points away from the critical field
of the σxx peak shown in figure 2(a); it can be seen that
VRH fits our data well over a wide range of filling factors
(|δν| ≈ 0.4), deep into the tails of the broadened LL band.
By determining T0 as a function of magnetic field away from
the critical field, |δB|, we determine the localization length
exponent γ by the gradient of a linear fit to ln(T 0) = γ ln(δB)

as shown in figure 3 for all four heterostructures investigated.
The values of γ obtained are summarized in table 2; two values
of γ are obtained for the N = 1 ↓ LL (4–3 transition) in
each sample, one for the high-B side of the LL, and one for
the low-B side. N = 1 ↓ LL was chosen for investigation
as it did not exhibit LL coupling or spin–orbit interaction in
our samples, since the presence of these effects is expected
to change the measured value of γ [4].The values obtained
for all four of our samples are in good agreement with the
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Figure 2. (a) Temperature dependence of the ν = 4–3 transition
peak for sample L4. The peak width increases with temperature.
(b) Semi-log plot of the temperature dependence of σxx taken from
the data in (a), using equation (5).

expected universal value of γ ≈ 2.3 with the exception of
L3, in which γ was found to be γ = 1.79 ± 0.01 on the
high-B side. This discrepancy is attributed to the strong onset
of LL coupling between the N = 1 ↓ and N = 1 ↑ LLs
with increasing temperature, caused by the relatively high
level of disorder in this particular heterostructure as suggested
by its comparatively low mobility (see table 1). The inset
to figure 3(c) shows that for sample L3 the LLs represented
by the two σxx peaks are not distinguishably separated, and
so γ could not be accurately determined on the high-B side
of the N = 1 ↓ LL. LL coupling was not observed in
the other three heterostructures; the figure 3(a) inset shows
distinguishable LLs in sample L1, for example, indicating
negligible LL coupling.

Assuming C = 6.2 [25] and using εr ≈ 12.6 for GaAs, in
all our samples the localization length was consistently found
to be ξ ≈ 3µm approaching the critical point at the LL centres,
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Figure 3. Logarithmic plot of T0 as a function of distance in magnetic field away from the critical point, δB, for the N = 1 ↓ LL. γ is
measured as the gradient of the linear fit to ln(T 0) = γ ln(δB). γ is determined for all four samples investigated, represents measurements
taken on the low-B side of the critical point, while � represents measurements on the high-B side. The values determined are in good
agreement with the expected value of γ ≈ 2.3. The insets show σxx (B) as a function of temperature for all samples; strong
temperature-dependent LL coupling is observed in sample L3 preventing the determination of γ for the high-B sided of the LL.

Table 2. The localization length exponent γ , measured for the
N = 1 ↓ LL. Two values of γ are determined from measurements
of each sample, one from the low field side of the peak and the other
from the high field side.

N = 1 ↓
Sample B < Bc B > Bc

L1 2.37 ± 0.05 2.34 ± 0.02
L2 2.05 ± 0.03 2.28 ± 0.05
L3 2.36 ± 0.03 1.79 ± 0.01
L4 2.39 ± 0.08 2.39 ± 0.06

and ξ ≈ 200 nm as the ends of the LL tails were approached
(equation (7)). This is much smaller than the sample size,
suggesting strong localization in the tail regions of the LL.
These values are consistent with similar measurements on
devices of similar size [25, 41].

3.2. Temperature scaling exponent, κ

The exponent κ has been the most frequently investigated
scaling exponent. Following the prediction of a universal
scaling behaviour by Pruisken [6], Wei et al conducted

temperature-dependent measurements on the IQHE in a
InGaAs/InP 2DES [11] and found that the transition region
between plateaux exhibits a scaling behaviour in the form of
the power laws:

(dρxy/dB)max ∝ T −κ , (8)

and,
�Bxx ∝ T κ, (9)

where equation (8) refers to the maximum of the derivative
of the Hall resistivity ρxy between PPTs, and equation (9)
measures the width of the peak in ρxx between adjacent
plateaux. The result of these investigations yielded a
universal scaling exponent κ = 0.42 ± 0.02 from both
equations (8) and (9). Subsequent investigations have
questioned the universality of κ , however. Investigations on
GaAs/AlGaAs heterostructures [10] found κ to be universal
only below a characteristic temperature of 200 mK, which was
attributed to the dominance of long-range potential fluctuations
in GaAs/AlGaAs heterostructures. Koch et al [9] also
investigated κ in GaAs/AlGaAs, and found κ to be mobility
dependent. Studies in Si-MOSFETs [43, 44] also failed to
observe universality in the exponent κ . Furthermore, a similar
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Figure 4. (a) ρxx and (b) ρxy for the N = 1 ↓ (ν = 4–3) transition
as a function of magnetic field at series of different temperatures for
sample L4.

dependence is expected in measurement frequency according
to equation (8) and (9) [3, 4], but there is no consensus on
a universal κ in such frequency scaling experiments either
[16, 17, 42]. As discussed above, the scaling exponent γ is

universal in all our samples. In this section we measure κ in
the same set of samples and investigate its universality. We
determine κfor the ν = 4–3 and ν = 3–2 transitions using
both equations (8) and (9). Figure 4 shows an example of ρxy

and ρxx for the ν = 4–3 transition about the N = 1 ↓ LL for
one of our samples.

Figure 5 shows plots used to determine κ based on
equation (9) for the N = 1 ↓ and N = 1 ↑ LLs. Our
results are summarized in table 3. In general the results from
equations (8) and (9) agree well with each other. Our results
do not show a general universal behaviour, but we note that
the values for κ in N = 1 ↑ are closely distributed about the
predicted universal value of κ ≈ 0.42.

3.3. Temperature scattering exponent, p

Although there have been a number of investigations of
the critical scaling exponents of the QHE, experimental
measurements of p near the critical field, and independent of
other critical exponents, are the least studied. We present here
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Figure 5. (a) �Bxx versus T for the N = 1 ↑ (ν = 3–2) transition
for all four samples investigated. (b) �Bxx versus T for the ν = 4–3
transition.

Table 3. The exponent κ measured for LLs N = 1 ↓ (ν = 4–3
transition) and N = 1 ↑ (ν = 3–2 transition) using both the width of
the transition peaks, �Bxx , determined from the
full-width-at-half-maximum of the normalized resistivity traces, and
the maximum gradient of plateau transitions, dρxy /dB.

N= 1 ↓ N= 1 ↑
Sample �Bxx dρxy/dB �B dρxy/dB

L1 0.42 ± 0.01 0.23 ± 0.02 0.41 ± 0.01 0.44 ± 0.02
L2 0.67 ± 0.02 0.66 ± 0.03 0.44 ± 0.02 0.42 ± 0.03
L3 0.55 ± 0.04 0.60 ± 0.02 0.46 ± 0.02 0.43 ± 0.03
L4 0.54 ± 0.02 0.54 ± 0.02 0.34 ± 0.01 0.16 ± 0.02

an independent determination of the temperature exponent of
the inelastic scattering length, p.

The effective size of a 2DES is limited by a temperature-
dependent inelastic scattering length. Thouless [7]
showed that the inelastic scattering length introduces random
fluctuations in electronic states that limit the quantum
interference necessary for localization. In other words, if the
inelastic scattering length is less than the localization length,
the effects of localization will be destroyed since an electron
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will be scattered before it is able to explore the length of the
system. An electron with a lifetime τin will diffuse a distance,

L2 = Dτin, (10)

where D is the diffusion constant for an electron. L,
the Thouless length, describes the distance over which
quantum coherence is maintained in the system; localization
effects are cut off beyond this length. At sufficiently high
temperatures, the quantum coherence length is determined
by the temperature-dependent inelastic scattering length. An
increase in temperature results in a decrease in the inelastic
scattering length. This makes the elastic scattering length
the relevant length scale for the observation of localization
effects of quantum Hall transitions since at sufficiently high
temperatures it is the limiting length of quantum coherence.

The temperature dependence of the inelastic scattering
time can be expressed as τin ∝ T −p where p is an exponent of
temperature that depends on the scattering mechanism within
the system. From equation (10) a scaling expression of the
dependence of L on temperature can be written as

L ∝ T −p/2. (11)

Equation (11) shows that the quantum coherent size of a
system can be varied by changing the sample temperature.
For all the experiments described above (involving the critical
exponents κ and γ ), the system size of the 2DES has been
effectively scaled by controlling the bath temperature, which
determines the sample lattice temperature, TL. In all our
experiments, sufficient time is allowed to bring the lattice and
bath temperature to equilibrium.

At high TL, energy is easily transferred between electrons
and the lattice with little temperature lag, and the electron
temperature Te in the 2DES is essentially Te ≈ TL. At low
TL, electron–phonon interaction is weak, and it is possible for
Te to be much higher than TL under an applied electric field.
Anderson et al [45] proposed such an electron heating model
and showed that within this weak electron–phonon coupling
regime the field dependence of the electron temperature can be
expressed as

πkBT e = 4eE(Dτ in)
1/2, (12)

where E is the applied electric field and D is the diffusion
constant. From equations (10), (11) and (12) the coefficient
of the ratio of lnE to that of lnT is 2/(2 + p). This can be
expressed in terms of the applied current I as

Te ∝ I η, where η = 2

2 + p
. (13)

In previous investigations it has been shown that by comparing
a change in resistivity as a function of temperature with the
change in resistivity as a function of electric field or current,
the electron temperature corresponding to a particular field,
or current, can be extracted [46, 47]. It can be observed in
equations (12) and (13) that through a combination of field or
current dependent scaling experiments, where electrons in the
2DES are heated against a background of a constant and low
lattice temperature, it is possible to determine p by measuring
the sample resistivity as a function of the applied electric field.
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Figure 6. Diagonal and Hall resistivity measured with three
different applied currents in sample L1. Electron heating is evident
in the broadening of the peaks in the diagonal resistivity and the
reduction in the inter-plateau slope of the Hall resistivity.

Figure 6, which is comparable to figure 1, shows evidence
of electron heating with increasing current. We attribute the
broadening of the peaks in the diagonal resistivity and the
reduction in the slope of PPTs of the Hall resistivity in figures 1
and 6 to the same finite-size scaling mechanism [3, 48] in both
temperature and current dependent cases, respectively.

The electron temperature here is determined through
the temperature dependence of the dρxy/dB maximum
(dρxy/dBmax), which occurs at the critical point. The
temperature dependence of dρxy/dBmax is measured at
different TL while applying a low and constant current to
ensure that there is negligible electron heating, and the
results are used to create calibration curves for each transition
of each sample. Similar measurements of dρxy/dBmax
are obtained by varying the applied currents. For each
dρxy/dBmax measured at a different applied current, Te is
determined using the corresponding calibration curve obtained
from the temperature-dependent experiments. By comparing
dρxy/dBmax determined in both temperature and current
scaling studies, Te is derived for each measured current.
Figure 7 shows such a comparison for the ν = 4–3 transition of
sample L4, where an applied current of 1000 nA corresponds
to Te ∼ 600 mK. This method is similar to determination
of electron temperature from the dampening of Shubnikov–
de Haas oscillations with applied electric field or current
[49–51]. Since critical scaling phenomena are of interest
here, it is important that the determination of Te is taken from
measurements at the critical point.

After determining Te for the current dependent
measurements, p is determined by the gradient of a linear fit
to a double log plot of equation (13) as shown in figure 8. The
results of all four samples investigated are shown in table 4.
Only one transition could be determined in sample L3 owing
to lifting of LL spin degeneracy.

To be consistent with the scaling theory of the QHE
proposed by Pruisken [6] and the experimental results of Wei
et al [11], and assuming the universal value of γ ∼ 2.3, the
value of the temperature exponent is expected to be p ∼ 2
irrespective of sample detail or LL index. The values of
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p determined in table 4 shows that p is in fact dependent
on sample; p varies between p = 1.27 and p = 3.29.
The exponent also appears to have a mobility dependence,
increasing with decreasing sample mobility. The value of p

has been previously measured by Wei et al [26] in InGaAs/InP
heterostructures as p = 2 and was declared to be universal, but
in investigations on GaAs/AlGaAs heterostructures similar to
those used here, Koch et al [8] obtained values of p between
p = 2.7 and p = 3.4 using a size-dependent scaling analysis.
We find good agreement with Koch et al if we limit our results
to samples of a similar range of mobilities, obtaining values
of p between p = 3.09 and p = 3.29. These findings
therefore question the universality of p in GaAs/AlGaAs

Table 4. The temperature exponent p of the phase breaking time
measured for various LLs in all four samples: N = 1 ↓, ν = 4–3;
N = 2 ↑, ν = 5–4; N = 2 ↓, ν = 6–5.

Sample N = 1 ↓ N = 2 ↑ N = 2 ↓
L1 2.01 ± 0.04 2.02 ± 0.08 2.06 ± 0.05
L2 3.09 ± 0.06 3.11 ± 0.13 3.23 ± 0.26
L3 3.29 ± 0.09 — —
L4 1.27 ± 0.02 1.55 ± 0.09 1.64 ± 0.09

heterostructures. Figure 9 shows the mobility dependence of p

found in our results by plotting the average value of p measured
in each sample against the sample mobility. It is also noted
that at zero magnetic field, p is predicted to be p = 1 for dirty
metals [52], while p = 2 is predicted by Fermi liquid theory
for clean metals at zero field [12, 53].

4. Percolation theory of plateau-to-plateau
transitions

In this section we discuss the results presented above in
the context of a model that describes the interplay between
classical percolation and quantum critically in quantum Hall
transitions. The percolation model of plateau-to-plateau
transitions in the QHE provides an appealing and intuitive
picture of Anderson localization that relates localization to
classical percolation. By considering quantum tunnelling
and interference, the critical behaviour of quantum Hall
transitions can be recovered from a classical percolation
picture. The percolation model remains one of the most
physically transparent models that describes the diversity in
experimental data relating to the quantum criticality of PPTs.

The earliest theories of plateau-to-plateau transitions
were based on percolation of electron clusters [30, 54], and
since then the percolation model has been used extensively
to describe the transport properties between quantum Hall
plateaux of a 2DES [30, 55–62]. The most popular
microscopic view of the IQHE is the edge state picture
[63], which suggests that the externally injected current flows
exclusively close to the edge of the sample through edge-state
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Figure 9. Plot showing the dependence of p on mobility. The
values of p are averaged for each sample and increase with
decreasing mobility.

transport [64]. An alternative view describes the integer and
fractional QHE through the formation of alternating strips of
compressible and incompressible regions [65, 66] within the
electron system. Both these descriptions emphasize the role of
the edges of the 2DES and involve narrow conducting channels
close to the edge of the sample. As a result of advances
in scanning techniques that probe the surfaces of electron
systems, and provide local electrostatic potential maps, the
physical description in the 2DES bulk of isolated and inter-
linked clusters has been experimentally observed and verified
in several studies [67–73]. In this work, however, we are
interested in the conduction through the bulk of the sample
at half integer filling factors or PPTs, where both approaches
agree with the existence of a percolation-like network of
electrons or channel within the bulk of the sample, which then
gives rise to a finite dissipative conductivity. It is within this
regime that we focus our discussion.

The picture presented here is that in a strong magnetic
field and a slowly varying random potential, electrons in a
2DES perform small cyclotron oscillations while the centre of
the orbit slowly drift along lines of constant random potential
V (x, y) = const [30, 60]. These equipotential lines consist
of closed trajectories that form potential valleys. Electrons are
therefore localized within isolated clusters in the bulk of the
2DES and cannot propagate beyond the boundaries of their
clusters. The system therefore exhibits no dissipative current.
This is picture found within the localized region of a disorder-
broadened LL and is analogous to a classically percolating
fluid in random network [74].

As the Fermi energy EF moves towards the centre of the
LL there is a change in electron density and a redistribution
of electrons with respect to the background potential. The
electron clusters begin to merge, forming larger clusters with
electron trajectories that cover larger distances. At a certain
critical energy Ec close to the centre of the Landau band,
clusters merge to form an equipotential line that percolates
from one end of the system to the other; this is known as the
percolation threshold. An important conclusion drawn from

this description is that since equipotential lines are closed
and localized for all energies except the critical energy of
the percolation threshold, all electron wave functions must be
localized except at the critical energy. This picture provides
a clear physical description of the localization length ξp(E),
which can intuitively observed to be the width of a cluster, or in
other words, the maximum displacement of electron belonging
to the outmost equipotential of a cluster. According to the
classical theory of percolation ξp(E) diverges as the critical
energy is approached according to the power law,

ξp(E) ∝ |E − Ec|−γp , (14)

with a universal critical exponent γp = 4/3 [54] which has
been determined exactly [75].

The description above is of a classically percolating
system that does not take into account any quantum mechanical
effects associated with the disordered Fermi liquid. The
inclusion of tunnelling and interference quantum mechanical
effects introduces a correction to the percolating electrons
at the critical energy and the universal exponent, however.
Consider the scenario of two neighbouring clusters within the
system as EF approaches the centre of a Landau band. Just
before the trajectories of the outmost equipotentials of the
neighbouring clusters coalesce, an electron is able to tunnel
from one cluster to the other at a saddle point of potential
between the two clusters. As a result, delocalization of wave
functions can occur through saddle points tunnelling, and
electrons are no longer localized to one cluster, but can escape
to another through the saddle point. It has been shown that
this correction to the localization length modifies the critical
exponent to a value of γ = 7/3 or γ ≈ 2.3 [30, 55, 56],
the expected critical exponent of the quantum phase transition
associated with the QHE. The relationship between classical
percolation and the QHE has been firmly established in recent
numerical and theoretical studies [56, 76–78].

5. Discussion

The combined results of the three sets of experiments above
suggest an inconsistent and generally non-universal nature of
PPTs and the critical exponents involved. This ambiguity
in critical exponents associated with PPTs in GaAs/AlGaAs
heterostructures has been discussed previously [4], but never
before have all the exponents been determined in the same
system to reveal a complete picture of criticality both as
a function of temperature (quantum coherence length) and
magnetic field (energy). Previous explanations of non-
universality, especially in GaAs/AlGaAs heterostructures,
have been based on partial experimentation and as a result
yielded fragmented theories. We present here a broader model
of quantum critically of PPTs that is not only applicable to our
results but also to numerous experimental results reported in
the literature. The summary of the results above is as follows.
(1) An inconsistent picture of quantum critically is found at
around the centre of the Landau band, contrary to previous
results [11]. (2) Quantum criticality is conclusively shown
to exist in the localized tail regions of the Landau band of
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the same measured sample. (3) We find that the temperature
exponent p is not a constant, but it is mobility dependent. The
results are discussed below.

We begin with a discussion of universality around the
centre of the Landau band. This was determined in our
experiments by investigating the temperature dependence of
the width of the conductivity peak of a LL to obtain the
critical exponent κ . It has previously been argued that the
lack of universality arises from the length of correlation of
disorder potentials found in the 2DESs investigated [4, 10].
Universal exponents were first reported by Wei et al [11, 26]
who measured low mobility InGaAs/InP structures, in which
short-range random alloy potential scattering dominated. On
the other hand, investigation of GaAs/AlGaAs heterostructures
[9, 10], in which carrier scattering was dominated by long-

range potential fluctuations from remote ionized donors, failed
to show the same universal nature of scaling observed in
InGaAs/InP structures. Using the percolation model, we
describe a broader explanation for this difference.

According to the percolation model described above, κ

is determined in a range of the Landau band close to the
percolation threshold. As discussed above, it is the inclusion
of the quantum mechanical process of saddle point tunnelling
that modifies a classically percolating system to a quantum
percolating system that possesses quantum critically. There
are two main features underlying the relevance of saddle
point tunnelling to quantum criticality. The first is that
dissipative transport predominately occurs on the edges of
almost touching neighbouring clusters. Wave functions of
electrons that propagate on the outmost equipotential trajectory
of a cluster, where E ∼ EF, are linked through quantum
tunnelling to the edge of other clusters, forming an extended
bulk channel connecting one side of system to the other and
enabling dissipative conductivity. It has been shown [56] that
contributions to conductivity from electrons with energies that
are not too close to the Fermi energy (equipotentials found
deep within the cluster) reverts the system to a classically
percolating system. Second, the tunnelling process, which
causes delocalization of wave functions, enables a quantum
coherent extension of the trajectory of an electron beyond
the physical dimensions of its isolated cluster. The quantum
coherence length lϕ , which represents the dephasing length of
wave function beyond which quantum interference terms are
suppressed, is no longer limited to the size of the electron
cluster as defined by classical percolation. As a result,
the crossover between classical percolation and quantum
criticality can be expressed as lϕ = ξp, where ξp as defined
above, represents the size of the typical electron cluster.
The system remains classical as long as lϕ < ξp but a
quantum behaviour and hence quantum critically takes over
when lϕ > ξp.

The effect of a sufficiently high temperature in this model
is to invalidate the two main points discussed above. In
the high temperature limit, electrons are able to hop from
anywhere within the cluster to an equally arbitrary location
within another cluster via phonon induced inelastic scattering.
This is essentially the onset of transport via thermal activation.
As a result of the activation process, dissipative conductivity

is no longer dominated by electrons near EF. In addition,
an increase in temperature causes a decrease in lϕ(T ) such
that at a high enough temperature the condition lϕ < ξp is
reached. With such a short dephasing length an electron is
scattered before it is able to escape its cluster through a saddle
point. There is therefore no quantum coherent extension of the
localization length or quantum interference between clusters
and the system reverts to a classical percolation system.

Since the experimental results reported here on exponent
κ deviates for the expected quantum critical value, following
from the discussion above, it must mean that least some section
of the temperature range of our experiments is found within the
classical lϕ < ξp regime and thus the determined values for κ

will overlap both the quantum critical and classical region.
κ in this case will be a mixture of both exponents with a
value between the quantum critical κ = 0.42 and the classical
κ = 0.75. We believe that this is the reason why so many
previous experimental investigations report different values
for the critical exponent which typical ranges between 0.42
and 0.75. The quantum–classical crossover point itself is not
observed in our results due to the low resolution in temperature
of the data taken, although we have experimentally observed
the crossover point using a high resolution frequency scaling
technique that allows lϕ to be varied with finer granularity on
similar GaAs/AlGaAs heterostructures [79]. We therefore
conclude that although quantum criticality must exist in our
samples as demonstrated by results in the tail regions of the
LL, we suspect that at the centre of the LL lower temperatures
than can be obtained in our experiments are needed in order
to observe the quantum criticality at the correct value of the
critical exponent.

One consequence of the crossover proposed by the
percolation model presented here on the quantum criticality
of κ is the importance of the typical cluster size close to
the percolation threshold. It is noted that since the quantum
mechanical behaviour of the system is only valid when
lϕ > ξp, there is a greater chance of observing quantum
criticality in system where ξp is smaller. Since ξp denotes
the width of the typical cluster, this can be achieved by
increasing the background disorder potentials to create smaller
fragments of electron clusters. We have observed this disorder
induced crossover in GaAs/AlGaAs heterostructures where the
background disorder potential was increased by introducing
Al impurities in the vicinity of the 2DES [27]. It was shown
that by increasing the disorder within the system, quantum
criticality can be observed in an otherwise non-universal
GaAs/AlGaAs heterostructure. The relationship between
cluster size and the quantum critical-to-classical percolation
crossover of κ is even more convincingly established in recent
experimental results reported by Li et al [80].

We attribute this interplay between cluster size and
quantum coherence length to be the reason for the
experimentally observed difference between short-range
disordered systems and long-range disordered systems. In
InGaAs/InP heterostructures where disorder within the system
is due to short-range alloy scattering, typical cluster sizes are
intuitively expected to be smaller owing to the relatively strong
background disorder potential compared to GaAs/AlGaAs
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structures. Disorder in GaAs/AlGaAs systems on the other
hand originates from long-range potential fluctuation from
ionized impurities that are separated from the 2DES by a
spacer layer. This cuts off the core of the Coulomb potential,
leaving the 2DES to experience only the weak interaction in
the tails [81]. This produces cluster sizes that are typically
larger than those found in InGaAs/InP systems. Due to
this relative difference in cluster sizes, quantum criticality,
which as described above is observed when lϕ > ξp, is
found at a lower temperature in GaAs/AlGaAs systems than
in InGaAs/InP. This requires experiments on GaAs/AlGaAs
systems to probe a much lower range of temperature to
observe quantum criticality. Indeed, it has been shown that by
progressively changing the background potential in a typical
GaAs/AlGaAs heterostructures, the crossover point can be
shifted towards higher temperatures, revealing the quantum
critical region [80].

We now discuss criticality within the tail regions of the
LL band, and the critical exponent γ , which is determined
within this region. It was argued above that the observation
of quantum criticality relied on the existence of quantum
mechanical processes, specifically quantum tunnelling of
electrons at the Fermi energy through saddle points that, in turn,
extend the quantum coherence trajectories beyond individual
clusters. This picture is valid close to the percolation threshold
where these saddle points are most likely to occur. In the
tail regions, however, localization is characterized by clusters
that are close in energy but with localization lengths that are
small compared with the spatial distance between the centres
of clusters. In other words, the spatial distance between
clusters is much larger than that found close to the percolation
threshold, and thus there are diminishing numbers of saddle
points. At sufficiently low temperatures, transport in this
regime is dominated by states whose energies are concentrated
in a narrow band near the Fermi level [35, 36]. In the absence of
saddle points an electron is likely to tunnel longer distances to
reach sites that minimize the energy requirement for transport
(i.e. the variable range hopping regime). In other words, as one
moves away from the centre of the Landau band, saddle point-
like tunnelling between the outmost equipotential trajectories
of clusters is still maintained via VRH. The two requirements
for observing quantum critically are still maintained; transport
is still dominated by electrons at the Fermi level, and there is
a quantum coherent extension of the coherence length beyond
the size of the cluster.

This form of transport is quantum coherent as long as the
quantum coherence length is larger than the localization length
[82], lϕ > ξ , and since ξ is exponentially small in the tails of

the LL band, VRH is more temperature robust than saddle point
tunnelling and thus persists for a higher range of temperatures.
This is the reason why even though we do not observe quantum
criticality at the centre of the LL in the results presented in
this paper, it is observed in the tail regions of the LL of the
same sample in the data presented above. At a sufficiently
high temperature though there is a breakdown of VRH and
a thermally activated process takes over. The onset of the
activated process is in fact seen in the high field determination
of γ in sample L3 (table 2) where the measured value of the

Figure 10. A diagrammatic representation of the criticality of
plateau-to-plateau transitions across a LL band.

critical exponent tends towards the classically expected value
of γ ≈ 1.3. Investigations of the critical exponent carried out
in the tail regions of a LL band by Zhao et al [83] have indeed
confirmed that γ takes on the classical value of γ ≈ 1.3 in the
activated transport regime.

A summary of our experimental results can be described
by the criticality diagram shown in figure 10. The basic idea
of the schematic, which is supported both by the percolation
model and by observed experimental results, is that there
is a breakdown of the quantum critical nature of PPTs at
sufficiently high temperatures.

The dashed line in figure 10 denotes the boundary of
the quantum–classical crossover of criticality. As discussed
above, an increase temperature results in a decrease in lϕ .
In the tail regions of the Landau band quantum criticality is
observed but in the high temperature limit the onset of activated
processes of conduction causes a crossover from quantum
criticality to classical percolation as observed in our results.

At the centre of the Landau band, however, the schematic
shows that quantum criticality is observed within a narrow
range of temperatures after which there is a crossover to
classical behaviour. The difference in robustness of the
observation of quantum criticality between the tail region and
the centre of the band is due to the difference in the cluster
size within these regions and the requirement for a quantum
coherent extension of the lϕ beyond the cluster size. Since
the size of the clusters are smaller in the tail regions this
requirement is invalidated at higher temperatures but due to
larger cluster sizes at the centre of the band, the requirement
is even invalidated at relatively lower temperatures.

We note that a similar picture has been predicted
by Kapitulnik et al [59], where it was used to explain
superconductor-to-insulator transitions, but it clear that the
same idea is applicable to our experiments and to plateau-to-
plateau transitions.

The final set of experiments presented here is based on
the determination of the inelastic scattering length exponent
pwhere it is assumed thatp = 2 in most quantum criticality
experiments. An interesting feature that we observe is the
apparent mobility dependence of p. Although a similar
method using electron heating was employed on InGaAs/InP
heterostructures, the nature of disorder in these samples was
short-range and the expected universal value of p = 2 was
obtained [26]. The results obtained in the short-range disorder
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InGaAs/InP samples cannot be directly compared to the long-
range disordered GaAs/AlGaAs system since it has become
clear that the range of the disorder potential plays an important
role in the scaling theory of the QHE. Previous investigations
of p, which have been based on size-dependent experiments,
agree with our results from the electron heating method. In
these size-dependent experiments, the expected universality
was found in short-range disorder systems [33], but not
in long-range systems [8]. Comparing results from like-
for-like heterostructures, our electron heating results agree
well with the size-dependent results. It is not obvious
though from the size-dependent results that p has a mobility
dependence, because of the narrow range of samples and
mobilities considered previously. It should be noted that had
we considered the same range of mobilities too, the apparent
mobility dependence would also not be evident.

In summary, our data leads us to conclude that classical
transport around the LL critical point affects the determination
of p in GaAs/AlGaAs heterostructures with long-range
disorder.

6. Conclusions

We offer a unifying picture of quantum criticality in 2DESs
where we are able to draw conclusions based on experimental
observations with the aid of a percolation model. By measuring
all critical exponents in the same sample, we are able to make
deductions based on our observations of quantum criticality
in long-range disordered systems. We conclude that quantum
criticality does indeed exist in long-range systems but is more
difficult to observe at the centre of the LL bands owing to
the interplay between cluster size and the quantum coherence
length. We also find an unexpected mobility dependence on
p, which awaits further theoretical analysis.
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